
PHYSICAL REVIE%' 8 VOLUME 30, NUMBER 2 15 JULY 1984

Theory of induced-torque anomalies in potassium
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The nonsaturating, four-peak pattern of induced torque observed in spherical potassium samples
has been a challenging puzzle for many years. It is found that this behavior can be quantitatively
explained by an anisotropic Hall coefficient. This provides further confirmation of the broken
translation symmetry of the ground state of potassium, i.e., a charge-density-wave structure.

I. INTRODUCTION

The nonsaturating, four-peak induced-torque patterns
in potassium spheres' indicate that the Fermi surface is
multiply connected and lacks cubic symmetry. Such
properties are expected if potassium has a charge-density-
wave (CDW) structure. In this paper we show that the
four-peaked patterns, observed between 10 and 30 kOe,
can be quantitatively explained by an anisotropic Hall
coefficient.

Potassium is generally considered to have a bcc crystal
structure, with its Fermi surface deviating only by about
one part in 10 from sphericity. For such a metal, the
semiclassical galvanomagnetic theory predicts precisely
that, in high magnetic fields to, r»1, its magnetoresis-
tance should saturate, and its Hall coefficient Rlt should
be exactly that for free electrons, i.e., Ro=( nec) ' —co, .
is the cyclotron frequency, r is the electronic scattering
time, and n is the electron density. Furthermore, if the
induced-torque method is used to measure the magne-
toresistance, one expects ' that the induced torque of a
spherical sample will saturate for co,r»1. However, a
large number of experiments have given totally unexpect-
ed results.

First, in all experiments the magnetoresistance p(H) of
potassium is found to increase with H, without evidence
of saturation, even at fields for which co,r& 300. Results
obtained by four-terminal, helicon-resonance, and
induced-torque methods' substantially agree. These
show that p(H)~pa(1+Sco, r), where po is the resistance
in zero magnetic field. The Kohler slope S is typically
10 "—10, depending on sample preparation and metal-
lurgical history. The fact that a linear behavior is found
in all samples, regardless of shape, contacts, and quality,
rules out explanations invoking extrinsic mechanisms
such as voids, " inhomogeneities, ' or surface imperfec-
tions. ' An explanation based on anisotropic relaxation'
also falls short by many orders of magnitude.

Second, the Hall coefficient RH depends on the direc-
tion of H and sometimes on the magnitude too. Penz and
Bowers, using a low-frequency helicon, standing-wave
technique, observed that ~RH

~

decreases monotonically
with increasing H. The decrease varied from sample to
sample and was -7% at 100 kOe. Their measurements
of the absolute value of RtI showed a 6—12% enhance-
ment over the free-electron value. However, Chimenti

and Maxfield' found no field dependence in RH from 20
to 100 kOe by measuring the resonances of high-
frequency helicon waves in a flat plate. Nevertheless, the
absolute value of RH was larger than Ro, depending on
crystal orientation. For a static magnetic field directed
along a (100) direction, RH was about 4% larger than
Ro. For the (110) direction, the enhancement showed
the largest deviation about 8%. Helicon resonances in a
sphere' resulted in an enhanced RH of 3 to 4%.

Third, the most striking effect of all, induced-torque
measurements, shows dramatic angular-dependent
anomalies in high magnetic fields. These anomalies will
be reviewed below.

II. INDUCED-TORQUE ANOMALIES

The induced-torque method has been used to study the
orientation dependence of the magnetoresistance of alkali
metals. A spherical, single-crystal sample is suspended by
a rod in a uniform magnetic field H. As the magnetic
field rotates about the suspension axis at a constant fre-
quency 0 (typically Q-10 Hz), a circulating current is
induced in the sample. This leads to an induced torque
exerted on the suspension axis.

The experiments of Schaefer and Marcus' were the first
to show anomalous high-field torque anisotropies (Fig. 1).
They measured induced torques on 200 spherical, single
crystals of potassium and observed large, twofold torque
anisotropies, even when the suspension axis was parallel to
a threefold, (111),axis. For fields below -4 kOe, the
twofold pattern was sinusoidal. At higher fields, four-
peaked patterns emerged, as shown in Fig. 1. The oc-
currence of a four-peaked pattern, even when the suspen-
sion axis is parallel to a (111) axis, shows that the cubic
symmetry has been broken. In samples for which crystal
orientation had been determined by x rays, the low-field
torque minima always occurred when the projection of a
(110) axis in the horizontal plane was nearly parallel to
H. This indicates that the preferred axis of broken sym-
metry is most likely near a (110) crystal direction. At
high fields, the torque minima increase linearly with field,
but the maxima increase at a greater rate. Furthermore,
the torque minima perpendicular to the preferred direc-
tion described above are always larger than the torque
minima parallel to that direction.

These anomalous torque patterns were confirmed by
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FIG. 1. Induced torque versus angle 8 for a spherical sample
of potassium having the (100) axis parallel to the suspension.
The data are from Schaefer and Marcus.
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Holroyd and Datars. They also performed experiments
on an accurately spherical sample grown in a Kel-F mold.
Their data are shown in Fig. 2. In Fig. 2(a), the induced
torque versus magnet angle is shown for several values of
H between 500 Oe and 17 kOe. The crystal-growth axis
was vertical. In Fig. 2(b), the growth axis was horizontal;
and values of H range from 1 to 23 kOe in 1-kOe steps.
These results are similar to those of Schaefer and Marcus
in every aspect. However, the anisotropy at 23 kOe was
45:1. Schaefer and Marcus found anisotropies which
ranged from 3:1 to 15:1. It should also be noted that the
four peaks are not evenly spaced in angle. For example,
the separation which spans the smallest torque minimum
is —100'. Unfortunately, the crystallographic orientation
of this sample was never determined.

If potassium had cubic symmetry and a spherical Fermi

surface, the resistivity tensor would be isotropic, and the
induced torque would be independent of magnet angle 8.
To explain the observed anisotropy, several mechanisms
have been suggested. They can be divided into three
categories.

(a) Anisotropic resistiuity S.everal possible causes have
been considered, such as an oriented array of dislocations
or voids, "' or electron-phonon Umklapp processes
occurring at well-defined "hot spots" on the Fermi sur-
face. ' However, the required concentrations of disloca-
tions or voids exceed reasonable values by about three or--
ders of magnitude. The hot-spot model requires varia-
tions in I/r over the Fermi surface by four orders of mag-
nitude. Measurements' of phonon-scattering anisotropy
reveal nothing in excess of 10%.

Even if there were a mechanism causing a large residual
resistance anisotropy, say 10:1, calculation' shows that
the induced torque becomes isotropic by 10 kOe, and a
four-peak pattern does not develop.

(b) Inhomogeneous residual resistivity. We have solved
the induced-torque problem for a sphere having a gradient
in impurity concentration. Four-peaked patterns do not
arise. This work will be published separately.

(c) Anisotropic sample shape La.ss found that if a
sample was sufficiently distorted from a spherical shape,
the calculated torque pattern could resemble those of
Schaefer and Marcus (Fig. 1). However, this explanation
required deviations from sphericity of 10—15% in order
to explain data such as those of Fig. 1. The measured an-
isotropy in shape was 2% or less. ' The data of Fig. 2
would require a 2:1 shape anisotropy. However, this sarn-
ple was spherical to a precision of —,'%. We shall show
that an anisotropic Hall coefficient provides a quantita-
tive explanation of the induced-torque patterns shown in
Figs. 1 and 2.

III. MAGNETORESISTIVITY TENSOR OF POTASSIUM

We assume that the ground state of potassium has a
CDW structure. The conduction-electron density then
has a small sinusoidal modulation,20-
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p, (r)=p, [1—pcos(Q r)],
0where p, is the average electron density, and p and Q are

the fractional modulation and wave vector of the CDW,
respectively. The wave vector Q has a magnitude —1.33
(2m/o), 8% larger than a Fermi sphere's diameter. The
direction of Q is tilted a few degrees from a (110) axis
and is believed to lie in a plane oriented -65 from the
(001) plane.

The exchange and correlation potential,
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FIG. 2. Induced torque versus magnetic field direction 8 for
a potassium sphere 1.11 cm in diameter. In (a) the field H is ro-
tated about the growth axis. The curves shown are for 0.5, 1, 2,
3,. . . kOe. In (b) the plane of rotation contains the growth axis,
and H range from 1 to 23 kOe in 1-kGe steps. The data are
from Holroyd and Datars. The crystallographic orientation is
unknown.

of the CDW creates two energy gaps in k space along
planes passing through + —,Q. The main gaps, about 0.6
eV, distort the Fermi surface nearby, forming small
necks or points of critical contact.

To maintain charge neutrality, the positive ions are dis-
placed sinusoidally relative to their ideal bcc lattice sites

I L I. The displacements are
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u(L) = A sin(Q L), (3)

where A is the atnplitude of the lattice distortion. This
amplitude is 0.03 A; the direction is parallel to the vector

(18.5,54.0,53.1) if Q = (2m. /a)(0. 966,0.910,0.0865). The
positive-ion density p;( r ) is

p;(r)= g 5(r —L—Asin(Q L)),

where 5(r) is the Dirac 5 function. We need the Fourier
transform of p;(r ),

p = f p;(r)e'q''dr

i q [ L + A sin( Q L )]

With the use of the Jacobi-Anger generating function for
Bessel functions,

FIG. 3. Coordinate systems used in the analysis. w is paral-

lel to the preferred texture axis for the CDW Q.

&
iz sing g incog

n = —00

we obtain

(6)

J (~.A)ei(q+n Q) L
q

I L I,n

The sum over ILI yields zero unless q=G —nQ, where

G is any reciprocal-lattice vector. Since we are interested
in the energy gaps which truncate the Fermi surface, we

only consider those q with magnitudes smaller than the
Fermi-surface diameter. The so-called "heterodyne gaps"
are an important special case, corresponding to n =1 and

G=G(lp. For them,
~ q ~

-0.08(2'/a).
The Fermi surface of potassium is no longer a simply

connected, almost-spherical surface. It is multiply con-
nected, with a large number of intersecting energy gaps.

In very high magnetic fields, above 40 kOe, some of the
CDW energy gaps can undergo magnetic breakdown.
Others will not; and as a consequence, a large assortment
of open orbits come into play. The recent very-high-field,
induced-torque experiments, which reveal open orbits,
can be explained by this model. ' Unfortunately, the Fer-
mi surface in lower fields, even up to 30 kOe, is quite
complicated. A microscopic theory taking into account Q
domains' and the effects of a preferred orientational tex-
ture has not been completed. Therefore, we shall postu-
late a phenomenological magnetoresistivity tensor, and
shall attempt to justify it by qualitative arguments.

Consider a coordinate system uuw so that the preferred
axis of orientational texture (for Q) is along w (Fig. 3). In
the frame shown, we assume that potassium can be
described by a magnetoresistivity tensor:

1+See,w

)o =ipp —t (coze cos8 sing

tice, r cos8 sing t2cp, r cos8 c—os/

1+Scoc7 t2cp r s1118

tICpp7 COS8 COSQ —tICOz'r Sln8 p(1++Czlzr)

The meaning of these quantities is as follows: y is the
ratio of zero-field resistivities parallel and perpendicular
to w; t, and t2 describe the anisotropy of the Hall resis-
tivity and its ratio to the free-electron value. For simpli-
city, we have neglected the anisotropy of the Kohler slope
S, which describes the magnetoresistance. (We have veri-
fied that this is unimportant. )

It is well known that the resistivity is proportional to
the weighted average of the scattering cross section cr(8)
The weighting factor, 1 —cosI9, counts 180 scattering
heavily and small-angle scattering very little. For impuri-
ty scattering o.(8) is sharply peaked in the forward direc-

tion, i.e., small k' —k. A CDW mixes plane-wave states
k with k+Q. Thus, the CDW potential allows the usual
wave-vector conservation rule to be supplemented by

k'=k+q+Q . (9)

This CDW —Umklapp effect leads to a strongly enhanced
large-angle scattering, but only for transitions across the
Fermi surface which are nearly parallel to +Q. Accord-
ingly, the resistivity parallel to Q is larger than it is per-
pendicular to Q, i.e., y & 1.

Energy gaps which truncate the Fermi surface cause
open orbits for the conduction electrons (in a magnetic
field). These lead to an H magnetoresistance when H is
perpendicular to an open orbit. For H &25 kOe the large
number of open orbits (-120) prevents individual resolu-
tion. A magnetoresistance which is approximately linear
in H results when the open-orbit effects are appropriately
averaged. ' Calculation shows that the expected Kohler
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slope S is indeed about 10 —10
A CDW also breaks the cubic symmetry of potassium.

The combination of closed orbits and open orbits (with a
shorter relaxation time' ) leads to an enhanced Hall coef-
ficient. Indeed it will be anisotropic if the Q domains
have a preferred orientation. The experiments' indicate

(from our work) that the Hall coefficient parallel to Q is

larger than the Hall coefficient perpendicular to Q. Ac-
cordingly, the enhancement of t~ over t2 is about 10% or
more W. e shall assume that t2 =1, since we have verified
that only the ratio, t&/t2, is relevant to anisotropic torque
patterns.

VXp j=——8,
c

P. j =0,
and the boundary condition

is of the form

j=t&(r,
where

(14)

(15)

IV. CALCULATION OF INDUCED TORQUE
t = — —[Tr(p) —p] '8 .

c
(16)

With the resistivity tensor given by Eq. (8), and the
theory of Visscher and Falicov, calculation of the in-
duced torque is straightforward. Here, it is convenient to
use a magnetoresistivity tensor p transformed to the x,y, z
coordinate system

p=Sp'S .

The orthogonal transformation matrix is

—cos8 0 sin 0
S = sinOcosg —sing cosOcosg

sinO sing cosP cosO sing

where p and 8 are the polar and azimuthal angles of the
preferred texture axis for Q. The induced current, in a
spherical sample of radius R, satisfying the equations

The torque on the sample is given by the Lorentz force

N= — rQ jXB r= — ter r 8 r
c c

=—t)& rr r .B. 17
c

The tensor in large parentheses is the unit tensor multi-
plied by a factor 4mR /15. Thus,

N=(4n.R'/15c) t XB .

Then for our system, with B=Bz and B=QBx, the
torque about the y axis is

Xy —— (47rR /15c—)Bt„.
From Eqs. (10), (11), and (16), we may write Xz explicitly
as

r

4m.R 0 mc

15c po

(co,r)
1+Sue

X 2(1+y)'+(1+y)t'
1+Su,r

&ocr(cos28cos /+sin 8)+2t&
1+Su)cr

i

cos Osin P

2
co~r

(1+y)2sin 8 sin /+2(1+y)(sin Ocos P+cos 8)+(t~ —t2) sin P sin Ocos 81+Su,r (19)

where we have used co,:eH/mc. The —proportionality
factor (4vrR 0/15c po)(mc/er), which is dependent on
the radius of the sample R, the rotation speed 0, and the
relaxation time w, does not affect the torque pattern.
From now on we simply omit it.

The relaxation time r at 1.4 K is about 1.5&10 ' sec,
which is primarily caused by impurity scattering, and is
determined from the zero-field resistivity po. According-
ly, co,r=50 at H =20 kOe.

Now, we are ready to discuss the torque patterns. For
simplicity, we take the polar angle describing the orienta-
tion of the preferred Q direction to be P=rr/2. (The re-
sults are similar for P & m /2. ) In fairly low fields, co,7-1,
the torque shows a twofold anisotropy. The maxima
occur when the field is perpendicular to Q (O=m/2 or
3m /2), and have the value

(~,~)'
2 1 +SO)

(20)

The minima occur at 8=0 and 8=m, and have the value

(co,r)
1+y' 1+S, (21)

(co,r) (t~ —t2) sin Ocos 8
&y p..k= 2 2 2 2I+S~&& (1+y)t2sin 8+2t&cos 8

(22)

which are proportional to the square of (t~ —tq). These
high-field peaks increase with H faster thorn linearly. The

For larger fields, secondary minima develop where the
maxima used to be, so one is left with a four-peak pattern.
The torque peaks are
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FIG. 4. Calculated induced torque versus the angle 9 between

H and Q for y=2. 0, t~
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FIG. 5. Calculated induced torque versus magnetic field
direction 6 for @=2.0, t~ ——1.3, tq ——1.0, and S=0.002. (a) cor-
responds to magnetic fields of 0.5, 1, 2, 4, 8, 14, and 21 kOe,
with H rotated about the preferred texture axis for Q. In (b) the
plane of rotation contains this axis, the curves shown are 1, 2, 4,
10, 15, 20, and 25 kOe.

Ny -(1+St@,r) 1+@
t~

(24)

and the pair perpendicular to Q have a value of

Ey -(1+Sco,r) 1+r
t2

(25)

(n =0, 1,2) . (23)

There are two pairs of high-field minima. The pair paral-

lel to Q is approximately
axis. Again, we see extraordinary agreement. For the
axis of rotation parallel to the growth axis we reproduce
the "flat" curves of Fig. 2. If the plane of rotation con-
tains the axis of preferred Q, an enormous high-field,
four-peak pattern is produced. It is very gratifying to see
that our two peaks surrounding the higher minimum (per-
pendicular to the preferred texture axis) are now closer
than 90'; the angle between them is about 80', which
agrees with the data of Fig. 2.

Note that these high-field minima increase linearly with
H.

With y =2, t& ——1.1, tz ——1.0, and S =0.002 we plot the
torque curves for a series of fields. These curves are
shown in Fig. 4. The fit to the curves of Schaefer and
Marcus (Fig. 1) is excellent. At 25 kOe the inaxima is
—1.8 times the largest minimum and -2.3 times the
smallest minimum, just as the data of Fig. 1. On
remembering that the CDW vector Q is tilted a few de-
grees from a (110) axis, one can understand why the
high-field minima occur within 5' from parallel or per-
pendicular to a (110) axis. '

The enormous high-field torque anisotropy reported by
Holroyd and Datars should draw special attention. Since
the high-field peak, Eq. (22), is proportional to the square
of (ti —tz), it shows that for this sample the Hall resis-
tivity parallel to the preferred Q orientation is about 30%%uo

greater than that perpendicular. On taking y=2, t& ——1.3,
tz ——1.0, and S=0.002, we plot in Fig. 5 the theoretical
curves corresponding to Fig. 2. Apparently, the preferred
texture axis for Q orientation was, in this case, the growth

V. DISCUSSION

The excellent agreement of calculated induced-torque
patterns with experiment on accurately spherical samples
leaves little doubt about the validity of the magnetoresis-
tivity tensor (8). We believe that this confirms the broken
symmetry of a CDW structure in potassium.

We have not yet developed a quantitative theory for a
30% anisotropy in the Hall coefficient as is required to
explain the data of Holroyd and Datars. We believe that
such a microscopic theory will involve both the shorter re-

laxation times for open-orbit electrons, ' resulting from Q
domain size, and the stochastic occurrence of magnetic
breakdown at the many small energy gaps which truncate
the Fermi surface.
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