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A systematic study has been made of the strength of the intrinsic absorption, or loss, for millime-
ter to micrometer electromagnetic radiation propagating in simple ceramic materials. This study
employed a number of model diatomic systems whose simplicity enabled the basic two-phonon de-
cay process, responsible for this intrinsic loss, to be computed with precision, even at the lowest fre-
quencies, on a dedicated microcomputer. It was found that, at least at low frequencies, the loss was
a relatively structureless universal function of the atomic mass ratio, in general agreement with ear-
lier results for real alkali halides. In particular, it was found that, if one atomic mass was markedly
increased, the low-frequency damping dropped dramatically and a “window” appeared in the loss
function. This behavior and its origins are discussed and illustrated by predictions of the absolute
values of the intrinsic low-frequency losses for MgO and SrO at room temperature. The values for
MgO are almost an order of magnitude larger, and in reasonable accord with values measured for
typical ceramics, when estimated extrinsic losses are subtracted. The present studies-also provide a
natural explanation of the general observation that the loss at the fundamental lattice resonance fre-
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quency is, at least in centrosymmetric systems, dominated by three-phonon decay.

I. INTRODUCTION

There has recently been a resurgence of interest in the
optical properties of simple insulators at very long wave-
lengths; specifically, recent interest has centered on the
millimeter to submillimeter region. This stems from re-
cent developments in technology which have produced in-
creasingly high-power sources operating in this region
(e.g., gyrotons and free-electron lasers), and the conse-
quent need to understand fully the interaction between
such electromagnetic radiation and materials. This is im-
portant not only because of its intrinsic scientific interest,
but also for very practical reasons, the most obvious of
which is the need for reliable window materials in this
spectral region. In the past, since practically any reason-
ably pure insulator is highly transparent at these frequen-
cies, residual absorption has been unimportant and the
choice among such materials has been dictated primarily
by other criteria, such as mechanical strength. With the
advent of these new sources of millimeter radiation, this is
no longer the case. As the power level rises, so does the
energy absorbed in the window: At some point this will
become the limiting factor. This will occur when the rate
of heat generation by absorption exceeds its rate of dissi-
pation by thermal conduction and other mechanisms.
Failure would appear to be an inherently catastrophic pro-
cess since, beyond some critical heating rate, the window
temperature is likely to show an increasingly superlinear
rise as higher and higher orders of multiphonon intrinsic
absorption are “switched on” by their stronger tempera-
ture dependence.!™* Thus one will get “thermal runa-
way””: Most probably, in a real system, this will occur at
many localized sites, with the resultant local failures and
stresses then interacting to produce overall failure.

In a recent paper’ we presented calculations of the
lowest-order intrinsic absorption for four alkali halides
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(NaCl, KCl, KBr, and KI), chosen as model systems, to
examine, among other things, any systematic trends in
this absorption. At the longer wavelengths, the lowest-
order absorption is determined by two-phonon difference
processes® in which the third-order anharmonic terms in
the lattice potential energy lead to the decay of the “virtu-
al” transverse-optic phonon created by the radiation, the
creation of one lattice phonon, and the destruction of
another. The only general requirement on these processes,
which also applies to the corresponding summation pro-
cesses, is that the pairs of phonons involved have equal
and opposite wave vectors. This ensures overall crystal-
momentum conservation, since the optic phonon, created
by the external radiation, has effectively zero crystal
momentum. -

Our results for these four alkali halides suggested a
number of interesting trends whose general validity needs
examination for a wide variety of systems. Unfortunately,
this same work also demonstrated that the only reliable
way to calculate the long-wavelength difference absorp-
tion is by direct summation of all contributions, wave vec-
tor by wave vector, over the Brillouin zone. Although
symmetry allows one to reduce this summation to some
degree, one is still required to use a very dense sample of
wave vectors to obtain reliable values for the very-long-
wavelength absorption. One is thus faced with a major
computational problem. This is compounded by the num-
ber of parameters available for variation in all but the
simplest lattice-dynamical models. We resolved these
problems by deliberately taking the simplest possible
models and studying their absorption properties as their
parameters are systematically varied. This we could do
using an LSI 11/02 microcomputer, thus obviating the
computational problem, since such a machine could be
dedicated for long periods of time to this problem at only
nominal cost. There was also the added advantage of
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direct interfacing to a highly flexible graphics system.

The next stage, to be described in detail in the body of
this paper, was a comparison of the present “model” re-
sults to those for the four alkali halides studied earlier®
leading to the broad conclusion that the present model
systems show the same range of behavior as the real sys-
tems. Finally, we proceeded to use the present approach
to model the simple ceramics MgO and SrO.

II. NATURE OF THE MODELS

Initially we decided to study a two-dimensional system.
Evidently this is something of a pedagogic exercise, but a
comparison between the results obtained and those derived
for the analogous three-dimensional systems is sufficiently
interesting to warrant the presentation of some examples.
The actual model used was a square lattice, composed of
two interpenetrating face-centered square lattices (1 and
2), with atomic masses m;, m,, and with first- and
second-neighbor linear springs resisting atomic displace-
ments within the plane: Displacements normal to the
plane were not permitted. The net effect is to produce a
(001) plane of the sodium chloride structure. The subse-
quent three-dimensional studies were carried out on the
sodium chloride structure itself, obtained by stacking
these (001) planes on top of one another and adding in
first- and second-neighbor spring constants between adja-
cent layers. For clarity, diagrams of these structures are
shown in Fig. 1 (type-1 atoms, solid circles; type-2 atoms,
open circles).

These harmonic models were used to generate the
normal-mode eigenfrequencies (q,j) and eigenvectors
€(k | q,j) (“eigendata”) used to compute the frequency-
dependent damping caused by third-order lattice anhar-
monicity. This damping is directly related to the real and
imaginary parts of the frequency-dependent dielectric
constant €'(£2) and €"'(Q), respectively.

For an arbitrary frequency these relationships are some-
what complicated; but at frequencies much lower than
- the fundamental TO frequency [w(0,/)] drastic simplifi-
cation is possible, since it is sufficient to approximate the
real part of the dielectric constant by its static value €'(0).
We then have the following relations for the extinction
coefficient k() [see Ref. 5, Egs. (2)—(4)]:

6”( Q)

K(Q) ==t = 6'(9_)“6'(°°) 1(0,/;Q) . (1)
2V'€'(0) (0,j)V€(0) |
- h
(G, j;0)= Tmtma) Lo 1
40(0,j)m m; f{_;‘}’,NAQ T

MODEL CALCULATIONS OF THE MICROMETER TO. ..

6137
(a)
kg k3 k1
(b)
o ”f
k3 ’L‘
Ko 2‘/ ]
4| «
S

FIG. 1. Model lattices studied. (a) two-dimensional system;
(b) three-dimensional system. In both cases the nearest- and
next-nearest-neighbor springs are shown. (Type-1 atoms, solid
circles; type-2 atoms, open circles.)

The absorption coefficient a(Q) is given by

4ri(Q)
A
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Q

a(Q)= A= (2)

In view of the direct proportionality of k() to the
frequency-dependent damping I'(0,j;Q), the latter is a
more convenient measure of absorption, since both will
have the same frequency dependence. Furthermore, pro-
vided one considers only anharmonicity in first-neighbor
bonds, one can reduce the expressions for (o, Jj;Q) and
«(Q) to a product of a material-dependent constant and a
Brillouin-zone sum which is a universal function depend-
ing only on force constants, mass ratio, and on reduced
temperature. As a consequence, once this second function
has been calculated, one can predict the behavior of very
different systems simply by changing the prefactor.

If r( is the nearest-neighbor distance, ¢""'(ry) the third
derivative of the first-neighbor potential, n(q,;) the num-
ber of thermally excited phonons for the (q,j) mode and
N the number of unit cells; the explicit expression for

' I(0,/;Q)%% is
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This expression is true for any model: Different models
of the same crystal give different results insofar as they
give different eigendata. The difference between two and
three dimensions lies in the nature of the summations over
the Brillouin zone.

The main shortcoming of the present simplified models
is that longitudinal-optic (LO) and transverse-optic (TO)
vibrations at the zone center are degenerate: The splitting
due to long-range Coulomb interaction in real ionic ma-
terials is absent. However, this defect is much less serious
than it seems at first sight. The reason, as will be demon-
strated explicitly later, is that the primary contributions to
(o, j;Q) are due to zone-boundary phonons. For these
short-wavelength phonons, there is no such unique dis-
tinction between Coulomb and short-range contributions
to the frequencies: It is thus possible to obtain a reason-
able fit to their behavior from a model containing (adjust-
able) short-range forces alone. However, in order to ob-
tain the direct coupling between the external radiation
field and the long-wavelength TO vibrations it is neces-
sary that the two sublattices carry equal and opposite “ef-
fective” ionic charges. This can be achieved by using real
material values for the dielectric constants in Eq. (1).
|
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This does not affect one’s ability to adjust the short-range
force constants in the dynamical matrix to produce the
best overall fit to the zone-boundary phonon frequencies.

III. SPECIFIC CALCULATIONS FOR
TWO-DIMENSIONAL LATTICES

Since these systems are strictly model systems, the only
functions worth calculating are the phonon dispersion
curves (plots of angular frequency w versus wave vector
q); the frequency distribution function (number of normal
modes per unit angular-frequency range), and the damp-
ing function I'( 0, j;Q) defined by Eq. (3). These contain
all the information relevant to our present discussion.

For the model systems shown in Fig. 1, the squares of
the normal-mode frequencies for a given wave vector 4
are determined by the eigenvalue equation for the dynami-
cal matrix DJg(q); where i and j index the two sublat-
tices, and a(f) are x or y, (or x, y, or z)_.for the two (or
three) Cartesian axes. The elements of Dg(q) are as fol-
lows.

DLL(@)=—2=(ky + K [2—cos(garo cos(apro) +coslayro)l}) , atBotya @
1

2D:

D},;(a)=mi{k,+k2[1~cos<qaro)cos(qﬁro)]}, aB

1

(5)

3D and 2D:

D,I,}g(fi)=%[kzsin(qaro)sin(qgro)], a#pB (6)
3D:

D2 (q)= ”%(kl k3 {2 —cos(garo)lcos(ggro)+cosig,ro)]}) , aviBry£a @)
2D:

D2 (q)= —nf—z {k1+k3[1—cos(gqro)cos(qgro)l}, as£B (8)
3D and 2D:

ijg(fi): miz[k3 sin(g,ro)sin(ggry)], a#pB 9)
3D and 2D: /

D2 (§)= (mx;j)m [k, cos(garo)], D15(q)=0, aB. (10)

‘In Eqgs. (4)—(10), k, k,,-and k; are, respectively, the
first-neighbor, and the two distinct second-neighbor (11
and 22) spring constants.

The first Brillouin zone for the two-dimensional lattice
is a square and we chose, as a representative display, plots
of the dispersion curves as 4 runs along the diagonal

from the zone center I to the zone corner M; then along

I

the zone edge from M to X, the edge center; and, finally,
back from X to I" perpendicular to the edge.

The area of the zone bounded by these lines constitutes
the irreducible + of the zome: Eigendata for the
remainder of the zone can be generated from those in the
irreducible area by simple symmetry operations and do
not have to be calculated separately. However, to calcu-
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late the frequency distribution and (o, j;€1) it is neces-
sary to derive the eigendata for wave vectors throughout
the irreducible area. In practice, this means computing
them for a sufficiently fine regular mesh of points and
binning the associated contributions, either to the distribu-
tion or to I'(0, j;Q) into small but finite frequency bins.
Their width is chosen to be some fixed fraction (~1072)
of the maximum frequency for each function. The ability
to handle the problem on a microcomputer enabled us to
step up the density of the wave-vector sample and narrow
the bin widths to the point where we could obtain near-
continuous curves with histogram “chatter” almost elim-
inated.

From the form of the dynamical matrix it is evident
that one can factor out k;/m,;, and thus work in
“natural” units of K;=(ki/k,)=1, K,=(k,/k;), K3
=(k3/k1), M2=(m2/m1), M1=(m1/m1)=l, and
Q(q,/)=w(q,j)/(ky/m{)"/% This is the convention we
adopted, and most of our results (both for two- and
three-dimensional systems) will be presented in this form:

» () '\
rd

Ths only exceptions are the calculations of €'(Q) and
r(0,j;Q) fgr specific three-dimensional systems. Other-
wise our I'(0,7;Q) values are in natural units, without the
prefactor in Eq. (3) included and ¢'"'(ry) set equal to uni-
ty. This also means that the quantity #/kT (k,
Boltzmann’s constant; T the absolute temperature), which
occurs in the phonon population numbers and has dimen-
sions (rad/sec)™ !, is also specified in natural units.

In Fig. 2 we show sample results for a pair of two-

. dimensional lattices, one with equal masses and the other

with 1:2 mass ratio. Phonon-dispersion curves, density,
and damping are shown for each case. In the case of the
damping the “temperature” has been determined by set-
ting #i/kT =1: This is approximately the equivalent of
room temperature if material parameters appropriate to a
typical ceramic are used, and ~50—100 K for typical al-
kali halide parameters. The ratio of first- to second-
neighbor spring constants was taken as 4:1, which the
three-dimensional studies (to be described subsequently)
have shown to be reasonable to approximate real systems.
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FIG. 2. Data for the two-dimensional lattices. (a) dispersion curves ({ versus ) for M;=M,=1, K,=1, K, =K;= i—,; (b) corre-
sponding frequency distribution; (c) corresponding damping function; (d) dispersion curves for M, =1, M, =2, K, =1, K,=K;= %;
(e) corresponding frequency distribution; and (f) corresponding damping function. In all cases the frequencies Q are in “natural”
units (see text). The vertical scales on the frequency distributions and dampings are in arbitrary units, however, these are equal for
the same functions: The two dampings are computed for %/kT =1 in natural units (see text).



6140

Most notable, is the appearance of a gap in the frequency
spectrum of the lattice with unequal masses, whose pres-
ence is also manifest in the clear separation between the
optic and acoustic branches of the associated dispersion
curves. Less dramatic, but of much more practical sig-
nificance, is the strong suppression of the damping func-
tion at low frequencies when the masses are unequal. A
similar effect was found during our earlier studies on real
alkali halides,’ and it is gratifying to find that the present
simplified models reproduce this behavior, even when
they are reduced to two-dimensional systems. Also, it
should be noted that the width of this “window” is sig-
nificantly greater than the gap in the frequency distribu-
tion. Indeed, it appears to correspond to the spacing be-
tween the highest-frequency peak in the acoustic mode
spectrum and the lowest-frequency peak in the optic mode
spectrum. The probable reason for this is that the win-
dow appears when energy conservation for difference pro-
cesses (which are the only processes allowed at low fre-
quencies), “freezes out” interband contributions involving
optic phonon creation and acoustic phonon destruction.
Below this cutoff the only processes allowed are intraband
processes: For these, when the ionic masses are markedly
different, the eigenvector products in Eq. (3) are necessari-
ly small, since the motions of the optic (acoustic) branches
are primarily confined to the lighter (heavier) sublattices.

Also worthy of note is the relatively featureless struc-
ture of the whole difference-band region of the damping
for both lattices. Apart from the low-frequency window
when the masses are unequal, both damping functions ap-
pear as smooth “bell-like” shapes; again this is remark-
ably similar to the results for real alkali halides.> 8

The only truly unrealistic behavior of these damping
functions is that which is manifest in the summation re-
gion as sudden finite jumps. These are genuine (i.e., they
are not an artifact of the use of a finite sample of wave
vectors) and simply reflect the effect of two-dimensional
van Hove® singularities in the two-phonon density of
states. These occur whenever

V ;lo(d,j)+o(—q,j)1=0 (11)

and produce associated finite discontinuities (or logarith-
mic singularities) in this density. These are analogous to
the corresponding singularities in the single-phonon fre-
quency spectra, which are also apparent in Fig. 2. The

only difference is that they can be more numerous, since -

only the sum or difference in Eq. (11) is required to van-
ish: The individual terms can be finite. It is thus possible
to have two-phonon singularities at points in reciprocal
space at which there are no associated one-phonon singu-
larities.

The similarity between these results for a two-
dimensional system and those for real three-dimensional
systems is highly encouraging. Particularly gratifying is
the agreement in the low-frequency region, since it implies
that one can use the present simplified model, or more
properly its three-dimensional counterpart, to obtain a de-
finitive map of the damping at very low frequencies. This
is possible because one can enhance the density of the
wave-vector sample to the point where histogram
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‘“chatter” is smoothed out in this low-frequency region.
For the “typical” density and bin width, used in generat-
ing Fig. 2, the histogram steps are too coarse to define the
very-low-frequency region adequately. Specifically, one
can see that the bin width used in Fig. 2 is ~1% of the
fundamental dispersion frequency, while millimeter elec-
tromagnetic frequencies are also ~1% of this frequency.
Thus one needs a much smaller bin width if one is to de-
fine the damping at such low frequencies. However, any
attempt to “re-bin” the data of Fig. 2 in such a fashion
will simply produce violent “chatter” in the resulting his-
tograms, particularly in the very-low-frequency region
where the contributions are inherently small. To remedy
this it is necessary to increase the density of wave vectors
employed, and calculations were made for both equal and
unequal masses when the sample density was increased by
(8)%. This increases the computer time required by ap-
proximately the same factor. With a dedicated micro-
computer this presents no problem—if necessary it can be
left to run overnight. Since these results are qualitatively
very similar to those for the realistic three-dimensional
models, to be presented later, a full graphical display
would be needlessly repetitious, and it suffices to describe
the salient features of the results. However, a fuller report
of this work, containing a more comprehensive display of
these and other results we shall describe subsequently, is
available on request. The enhanced sample of wave vec-
tors is sufficient to provide “chatter-free” histograms of
the damping function between 0 and 0.1 natural frequency
units when this range is divided into 50 bins. From these
results, the dramatic suppression of the damping for the
case of unequal masses, indicated by Fig. 2, is clearly ap-
parent. Moreover, the marked nonlinearity of its rise with
frequency for this case is also obvious. This is entirely
consistent with the damping in this region arising from
near-forbidden intraband difference processes involving
pairs of near-degenerate phonons close to symmetry
points (lines) in reciprocal space. This “near-forbidden-
ness” can have two origins: The first, alluded to earlier, is
due to the smallness of the eigenvector products in Eq. (3);
the second may arise from the processes involved being
strictly forbidden at (on) a symmetry point (line) (e.g., a
longitudinal-transverse combination involving two pho-
nons propagating along a symmetry axis).

IV. SURVEY CALCULATIONS FOR
THREE-DIMENSIONAL SYSTEMS

In the light of these encouraging results for two-
dimensional systems, we proceeded with a series of sys-
tematic studies for three-dimensional models. The models
studied were three-dimensional equivalents of those stud-
ied in two dimensions. However, in order to determine
the trend of the results, we examined those obtained for
four relative strengths of first- to second-neighbor force
constants (1:1, 2:1, 3:1, and 4:1), while keeping the latter
equal for both types of second-neighbor. In each case, re-
sults were obtained for both equal masses and a 1:2 mass
ratio; again the “temperature” was defined by requiring
#i/kT to be unity.

On the basis of these results, we selected the lattices
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having a 4:1 ratio for first- to second-neighbor force con-

stants as being the most “typical” of a real system, and
the resultant dispersion curves, frequency distributions,
and damping functions are shown in Fig. 3. This was a
somewhat arbitrary choice; however, particularly in the
low-frequency region, we found that the damping (our
major concern) is relatively insensitive to this ratio, as
long as it is substantially less than unity, as must be the
case for any physically reasonable interatomic potential.
Given these facts, we chose not to vary K, and K; in-
dependently and proceeded to a detailed study of the low-
frequency parts of the damping for these systems, using a
very fine mesh of sample wave vectors. These last calcu-
lations are substantially more time consuming than the
analogous two-dimensional calculations, as the time re-
quired rises as the cube, rather than the square, of the
sample density.

For all force-constant ratios, a low-frequency window
appears in the damping when the mass ratio is 1:2. This,
and the nonlinear rise with frequency, are most clearly ap-

- (a)

parent in the expanded displays of this region for our
selected models, which mirror those for two-dimensional
systems. Again a fuller presentation of these data, along
with results for other force constant ratios, is available on
request.

The overall appearance of the damping functions, par-
ticularly in the difference regions, is surprisingly similar
to the two-dimensional results. The main difference is
that the discontinuities present for the two-dimensional
examples, principally in the summation region, are re-
moved and replaced by well-behaved maxima and mini-
ma. Moreover, there is a strong general similarity to the
results for real alkali halides,’~’ particularly marked (to
the extent of near-identity) in the low-frequency differ-
ence region, but present even in the more highly struc-
tured summation region.

In the case of the very-low-frequency damping it is also
of particular interest to determine from which ranges of
the vibrational frequency distribution the contributions to
the damping arise. We therefore wrote a subprogram that
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FIG. 3. Data for the three-dimensional lattices. (a) dispersion curves () versus q) for M|=M,=1, K, =1, K, =K3= %; (b) cor-
responding frequency distribution; (c) corresponding damping function; (d) dispersion curves for M, =1, M,=2, K,=1, K,=K; =7l;;
(e) corresponding frequency distributions; and (f) corresponding damping function. In all cases the frequencies () are in “natural”
units (see text). The vertical scales on the frequency distributions and dampings are in arbitrary units, however, these are equal for
the same functions. The dampings are computed for %/kT =1 in natural units (see text).
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counted one unit into each bin of the frequency-
distribution histogram for each mode within that bin
range that contributed to the low-frequency damping.
Results were obtained using this program for our selected
two- and three-dimensional models and superposed on the
actual frequency distribution. It was found that the con-
tributions are sharply peaked in specific regions of the fre-
quency spectrum. This is particularly marked in the
two-dimensional cases, and reflects the sharp “pile up” of
contributions from areas of near-degeneracy close to
singularities associated with symmetry lines (points),
mainly on the zone boundary. As was observed earlier,

these are much stronger in two rather than three dimen-
sions. For the three-dimensional systems, the contribu-
tions are more spread out, but this probably mainly re-
flects the greater number of singularities when the disper-
sion surfaces involve six rather than four branches and
have three-dimensional topology. Since these results are
qualitatively similar to those to be presented subsequently
for realistic systems we do not display them at this point,
but they are available on request.

As an ancillary calculation we also examined the overall
temperature dependence of the damping functions. In
Fig. 4 we show superposed the results for a range of

3 A ' | ! 1 ! I

FIG. 4. Superpositions of the dampings at different temperatures for our two selected three-dimensional lattices (K;=1,
K,=K;= %). (@) My=M,=1; (b) My=1, M,=2. Values of #/kT in natural units (see text) are indicated on each histogram.
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values of #/kT from 4 to 4 for our two standard three-
dimensional systems. The sharp drop at lower tempera-
tures in the difference band (low frequency) region is
readily apparent, as is the asymptotic linear behavior at
all frequencies at the higher temperatures.

V. ABSOLUTE VALUES OF THE LOSSES
FOR MgO AND SrO

In order to provide some quantitative insight into the
absolute values of absorptions (losses) to be expected in
typical ceramic materials we have taken two specific
cases, chosen to represent magnesium oxide (MgO) and
strontium oxide (SrO). Within the present model we can
only mimic these by varying the mass ratios and relative
magnitudes of the first- and second-neighbor force con-
stants. However, we believe this to be adequate to illus-
trate the overall trend, and to establish that the heavier

softer material does indeed show a lower absorption level -

in the millimeter and submillimeter frequency range. In
this last context we felt it best to exclude the heaviest al-
kaline earth oxide, barium oxide, as it appears to have an
anomalously high static dielectric constant [€'(0)~30] as
compared with ceramics of practical interest.

In order to calculate the appropriate potential deriva-
tives in Eq. (3), we followed a rather different procedure
from that used in Ref. 5. Specifically, we took the param-
eters for the short-range potential between first neighbors
from the compilation by Stoneham!® and added to this
their Coulomb interaction, assuming full ionicity (i.e., ion-
ic charges of plus or minus twice the electronic charge).
Thus we considered only the third derivative of the first-
neighbor potential to be significant and included both
Coulomb and short-range components. This approxima-
tion [implicit in Eq. (3)] is better than it seems at first
sight, since it can be shown that second-neighbor contri-
butions to the damping are identically zero. In this situa-
tion it would appear that anything other than first-
neighbor contributions is genuinely insignificant.

Calculations of the low-frequency damping were then
made for two three-dimensional lattices: one having a
mass ratio of 1:1.5 (corresponding to MgO and one having
a mass ratio of 1:5 (corresponding to SrO). In order that
the results be strictly comparable, the value of #/kT was
set at 0.7 for the second system while the “standard
value” of unity was used for the first system. Both sys-
tems are then at approximately 310 K. In each case the
ratio of first- to second-neighbor force constants was
given the standard value of 4:1. The resulting low-
frequency dampings and contributions (computed as
described earlier for the standard runs) are shown in Fig.
5. However, for both the damping histograms, the scales
are labeled in absolute units. The conversion was made
using the third derivatives computed from Stoneham’s
tabulation'® and their values are indicated in the caption
for Fig. 5. Also, on the right-hand vertical axis are shown
the associated values of the imaginary part of the dielec-
tric constant €''({Q2), computed neglecting any variation
with frequency of the real part, an approximation which
is certainly accurate at these low frequencies. It is at once
apparent that the lighter material shows the dominant
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FIG. 5. Absolute values for low-frequency dampings and
imaginary dielectric functions, €’(Q), for two “real” systems,
together with the corresponding “contributions.” (a) MgO
damping and loss: M =1, M,=1.5, K;=1, K,=K;=+,
T =310 K (#%/kT =1 in natural units), ¥'"'(ry)=50.488 X 10"
dynes/cm?.  (b) MgO contribution (full line): superposed, and
scaled to be comparable, the MgO frequency distribution (bro-
ken line). Vertical scale (corresponding to the contribution) is
arbitrary, however, Q is given in multiples of 4.11x10"
radians/sec (the unit of natural frequéncy). (c) SrO damping
and loss: M,=1, M,=5, K;=1, K,=K;=+, T=310 K
(%/kT =0.7 in natural units), ¢'"'(ro) =24.440 % 10'2 dynes/cm?.
(d) SrO contribution (full line): superposed, and scaled to be
comparable, the SrO frequency distribution. The vertical scale
(corresponding to the contribution) is arbitrary; however, ) is
given in multiples of 2.85% 10'? radians/sec (the unit of natural
frequency).



6144

loss, with values almost an order of magnitude larger over
the whole frequency range. Since we are now-discussing
absolute magnitudes, it is important to realize that addi-
tional factors have come into play. The lower loss in the
heavier material results not only from the strong suppres-
sion of the low-frequency damping, due to the eigenvector
properties discussed earlier, but also because the combina-
tion of heavier masses and a softer potential overwhelms
the strong enhancement due to the lower phonon frequen-
cies in the heavier system.

As far as comparison with experiment is concerned,
there appears to be very little optical data for such sys-
tems at millimeter and submillimeter frequencies. The
only recent data appear to be those of Afsar and Button,'!
who present results for various glass ceramics, alumina,
and beryllium oxide. All seem to show similar losses,
which are of the order of two to three times the values we
have deduced for MgO, to which, in terms of atomic mass
ratio, they are most comparable. However, it is clear
from their data that there is present in their specimens
some extrinsic loss which is certainly dominant below ~5
cm~! and is probably present throughout the spectral re-
gion (5—14 cm~!) covered by their data. If one postu-
lates that the rising absorption they find at higher fre-
quencies is due to intrinsic loss superposed on a reason-
ably flat background of extrinsic loss, then these excess
losses are, to within 50%, in agreement with our results
for MgO, which would argue both for their intrinsic na-
ture and the usefulness of our theory. At present, thisis a
very speculative conclusion. An obvious and definitive
test would be to repeat Afsar and Button’s measure-
ments!! for a range of specimen temperatures. Such a test
would also verify whether or not the two-phonon loss we
have studied is the dominant intrinsic loss mechanism or
whether three-phonon losses have to be included. In the
case of materials in which the atomic masses are compa-
rable, earlier work®!? on alkali halides has shown this to
be unlikely. For ceramics it seems even less likely, since
their markedly higher phonon frequencies tend to reduce
the number of thermally excited quanta, and thus would
further suppress three-phonon processes as compared with
two-phonon processes.

VI. CONCLUSIONS

We have demonstrated, by means of a number of simple
model calculations, that the intrinsic losses in ceramic
dielectrics at millimeter and submillimeter frequencies are
subject to the same general rules as losses in softer ionic
materials, such as alkali halides. Specifically, we have
confirmed the existence of a window effect, whereby
heavier materials with a large disparity between the
masses of the constituent ions show order of magnitude
lower intrinsic losses in the millimeter spectral region than
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lighter materials in which the ionic masses are more near-
ly equal. This occurs despite the fact that the heavier ma-
terials tend to be significantly softer. Given the simplified
nature of our calculations, the absolute values we predict
for these losses appear to be in reasonable accord with es-
timates of the intrinsic losses in real systems. -

One final point of general interest, which emerges from
this and earlier studies, is a probable explanation for the
general “anomalous” behavior of observed dampings in
the vicinity of the fundamental resonance. At high tem-
peratures, these quantities appear to vary quadratically
rather than linearly with temperature, implying three-
rather than two-phonon decay. The reason, which ap-
pears to be generally valid, is that maximum of the two-
phonon difference band occurs at the zone-center LO
mode frequency, while the lowest-frequency summation
process occurs at the zone-center TO mode frequency.
Thus only the tails of the difference processes are avail-
able for two-phonon decay and, again typically, these tails
drop steeply as the TO phonon frequency is approached.
Thus two-phonon decay is strongly inhibited in the vicini-
ty of the fundamental resonance (i.e., the TO phonon fre-
quency), and three-phonon decay becomes dominant.
This behavior, and its general validity, are due to its ori-
gin in the much more stringent selection rules for two-
phonon decay. Specifically, energy conservation and the
requirement that the two phonons have equal and oppo-
site wave vectors virtually ensures that the maximum of
the difference band and the minimum of the summation
band involve processes in which optical phonons of ap-
proximately zero wave vector are created and approxi-
mately zero wave-vector acoustic phonons are, respective-
ly, destroyed and created. For the difference band max-
imum it is an LO phonon that is created, while for the
summation band minimum it is a TO phonon that is
created. Since these processes are near-forbidden, two-
phonon decay is strongly suppressed. While it is possible
to conceive of phonon-dispersion curves, that violate these
conditions (e.g., if a soft TO mode is present) they do not
represent the behavior typical of these curves for simple
binary compounds.!*!* For three-phonon decay there are
no such inhibitions, since processes in which two zone-
boundary phonons of near-equal frequency are, respective-
ly, created and destroyed, and one zone-center TO phonon
is created, will provide a high density of final states and
an associated large damping in the vicinity of the funda-
mental resonance.
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