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We consider the problem of incorporating positron spatial distribution effects on the two-photon

momentum density (pqr(p)) in a disordered alloy. (P2r(p)) formally involves the average (GG+ )
of the product of electron and positron Green's functions. Our approach utilizes the framework of
the average-t-matrix and coherent-potential approximations to treat disorder in the alloy and

neglects the vertex corrections which arise in evaluating (GG+ ). The influence of disorder on the

positron state is delineated in terms of the properties of (G+ ). Illustrative results for Cu, Cu7, Niz„
CUSONi50, and Ni are presented and discussed.

I. INTRODUCTION

The recent development of the technique of two-
dimensional angular correlation of annihilation radia-
tion' (2D-ACAR) has provided a powerful tool for the
investigation of the electronic structure of disordered al-
loys. Several detailed studies of alloy Fermi surfaces us-

ing 2D-ACAR have already been reported. On the
theoretical side, the average- t-matrix (ATA) and
coherent-potential (CPA) approximations ' have been
used to calculate the configurationally averaged momen-

tum density (p(p)) in a disordered muffin-tin alloy.
Most calculations reported so far, however, neglect the in-

fluence of the positron or, equivalently, assume the posi-
tron spatial distribution to be uniform. Hence, the result-

ing momentum densities are related to Compton scatter-
ing experiments rather than to measured ACAR's. '

Therefore, the need to incorporate the effects of the posi-
tron in momentum-density calculations in alloys is clear.
Hong and Carbotte' have previously considered this
question within the framework of a single band model
Hamiltonian. The present paper is an attempt to address
the problem in a realistic manner by employing the ap-
propriate muffin-tin Hamiltonians to treat the electron as
well as the positron states in the system. Illustrative re-
sults for Cu-Ni alloys are presented and discussed.

The outline of this paper is as follows. Section II
discusses the properties of a single thermalized positron
placed in a random alloy of (repulsive) muffin-tin poten-
tials. ' This problem can be dealt with by the familiar
ATA and CPA techniques and provides a considerable in-
sight into the characteristic effects of disorder on the pos-
itron. Computations of the positron spectral density

(p+ ( p, E) ) and the associated temperature-dependent
momentum density (X+ ( p, T) ) at 4 and 300 K in
Cu5ONi5o are presented. We comment on the qualitative
differences which exist in the way positrons and electrons
sample the disorder in an alloy.

Section III discusses the electron-positron momentum
density (p2r(p)), relevant for analyzing the measured
ACAR's. (p2r( p ) ) formally involves the average

(GG+ ) of the product of electron and positron Green's
functions and is thus intrinsically a more complicated
quantity than the one-particle properties (i.e., those in-

volving only (G)). The simplest approach is to replace
( GG+ ) by (G ) ( G+ ) . We use this approximation to ob-

tain a practical scheme for evaluating (pz&(p) ) in an al-

loy. Results for (p2r(p)) and the electron momentum
density (p( p ) ) in Cu, Cu75Ni25, Cu&oNiso, and Ni are
presented and discussed. The vertex corrections neglected
by using (GG+ ) =(G)(G+ ) will be important in situa-
tions of a strong positron affinity for one of the constitu-
ents. ' We comment on this question and on an alter-
native scheme for decoupling the average (GG+). It
should be noted that the present treatment implicitly as-
sumes electrons and positrons to be independent particles
and does not include effects of electron-positron correla-
tions.

II. THE POSITRON STATE

The nature of the positron state can be explored by con-
sidering the properties of a single thermalized positron
placed in the disordered alloy A 8& . ' The relevant
one-particle Hamiltonian is

H+ p /2m + g V„'+——'(r) .

In analogy with the electronic problem, the potentials
Vq+' and V~+' are assumed to possess a nonoverlapping
muffin-tin form and to occupy the lattice sites randomly.
But, in contrast to the electronic case, the V„'+' are repul-
sive and do not contain an exchange contribution. The
one-particle properties can be discussed within the frame-
work of the ATA and CPA. For example, the average
density of states is given in terms of the configurationally
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scheme for obtaining the Fourier components of the (aver-

age) spatial distribution of the positron in the alloy. We
shall return to this point in the following section.

It is important to recognize that the positron sees the
disorder in an alloy in a manner which differs qualitative-

ly from the electrons. The positron is repelled by the ions
and tends to sample the outer parts of the Wigner-Seitz
cell, whereas the electrons are attracted toward the ionic
cores. Also, the positron occupies states near the bottom
of the positron conduction band, while the electron con-
duction band is filled up to the Fermi energy. In the
preceding example of CuNi, the effective disorder experi-
enced by electronic states of d symmetry is large (i.e.,
separate Cu and Ni d subbands appear in the alloy), but
states of s and p symmetry are hardly affected by alloy-

ing. The behavior of the positron being related to that of
the s-type electronic levels at the bottom of the valence
bands, the effects of disorder on the positron were seen
above to be quite small in CuNi. Larger effects may be
expected in alloys in which the s-phase shifts of the con-
stituents are greatly different [e.g. , CuGe (Ref. 21) and
CuA1 (Ref. 22)].

III. TWO-PHOTON MOMENTUM DISTRIBUTION

The configurationally averaged electron-positron
momentum density for two-photon annihilation,

&p2r(p) &, can be cast in terms of the electron and posi-
tron Green's functions as' '

&p2r(p)&= 2 f dr f dr 'exp[ —ip (r —r ')] f dEf(E) f dE+f+(E+)&ImG(r, r ',E)ImG+(r, r ';E+)&, (5)

&ImG ImG &=Im&G &Im&G (6)

The terms left out in writing decoupling (6), often referred
to as vertex corrections, physically describe the fact that
the positron and the electron respond to the same configu-

where the subscript + refers to positron quantities. The
Fermi-Dirac function f(E), which gives the occupation
probability for the electronic levels, degenerates to the
Maxwell-Boltzmann distribution f+(E+) for the low-

density positron state. To evaluate the complicated in-

tegrand of Eq. (5), the simplest approximation is to re-

place the average of the product of G and G+ by the
product of their averages:

l

ration of A and B atoms (rather than to an average one)
before they annihilate. When the positron samples both
types of atoms in a comparable manner (as in CuNi) one
can expect the decoupling (6) to be a reasonable approxi-
mation. On the other hand, the vertex corrections will be
particularly important in situations where the positron
shows a marked affinity for one of the constituents. The
case of positron trapping in crystals with defects (e.g. , va-
cancies ) is an extreme example. In the following we
shall utilize approximation (6) and later on return briefly
to the question of the vertex corrections.

Using the convolution theorem, Fourier transformation
of Eq. (5), with Eq. (6), yields

&pqr(p)&= 2 f dEf(E) f dE+f+(E+) f 3 f 3
&ImG(p —s, p —t;E)&&ImG+(s, t;E+)& .

7T' (2~)' (2~)'
(7)

The electron and positron Green s functions in Eq. (7) are given by a straightforward generalization involving the nondi-

agonal elements of the previously derived momentum-density expressions for Compton scattering:

(4m) N5 ti(p, ~)ti(ir, q)
&ImG(p, q;E)&=Im. ', +g, '2 g YL, (p) ti(p, q) —&Lt.p' (E p')(E —q') ic ti(ir, ir )6

ti(p, a.), , ti (ir, q)+ [t(ir, a) ' —B(p,E)]LL' YL (q)
ti(KiK) ti (K,K)

Here a =v E and L—:(l, m) is a composite angular momentum index. N is the total number of lattice sites per unit of
volume. YL denotes a real spherical harmonic, G a reciprocal lattice vector, and B(p,E) the matrix of Korringa-Kohn-
Rostoker (KKR) structure functions. Since the underlying crystal lattice is periodic, B(p, E) is a periodic function in re-

ciprocal space and, as p and q in Eq. (8) are only allowed to differ by a reciprocal lattice vector,
B(p,E)=B(q,E)=B(k,E), where k is the reduced wave vector corresponding to p and q. Applying this to the posi-
tron part of Eq. (7) one obtains'

&p2r(p) & =, g f dEf (E) f dE+f+(E+ ) g &ImG(p —k+ —K„,p —k+ —K„.;E) &
7r' nn'k+

X & ImG+ ( I++K„,k++ K„.;E+ ) & .
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T}us formula, together with Eq. (8), allows the calculation
of (p»(p)).

The structure of Eq. (9) is that of a two-dimensional
convolution of the electron and positron momentum den-

sities, i.e., after the energy integrations, Eq. (9) expresses

(p»( p ) ) as a sum over k+ of a product of electron and

positron matrices in ( K„,K„) space. The positron
momentum density consists of a set of peaks of the form
of Eq. (4), centered at the reciprocal lattice points. Their
relative weights give the Fourier components of the aver-

age spatial distribution of the positron in the alloy and
describe the deviation of this distribution from a constant.
In the limit of a perfect crystal at T=O K, the peaks be-

come 5 functions and only the positron state with k+ ——0
and electron levels with reduced k=p —K (where K is

the reciprocal lattice vector which reduces p —k+ to the
first Brillouin zone) contribute to (p»(p)). In the alloy,
on the other hand, even at T=O K, Eq. (9) implies that a
range of positron momenta around k+ ——0 together with

the associated electronic momenta k = p —k+ —K will be
involved. This is a consequence of the disorder-induced
smearing of levels and cannot be avoided.

Another remark concerns the first term in Eq. (8). This
apparent free-electron pole does not lead to singular
behavior near E =p since it cancels a similar contribu-
tion ' from the last term in Eq. (8) as E &p-

Figure 3 displays representative two-photon momentum
densities at T=O K in Cu, Cu75Ni&5, Cu5oNi5o, and Ni
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FIG. 3. Electron momentum densities (p( p ) ) for Compton
scattering and electron-positron momentum densities (p»( p))
for two-photon annihilations at T=O K in Cu, Cu75Niq5,
Cu5QNi&Q, and Ni, along the (110) direction. See text for com-
putational details.

along the (110) direction, together with the correspond-
ing results for Compton scattering. The two sets of
curves are quite similar, apart from the expected more
rapid decrease of the e+-e density at high momenta
caused by the nuclear repulsion of the positron. In going
from Ni to Cu, the break in the first zone (at approxi-
mately 0.5 a.u. ) moves farther to the right and becomes
more pronounced, reflecting an increase in the ( 110) Fer-
mi surface radius and in the s-p character of the associat-
ed states. The rounding of structures in the alloy curves is
a result of the electron disord-er scattering; as noted ear-
lier, the effect of the positrons in this regard is negligible.
For the 50-50 alloy, we estimate the disorder-induced
smearing (width)

~

2b k
~

of the ( 110) radius to be ap-
proximately 0.04 a.u. This is about four times larger than
the total width of the positron momentum density at 4 K
(see Fig. 2), and just at the current limit of detection in a
high-resolution 2D-ACAR experiment. Much of the
preceding discussion is also applicable (with obvious
modifications) to Fig. 4, which shows the momentum
density along the off-the-zone-center direction joining the
(111) and (113) reciprocal lattice points. We have previ-
ously presented the Compton density along this direction
in order to explore the nature of the dip at about 1.8 a.u. ;
this dip is related to the appearance of d-hole pockets
around the symmetry point X in the Ni-rich alloys. '

Figure 4 shows that this feature continues to be seen
clearly in the alloy, even though it becomes less pro-
nounced when positron spatial distribution effects are in-
cluded.

Concerning computational details, we note that the fact
that the disorder smearing of the positron in CuNi alloys
is quite small permitted simplifications in the evaluation
of (p2r(p)). First of all, it was found that the peaks in
the positron Green's function, centered at the reciprocal
lattice points, to a high approximation all have the same
shape. They only differ by scaling factors, which are
given by the Fourier coefficients. The latter vary by less
than half a percent between 4 K and room temperature.
Therefore, in the first instance the broadening of the
peaks was neglected altogether [i.e., ( G+ ( k++ K„,
k+ +K„)) was replaced by ( G+ ( K„,K„)) ]. The posi-
tron temperature and disorder broadening can then be in-
troduced at the end of the calculation by convoluting
(p2r(p))T o with the smearing function (N+(p, T)) of
Eq. (4).

Secondly, it should be emphasized that the Green's
functions in the integrand of Eq. (9) possess strongly
peaked structures [due to the inverse matrix (t ' 8)—
in Eq. (8)] and must be evaluated at many energies. This
makes the summation over n and n' a very cumbersome
one. However, the calculations can be speeded up consid-
erably by realizing that the k„,K„dependence in Eq. (9),
keeping in mind the form of Eq. (8), is separable to a good
approximation. This allows the double summation over
n, n' to be replaced by two identical single summations.
Further details with respect to this point can be found in
Appendix B. Finally, important gains in computational
speed were obtained by the extensive use of interpolation
in the evaluation of the structure functions and the t ma-
tr1ces. '
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FIG. 4. Same as the caption to Fig. 3, except that this figure gives momentum densities along the off-the-zone-center direction (see
inset) joining the (111)and (113)reciprocal lattice points.

A point deservirig comment is the use of the CPA
versus the ATA. Equation (8) is applicable to either the
CPA or the ATA depending on the choice of the effective
atom scattering matrices t&(p, q). ' The CPA treats disor-
der self-consistently and is therefore obviously to be pre-
ferred over the (computationally simpler) ATA. Howev-
er, it has been shown that, although CPA and ATA yield
markedly different results for the spectral quantity

(p( p, E) ), they produce practically indistinguishable
values of the electron momentum density:

(p(p, T)) ~ I dE f(E)(p(p, E)) . (10)

The reason is that the energy integration in (10) is weight-
ed by the Fermi-Dirac function f(E) which, excepting an
interval of width kT around the Fermi energy, is a con-
stant. Consequently, (p(p, T) ) is determined mainly by
the spectral weights of the peaks in (p(p, E)) and is not
sensitive to their shapes. The electron part of Eq. (9) can
thus be computed generally within the simpler ATA
theory to a good approximation. The situation with the
positron part of (p2r(p)) on the other hand is more deli-
cate. It was pointed out in connection with Fig. 2 above
that the distribution (X+ ( p, T) ) cannot be obtained reli-
ably using the ATA. But, we have seen that the positron

also affects (p2r(p)) via its lattice Fourier coefficients,
which depend on the spectral weights associated with the
peaks in (p+(p, E)). As in the electronic case, these
weights are in general given reasonably by the ATA.
These procedures were followed in obtaining the
momentum-density results in Figs. 3 and 4. They corre-
spond thus to the use of the CPA in the positron part and
the ATA in the electron part of Eq. (9). However, as indi-
cated above the present results are expected to be close to
what would be obtained if the CPA were used for the elec-
tron part also.

We return finally to the question of vertex corrections,
neglected in writing the approximate form (6). Similar
corrections arise more generally in the treatment of a
variety of physical properties of alloys, most notably the
transport coefficients. While systematic methods should
be brought to bear on this problem, ' it may also be useful
to consider the following decoupling:

(ImG ImG+ )~x ImG "ImG+

+(1—x)ImG ImG+, (11)

where G ' ~ (or G+' ') denotes the electron (or positron)
Green's function for a single A (8) impurity embedded in
the effective medium. Like decoupling (6), the form on
the right-hand side of (11) can in principle be evaluated by
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the existing ATA and CPA techniques. Also, the form
(11) can be viewed as a first step in a self-consistent
cluster-type generalization of the KKR-CPA theory. In
any event, a comparison of the (p2&( p ) ) values based on
Eqs. (11) and (6) would allow insight into the nature and
importance of vertex corrections in realistic systems.
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APPENDIX A: EXISTENCE OF A LOW-ENERGY BAND EDGE IN THE MUFFIN-TIN CPA

The CPA density of states can be written as

(p(E)) =pa(E)—

T

1 Cz C dC& Cz C dC~ dA
kIm Trg +- +

C~ —Cg dE Cg —Cg dE dE

1

A„+C (A 1)

C =xCg+yCg+(C —Cg )f (C)(C —Cg ),
where y = 1 —x and

f(C)=—X 'g (C+A-)

(A2)

(A3)

Since we are interested in the low-energy band edge, we
restrict ourselves to the case of only the s-phase shifts;
various matrices in the preceding equations then become
scalar functions. Note that, at a given E, if C"= ImC=O
and ( 3 +C)&0 for all k, then Eq. (A 1) implies

k

(p(E)) =0. [Contributions from the free-electron singu-
larities of A-(E) cancel against po(E) exactly and are

k
therefore not considered. ] C"=0 obviously satisfies Eq.
(A2) provided Imf ( C)=0. Under these conditions,
C'= Re C is given by the equation

F(C') =C' xC„—yC~ —(—C' —C~ )f (C')(C' Cs)—
(A4)

But F(C') changes sign between C'=Cz and C'=C~ and
thus possesses a zero in this range. Therefore, assuming
reasonably behaved functions, if ( C~ +A - ) and

k

(C~+A-) do not vanish at the energy in question,
k

(C'+A-) will also not vanish and ImC=O, Imf(C)=0
k

is a solution of the CPA equation. These conditions will
be satisfied at energies lying below the bottoms of both
pure A and B bands, and (p(E)) =0 is the physical solu-
tion in this regime. This result is similar to the localiza-
tion theorem in the case of a single-tight-binding band al-
loy. The ATA, on the other hand, yields

Here, much of the notation is obvious; the trace refers to
the angular momentum space. C~, C~, and C, respective-
ly, denote the matrices of v E times the cotangents of the
A, B, and CPA phase shifts. C„and Cz are real, while C
is in general complex. A is the matrix of real KKR

k

structure constants: A-(E):B(k,E)—iV E.—The quan-
k

tities C are given by the CPA equation

where EMr is the muffin-tin zero. This result is readily
obtainable from t =xtz+ytz, with t~ '=z(i —C~),
and a=A, B, or ATA. Equation (A5) implies a nonvan-
ishing density of states at all energies above the muffin-tin
zero.

APPENDIX 8: SEPARABILITY OF THE K„,K„
DEPENDENCE

The approximate separability of the K„,K„, depen-
dence in Eq. (9) is seen by considering in Eq. (8) the terms
in parentheses multiplying 5LL and the terms containing
( t ' —B) ' separately, and calling them U and V in
the electron case, and U+ and V+ in the positron case,
respectively. In V and V+, K„and K„only enter via
the multiplicative side factors of the form

Yg (p )[t((p,x. ) ltI (~,tt)](E —p2)

In &+, these side factors vary only little over the width of
the Boltzmann distribution f+(E+ ) of the positron and
they may therefore, to a good approximation, be taken out
of the integration with respect to E+ in Eq. (9). The
terms U and U+, on the other hand, are not separable
owing to the occurrence of tt(p, q) Howe. ver, for a posi-
tron in Cu~ „Ni„, U+ is much smaller than V+ and
hence the error made in approximating

+ E+ ImG+ dE+

by an expression of the form

is unimportant. Here, MAA contains the integration with
respect to the positron energy E+, and A and A' are the
positron equivalents of the electron angular momentum
indices I. and I.'. The result of the separation of the
K„,K„dependence in

J f+(E~)(ImG+ )dE+

ImC
y(Cx~ —C~ ) (01+(xC~ +yC& )

for E &EM~, (A5)

and in V is that at every energy E the double summa-
tion over n, n' can now be written as the product of two
identical single summations, each of these summations re-
sulting in a matrix in (L,A) space. If necessary, the elec-
tron terms of the type U can be treated separately.
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Genera11y, these terms are small and structureless, and it
suffices to perform computations invoking the double
summation over n, n' at a relatively small number of
( E, p ) points. In CuNi their contribution to (p2r( p ) ) is
nowhere higher than a few times 10 and hence they
were neglected altogether. Owing to the fairly rapid con-

vergence of the positron Fourier expansion, the summa-
tions over n, n' were limited to the first 27 reciprocal lat-
tice vectors. This gave an accuracy better than 0.1% up
to p=2 a.u. Further gains in computational speed @vere

obtained by restricting the positron angular momentum
summation to A=0 (only s states at I &).
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