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Spatial composition fluctuations in semiconductor alloys A„Bl „C involve elastic energy when the lattice
parameters of AC and BC differ. Therefore, the fluctuations are expected to be reduced below those ex-
hibited by a purely random distribution-of the constituent ions. We estimate the extent of the reduction,
and relate it to recent observations of Raman linewidths and line shapes in Ga„Inl „As and Ga„A1& „As.

Ternary tetrahedrally coordinated semiconductor alloys
A„Bt „C or AC„Dt „, where A and B are group III (or II)
elements, and C and D group V (or VI) elements can for
many purposes be described as binary mixtures whose corn-
ponent particles reside (approximately) on the sites of an fcc
lattice. Specifically, thermodynamic parameters such as
mixing enthalpy' and spinodal curves conform fairly well to
the rules describing regular solutions.

The key quantity of regular solution theory is the interac-
tion parameter 0, which can be interpreted in terms of pair
interaction energies; thus

2 +pz (2EAB ~AA EBB)

where No is Avogadro's number, Z the coordination
number (12 for fcc), and E„are the (negat"ive) pair interac-
tion energies. A negative value of 0 indicates a tendency
to ordering (compound formation), a positive value a ten-
dency to decomposition. All the observed interaction
parameters of the alloy group with A, B = Al, oa, In;
(Zn, Cd, Hg) C,D = P,As, Sb; (Se,Te) are positive or zero.
Thus, one expects —and observes —miscibility gaps and
spinodal decomposition below a critical mixing temperature
characteristic of each alloy.

The observed interaction parameters are found to be pro-
portional to the square of the lattice parameter difference
between the pure compounds that constitute the a11oy. This
dependence has been interpreted, in the so-called delta-
lattice-parameter (DLP) model in terms of the lattice
parameter dependence of the average band gap, 3 and more
recently, especially after details of the composition depen-
dence of bond lengths in Ga~ „In„As were revealed by ex-
tended x-ray absorption fine structure (EXAFS) measure-
ments, in terms of the bond distortions associated with the.
formation of the alloy. By relating the bond distortion ener-
gies to the macroscopic elastic constants of the crystals, a
good case could-be made for ascribing most or all of the ob-
served mixing enthalpy to this cause. '

A positive mixing enthalpy would normally produce clus-
tering of like particles above the critical mixing temperature,
and an estimate of the degree of clustering to be expected
was published recently. For the model that was used in
this calculation, the origin of the positive interaction param-
eter is irrelevant. It has been pointed out, however, that in
the type of "lattice gas" that represents these alloys, with a
composition-dependent lattice parameter, if an alloy crystal
is formed at all, elastic interactions will suppress the cluster-
ing. It was also suggested that these elastic interactions
were likely to produce an ordering tendency, that is to say,

~here a is the lattice parameter of AC and b the lattice
parameter of BC. If the crystal were permitted to relax
everywhere, the local lattice parameter would be

d =xa + (1 —x)b (2)

however, the compatibility constraint imposes a local strain

5= d —dp= (x —xp)(a —b) =—Ax(a —b)

with an associated energy density (per unit volume)
r

W(hx)'= ISB (bx)'a+b
where B is the bulk modulus of the crystal.

Equation (4) is based on isotropic compression or dila-
tion; an analogous expression can be obtained for a planar
strain. In that form the elastic energy is thought to be
responsible for the "lattice latching" observed in heteroepi-
taxy, the growth of a single lattice-matched alloy composi-
tion over a range of melt compositions. It also accounts for
the successful heteroepitaxial growth of alloy compositions
unstable in the bulk at the growth temperature.

It has been shown that a reasonable fit to the interaction
parameters of the III-V alloys considered here is given by
the semiempirical formula

W' = 0.226 x 18B a+8

that local composition fluctuations might be reduced below
the level to be expected of a purely random distribution of
the constituents. What follows is a simple thermodynamic
model for the composition correlations induced by the elas-
tic energy.

The lattice parameters of these alloys follow Vegard's law
quite accurately. Any deviation from a linear dependence of
lattice parameter on composition (bowing) is small enough
to be quite negligible for the purpose of this argument.
Consider a region of the alloy large enough to be regarded
as macroscopic. If the composition of this region deviates
from the average composition of the alloy, but must be ac-
commodated in the volume of the virtual lattice that "be-
longs to it," it will suffer compression or dilatation.

The energy associated with the strain is readily comput-
ed. Let the average composition of the alloy be A„B~ „C
and the local composition A B~ „C. Then the lattice
parameter is

dp=xpa + (1 xp)b
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making a contribution to the mixing enthalpy per mole of

hH = lV'x(l —x) V (6)

where V is the molar volume of the alloy.
The entropy of mixing is approximately

Ng t Ng!
S =ln

, NAA NBB ~ (NAB
(7)

Using Eqs. (4), (6), and (8) in the thermodynamic formula9

for macroscopic fluctuations of concentration on an assem-
bly of N sites with total Gibbs free energy 6

((Ax)') =
(8 6/Bx ) TPIv

we find
r

((bx)') = —x(1—x) 1+1 2( W —W') V x(1—x)
!N RT

(9)

(10a)
I

or, in terms of the critical mixing temperature T, given by
2R T, = 8"V = 0.226 WV

((~ )2) 1 x(1—x)
N 1+13.7(T/T)x(1 —x) (10b)

One may guess conservatively that the disorder grown
into a crystal corresponds roughly to a value frozen in at the
growth temperature. Thus, if we compare a lattice-matched
alloy such as Gao5Alo 5As with T, = 0 with the mismatched
alloy Ino qGao 5As with T, —600 K grown epitaxially at
T —900 K, we expect, from Eq. (10a) or (10b) to find a re-
lative reduction of the mean-square concentration fluctua-
tions in the mismatched alloy by a factor —0.3. The reduc-
tion would be expected to be more significant, depending on
cooling rate and on the growth parameters, if appreciable
solid-state diffusion takes place after growth.

Some qualitative experimental support for this prediction
is to be found in linewidths and line shapes observed by
Parayanthal and Pollak' in Raman scattering from
Al„Ga~ „As and In„Ga] „As. In this work it was found
that the broadening and asymmetry of the Raman line was
more pronounced in the lattice-matched alloy Al„Ga~ „As
than in the mismatched In„Gaq „As.

A "spatial correlation" model has been successfully used
to interpret the effect of microcrystalline, " and implantation
damage' disorder on Raman linewidths and line shapes.
This model replaces the phonons of the infinite ordered
crystal with phonons localized within "correlation regions"
whose size is a measure of the partial ordering in the imper-
fect crystal. As a result, the q =0 momentum selection rule
of the perfect crystal is relaxed, and phonons in a region of
the Brillouin zone corresponding to the correlation length
participate in the scattering. Experimental values of the
correlation length are deduced by fitting the observed

where the N; are numbers of ions and the N„" numbers of
second neighbor pairs. Per mole this is

S = R [x lnx+ (1 —x)ln(1 —x) —x ln(x2)

—(1 —x )2ln(1 —x ) 2 —2x (1 —x ) lnx (1 —x ) ] . (8)

linewidths and line shapes, assuming a Gaussian size distri-
bution of the correlation regions, generally in reasonable
agreement with the estimated sizes of crystallites" or un-
damaged regions. '

Substitutional disorder in an alloy similarly breaks the
crystal's translational symmetry and, hence, the q =0 selec-
tion rule for Raman scattering. Since the perturbation is the
phonon modulation of the dielectric tensor, the effective
size of the scattering regions is given by the correlation
length of this tensor's spatial fluctuations. ' No theoretical
prediction has so far been made for this quantity, but Paray-
anthal and Pollack' were able to fit their observed Raman
lines with a spatial correlation model in which the correla-
tion length is simply a phenomenological parameter deter-
mined from the experimental data. For their epitaxially
grown alloys, this parameter ranges from about 8 to above
30 lattice parameters.

Of the two alloy series for which results are given,
Ga„A1~ „As has, within experimental accuracy, zero mixing
enthalpy, and the cations should constitute a perfect lattice
gas on their fcc sublattice. Their concentration fluctuations,
which may be taken as measure of the disorder, then are
given by Eqs. (10) with T, =O. The Raman lines bear this
out qualitatively, in the sense that the linewidths and asym-
metries are greatest for samples with x near 0.5.

The broadening of the Raman lines even in the complete-
ly random alloy Ga„A1~ „As is modest as compared with
the spectrum of amorphous materials, and the spatial corre-
lation model is successful in the interpretation of the line
shapes. This suggests that one might assign the role of the
defects that disrupt the phonon modes to fairly large fluc-
tuations from the average composition. The correlation or
coherence length can then be related to the statistics of large
fluctuations.

In a random binary alloy, the probability distribution of
ions is binomial. With a coordination number Z =12, the
distribution of even the nearest-neighbor shell is fairly well
represented by a Gaussian, and the probability of oc-
currence of a deviation ~ g is approximated by

P (()= erfc(()

I. = N' a = [Z erfc(() ] ' a (12)

where a is the lattice parameter. Equation (12) yields
values consistent with the estimates based on the Raman
spectra if g is about two standard deviations. Using the
average value of L for the GaAs-like mode in Ga„A1~ „As
for the four samples with x near 0.5, we find g = 1.88.

Equations (10) and (12) also provide a comparison of the
correlation lengths in Ga„In~ „As and Ga„A1~ „As. Be-
cause of the suppression of concentration fluctuations, we
expect the scattering centers associated with wide fluctua-
tions to be rarer, increasing the correlation length. Using
the factor 0.3 estimated from Eq. (10) for the reduction in

where (—= (/[2((hx)2) ]' 2.

In order to arrive at an order of magnitude estimate of
the correlation length, we take the size of the defect to
comprise one cation shell of Z ions. If a deviation of rela-
tive magnitude g is to occur in a region containing NZ ca-
tions, we should have NZP (g) = 1, and, therefore, the
average distance between such defects, which we take to be
the correlation length, is
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the mean square fluctuation in Eq. (12), we find

Gao 5Ino 5AS =12
Gao 5Alo 5AS

(13)

This factor is larger than the numbers deduced from the Ra-
man spectra by Parayanthal and Pollak, suggesting that addi-
tional phonon scattering processes are active.

The reduction in randomness discussed here is expected

to have other experimentally testable consequences, which
will be considered elsewhere.
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