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An ab initio linear combination of atomic orbitals approach to local-density theory, capable of
handling complex structural geometries, is presented. It incorporates a self-consistent treatment of
interatomic charge transfer, which allows an accurate calculation of total energies. The method is
applied to study a variety of possible 1&(1 and reconstructed 2)& 1 models of the diamond (111)sur-

face. Among the many models suggested, only the Pandey m-bonded chain model has a lower ener-

gy than that of the 1& 1 surface. A minimum-energy structure is obtained for this model after ex-
tensive consideration of relaxations. No dimerization of the surface chain is found to occur.

I. INTRODUCTION

The (2X 1)/(2X2) reconstruction of the diamond (111)
surface' has recently attracted considerable experimental
attention. This reconstruction appears upon annealing
the (hydrogenated ' ) 1X1 surface at —1000'C, and is

presumably the thermodynamically stable structure in the
absence of H. A major motivation for these studies is the
desire to make sense of the remarkable variety of surface
reconstructions which occur for the tetrahedral elements
C, Si, and Ge. A possible common denominator may be
the occurrence of a similar 2X1 reconstruction on all
three elemental surfaces. While clear 2X1 low-energy
electron diffraction (LEED) patterns are observed for
Si(111) and Ge(111) surfaces, LEED cannot distinguish
between a true 2 X2 or disordered domains of 2X 1 for the
diamond (111) surface. ' However, the similarity of the
angle-resolved ultraviolet photoemission (ARUPS) results
for C (Ref. 3), Si (Ref. 9), and Ge (Ref. 10) suggests that a
common 2 &(1 structure may be responsible.

Pandey's proposed m-bonded chain model" has attract-
ed much attention as a possible candidate for this struc-
ture. A perspective view of this structure is shown in Fig.
l(b), along with a view of the ideal 1X 1 structure in Fig.
1(a) for comparison. For Si and Ge, energy-minimization
calculations' identify the Pandey chain structure as the
lowest in energy of all tested, and the calculated disper-
sion. of the occupied surface bands is in good agreement
with the ARUPS data. ' Also, ion backscattering' and
optical absorption' measurements appear to support this
identification. However, contrary indications from LEED .

(Ref. 15) and, most recently, photoemission' experiments
have ensured a continued controversy over this assign-
ment.

For the diamond surface, no energy-minimization cal-
culatioris have previously been done. A comparison of
ARUPS results with the calculated energy dispersion of
occupied surface states yields some indirect evidence for
the Pandey m-bonded chain model, "' possibly with some
dimerization along the chain. " However, discrepancies in
the location and dispersion of the surface state persist,

(a) (c)

F&G. 1. Perspective views of the structures of (a) the ideal
1X1, (b) the Pandey m-bonded chain, (c) the Chadi m-bonded
molecule, and (d) the Seiwatz single chain models.

and the model remains controversial. Among some of the
alternative models which have been proposed are the
Haneman buckled model, ' the Seiwatz single chain
model, ' and the Chadi m-bonded molecule model. The
latter two are shown in perspective views in Figs. 1(c) and
1(d).

In this paper, we report direct energy-minimization cal-
culations for a variety of 1X1 and reconstructed 2X1
models of the C(111) surface. Because of the localized na-
ture of the carbon wave functions, a first-principles linear
combination of atomic orbitals (LCAO) approach has
been used to calculate total energies in the local-density
approximation (LDA). The method is a generalization of
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the first-principles LCAO approach of Chelikowsky and
Louie ' to cases (e.g., surfaces, defects, or heteropolar ma-
terials) for which charge transfer between inequivalent
atoms must be treated self-consistently.

We have calculated the total energy for a wide variety
of surface models, and for those with low total energies
we have carried out extensive tests of relaxations which
might lower the structural energy. The unrelaxed Pandey
m-bonded chain model is found to have a lower energy
than any other 2)& 1 model tested, about equal to that of
the ideal 1)& 1 surface. Relaxation lowers the energy sub-
stantially, so that the relaxed Pandey model is -0.3 eV
lower in energy than the relaxed 1)& 1 surface. Dimeriza-
tion of the Pandey chain model is always found to raise
the energy of the system.

The plan of the paper is as follows. In Sec. II we
present the details of the general theoretical approach. A
discussion of one aspect of the method, namely a modified
version of the Broyden convergence accelerator, is de-
ferred to a separate appendix because of its quite general
utility. The results for diamond surfaces follow in Sec.
III. The relationship of these results to experiment and to
other theoretical work is discussed in Sec. IV, and a sum-
mary is given in Sec. V.

II. METHOD

A. Charge transfer

1. Self consisten-t formulation

The method is a generalization of the first-principles
LCAO approach of Chelikowsky and Louie (CL), '

developed for bulk systems, to the case of systems con-
taining inequivalent atoms. Surfaces, defects, and hetero-
polar materials are examples of such systems. Because of
the inequivalence, interatomic charge transfer must be
taken into account and treated self-consistently.

In both the CL and present approaches, the strategy is
to make a good approximation, expressed as a sum of
Gaussians on thy atomic sites, to the LDA potential
V(r ). (The basis functions are s , p-, and d--type Gauss-
ian orbitals, so that all required three-center integrals can
then be evaluated analytically. ) First-order errors in the
potential V(r ) lead to first-order errors in p(r ), but the
variational property of the LDA total energy ensures that
errors in E«, will be second-order small. Thus the
method will be capable of giving good structural energies
if a good approximation V( r ) can be found.

In the CL approach, the central approximation is

Vp(r ) = g Vett(r —R —~ ),
-+R, g

where the effective potential V,tt(r ) is independent of site
7 and is determined for a given element as follows. First,
the free (pseudo) LDA atom charge density p,« in the
appropriate bulk-like configuration (e.g., sp for carbon) is
determined. Next, a reference structure, typically the
equilibrium bulk structure, is chosen, and p„, is super-
posed to give a first approximation to the crystal charge
density:

pcryst(r )= g patom(r —R —7') . (2)

The crystal potential VLD&[p,~„] is then evaluated and
fit to a sum of spherically symmetric potentials V,tt in the
manner of Eq. (1); since the ion pseudopotentials and Har-
tree potentials superpose linearly, we can write

Veff = Vion + VH [patom] + Veff t

where the problem has reduced to fitting

V„,[p,~„](r)= g V,"tt(r —R —r ) .

(3)

(4)

p,'~„(r)= g p... (r —R r) . —
QpR, r

(6)

The fit is done in G space, with V;tt constrained to be a
sum of Gaussians. Once V",tt has been determined, V,ff'of
Eq. (3) is constructed and is itself fitted to a sum of
Gaussians. Here V,~~ is taken to be local, but in general
we use nonlocal pseudopotentials V; „, with the nonlocal
parts fit to Gaussians as well. These and all other Gauss-
ian fits are carried out using a novel Monte Carlo simulat-
ed annealing approach to functional fitting.

For a new test structure, Vp(r ) is constructed from Eq.
(1) using the new R's and 7's, the Schrodinger equation
is solved in the LCAO basis, and the output density p,'~„
is generated. The latter is a much better approximation to
the true p,~„ than the p,~„ formed as in Eq. (2), and the
total energy is given by E«t[pe'~mat; V,„,], where the exter-
nal potential is

V,„,(r )= g V;,„(r —R —r ) .
R, v

It is important to note that E„, has no explicit depen-
dence upon p,~„or Vo. This procedure has been shown
to give an excellent description of bulk properties, e.g., the
lattice constant and zone center phonon frequencies are
given to within 1% for diamond. '

However, the use of the same V,tt on every site w, as in
Eq. (1), is no longer valid when the atoms in the unit cell
are inequivalent. For example, since the tail of Veff still
has some amplitude at the first neighbor sites, a surface
atom might have a shallower potential than a bulk atom
with more neighbors. This would lead to an unphysical
charge transfer off the surface atom in po'~mat, and a corre-
sponding error in E„,. The failure to model the inter-
atomic charge transfer correctly gives rise to errors in the
low-q (q &Gb~q) Fourier components of p,'~m„(q ); these
errors are serious because of Coulomb terms ot q in
E„,. Thus, while the error in E„, is still formally second
order in the error in p, it is no longer small enough to ig-
nore. The presence of long-range Coulomb interactions
requires us to treat the interatomic charge transfer self-
consistently.

We begin a given iteration of this self-consistent process
with a guess at the electron population Q, on each site r,
which may differ from the mean value Qp

——Z. In analo-

gy with Eq. (2), we approximate p,~st by
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The density p,'~,t now embodies the correct interatomic
charge transfer, and has the correct low-q Fourier com-
ponents, if the Q, are correct. The next step is to approx-
imate VLD&[p,'~„]by a sum of Gaussians as follows:

V(r ) = Vo(r )+ g c,g(r —R —~ } . (7)

The new correction term on the right-hand side (RHS) is a
sum of broad Gaussians, g(r ) =exp( ar—), with a chosen
as —di (di the first neighbor distance). The coeffi-
cients c are chosen in a manner to be described shortly.
The correction term contains almost no high Fourier 'com-

ponents (q )Gt,„'&z); its role is to correct the low-q com-
ponents of V, and hence of p,'~„. Once V(r ) is obtained,
the Schrodinger equation is solved in the LCAO basis,
and a Mulliken population analysis is carried out to
determine a new set of charges Q, . The procedure is then
iterated until the input and output Q, 's are equal, and fi-
nally p,'~„and then E„,[p,'~„;V,„,] are calculated.

We return to the determination of the coefficients c in
Eq. (7). They should be chosen so that V of Eq. (7) has
the same low-G Fourier components as VLDA[p,'~„].
Note that Vo already contains the correct description of
V;,„; the remainder-can be decomposed into a Hartree
correction c, and an exchange-correlation correction
c,"'. %e consider these in turn.

The required Hartree correction is

g c."g(r —R —~ ) = V~[p.'~.t —pc~st](r —R —r }

R, r

The correction to the exchange-correlation potential,
given by the vector c "' of coefficients c"', is relatively
less important because V„, is a weak function of p
(V„, cc -p'y ), and because it is local (i.e., no q diver-
gence). However, we include it in a manner analogous to
the way the Hartree contribution is treated.

We want

c,"'g(r —R —7)= V„,[p,
' „]

R, r
V,"i'Y(r —R —~ ) .

(14)

The RHS is rewritten as 6V„",'+6V„',', where

5V„",' = V„,[p,~„]—g V,"ff( r —R —~ )

R, v

(1'5)

is independent of b,Q, so that b, V„",'(r ) is calculated once
and for all for a given structure. The second term,

(2)~Vxc = Vxc[pcryst] Vxc[pcrystl ~

is linearized as

(16)

(2) ~V..[ Q, Qo p.t. r —~ ]
(17)

for r in the neighborhood of r . Unfortunately this func-
tion is not smooth in this neighborhood, so we carry out
an average using p„, as a weighting factor:

Since both sides of Eq. (8) are small (p,'~„=p,~„) and
smooth (high-q contributions to VI& are damped as q ),
it suffices to specify that the functions match at the atom
centers ~:

}= Va [Pcryst pcryst] ( 'r—

b, V„','( r ) = U"'b, Q, ,

Ux 1, ~V-[(Q~Qo)p. t. (r)]d'r p„. (r )
0

(18)

(19)

g,, = g g(r —R —7' ),
R

and

HU 'r'r g Va[p to ](r —R —'r ' ),
0 R

(12)

~Q.=Q.—Qo . (13)

The solution for c is then given by multiplying the
RHS of Eq. (10) by g

(9)

The function on the left of Eq. (8) will then interpolate
throughout the unit cell in a manner almost identical to
the function on the right. Making use of Eqs. (2) and (6)
and rewriting as a vector equation, we obtain

g c =U KQ, (10)

where the notation c denotes the 1V-dimensional vector
(c, ,c, , . . .} of dimension N (number of atoms per unit1] 1g

cell). We have defined

c =g '.(hV„",'+U bQ),
where

U UH +g Uxc

(20)

(21)

The U matrix is calculated once and for all for a given
structure; the exchange-correlation piece just involves a
radial integral, and the Hartree piece is done as a G-space
sum with the 6 =0 term eliminated to avoid Coulomb
divergences. (For surface slab calculations, the slabs are
considered to be repeated periodically with a large lattice
constant in the z direction, and the change in the Hartree
potential is b~ definition zero in the center of the vacuum
region. ) b, V„c' and g are convergent real-space sums.
Thus once b.Q is recalculated from the Mulliken analysis
on a given iteration, it is numerically trivial to find c
from Eq. (20).

In practice the exchange-correlation corrections [Eqs. (15)
and (18)] are only -2—3% of the Hartree contribution,
Eq. (9). The approximations made here in the treatment
of V„, are justifiable in this light.

Collecting all the terms, we have
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We emphasize that the present approach treats the
long-range nature of the Coulomb interaction in an essen-
tially exact manner. For example, the self-consistent
charge transfer at the surface gives rise to a dipole layer
and therefore a potential shift which penetrates infinitely
deeply into the bulk; the work function adjusts itself self-
consistently, and is a meaningful output of the calcula-
tion.

Q
(m+1)

Q (m)+~ .(Q (m)
Q (m)) . (22)

converges quickly to the self-consistent value. Let us de-
fine

F(Q(m)) Q(m) Q(m)

and expand F in linear order as

F(Q)=F(Q' ') —J (Q —Q' ')

(23)

(24)

to define the Jacobian matrix J. The self-consistency cri-
terion is F (Q' +")=0, so we choose

Q (m+1)
Q (m)+ J —I.F (Q (m)) (25)

i

which is just Eq. (22) with 8 =J . The problem thus
reduces to finding a good approximation to the Jacobian
J.

Now note that J is closely related to the dielectric func-
tion. To see this, we follow through one more iteration in
linear order. First,

2. Convergence

A side effect of the presence of long-range Coulomb in-
teractions is the fact that the self-consistent iteration pro-
cess tends to be highly unst;able unless heavily damped,
because of long wavelength charge oscillations in the unit
cell. This problem has been eliminated by using a local
version of the dielectric matrix method in which the sus-
ceptibility matrix is modeled empirically, and the damp-
ing on subsequent iterations is improved using a new ver-
sion of Broyden's method. We briefly discuss this ap-
proach.

Let Q' ' be the vector of input Q, 's for iteration m,
V( ' the vector of V, 's giving the potential at the center
of site ~, and Q,'„,' the vector of output Q 's given by the
Mulliken population analysis. We want to choose an ef-
fective damping matrix 8 such that

screened) shift in potential on site w'. Combining Eqs.
(23), (24), (26), and (27), we obtain

J=1—7 U. (28)

Thus, J is the charge dielectric response function,
which describes the charge response to an external charge
perturbation. Similarly, 1 —U P is just the dielectric ma-
trix, whose inverse describes the potential response to an
external potential perturbation. All this is in close analo-

gy to the plane-wave case, the difference being that a lo-
cal basis is used here.

To get an initial guess at J, we use as an empirical
model for the susceptibility matrix

X,, =P —25,, + 9,, +—1 1

r

(29)

where P is a constant with dimensions of electrons/Ry, N
is the number of atoms per unit cell, m, is the number of
first neighbors of ~', and 8,, counts the number of lat-

tice vectors R for which R+ r is a first neighbor of r '.
In words, the model assumes that if the potential on site

is raised, half of the charge flowing off is shared
equally among first neighbors, the other half being shared
equally throughout the unit cell. This model appears to
work well for diamond (with p = 3 electrons/Ry) in most
cases, and is probably a reasonable starting point for most
insulators and semiconductors.

However, this model for X seriously underestimates the
charge transfer for certain difficult cases, for example, the
transfer between dangling bonds in the 2X1 Haneman
buckling model. ' For this reason, the Jacobian is im-

proved on each iteration, starting from Jo given by Eq.
(28), using a modification of Broyden's method. The
modified method is described in the Appendix, and is
equally applicable to convergence acceleration in plane-
wave calculations or in force-driven structural energy
minimization. The advantage of the modified method is
that it incorporates information from all previous itera-
tions on an equal footing when updating J, and converges

significantly faster when the initial Jo is poor. In practice
we find that

~

F
~

is reduced by a factor of —3—5 per
iteration after 2—3 iterations in typical cases, or after
—5—6 iterations in the worst cases.

~ (m+1) y (m)+U. (Q (m+1)
Q (m)) (26)

3. Charge density and total energy

Q
(m+1)

Q (m)+y. g (m+1) ~ (m)) (27)

where the unknown electric susceptibility matrix 7, de-

scribes the change in charge on site r due to the (un-

where the matrix U, , already determined as discussed in

the previous subsection, describes the (unscreened) shift in
potential on site ~ due to a change in charge on site v '.
The output charge is then

During the iterative process, only the Mulliken popula-
tions Q, are needed to represent the charge configuration.
Once self-consistency has been achieved, however, the full

p,'~st is needed for the calculation of E«, . For surface
slab calculations, we have found a particularly efficient
way -to do this. The outer loops are over k =-k

~~
and

z =ri. For each z, we (i) calculate analytically

PI
" '(G

~~,z), the set of basis orbitals expressed in a mixed
representation; (ii) fast Fourier transform (FFT) these to
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PI
"

'(r~~, z); and (iii) loop over bands n, summing over i to
get g„'"'(r

~~,z), and squaring and accumulating these in

p(r ~~,
z). At the end, another FFT gives p(G

~
~,z) for a sin

gle isolated slab. We now repeat the slabs in the z direc-
tion and FFT to p(G ~~, G, ) =p(G ) to prepare for the cal-

I

culation of Etpt All arrays with indices G
~~

or G are car-
ried up to a cutoff Gm, „. We have tested convergence
with respect to Gm, „and settled on G,„=8a.u. ' for
the present calculations.

The total energy per atom may be expressed as

E„t———g e;+E„+0,g P,'~„(—G )[eH"'(G )+ e„',"'(G ) —VH"(G ) —V'„",(G ) —V',",(G )],
l G

where

out out
&H =—

~ VH[P.~.t]
out r out&xc:&xc[Pcryst] ~

1Il 0~H= TVH[P ~ t]

V'„",(r )—= g V,"ff(r —R —z ),
R, r

V',",(r )—= g c,g(r —R —7),
-+R, v'

and E„is the core-core Coulomb repulsion. Note that V,"ff is here properly defined as

(30)

(31a)

(31b)

(31c)

(31d)

(31e)

xc fit
Veff = Veff Vion VH [Patom] 32( )

so that any fitting errors in going from V,ff to Veff give canceling contributions in Xe; and Veff. , The terms eH"'(0),
VH"(0), and E„are the ones containing divergent Coulomb terms, but these can be replaced to give

Etot y ~'++ yP ry t( G)[~ (G) Vxmc Vsc(G)]++a y Pcryst( G)[~H (G) ~H(G)]++1HZ+rE id 'tot + & a cryst

G G+ 0

(33)

The terms have been grouped so that

« ——VH[p„, ](r)3 Z
r

(34)

depends only on p„, and is readily calculated analytical-
ly for p„, expressed as a sum of Gaussians.

4. Tests

We have carried out several tests to check that the
method described in this section leads to reasonable total
energies.

First, we have checked that the self-consistent formula-
tion leads to the correct charge transfers for the ideal
1X1 surface. We did this by varying the input charges
Q on the first few surface layers by hand, while search-
ing for an output total-energy minimum. The total ener-

gy obtained by the self=consistent procedure agreed to
within -0.015 eV/surface-atom with that obtained from
this explicit variational calculation, and the charge
transfers were very similar.

Second, we have tested the sensitivity of Et„ to the de-
gree of convergence. In general, we find that when the
maximum difference F,„between the input and un-
damped output charges is less than 0.01 electron, the total
energy is converged to within -0.005 eV/surface-atom.
The convergence criterion E,„&0.01 electron was gen-

erally adopted, except that for the calculation of the di-
merization energy of the Pandey chain model,F,„&0.0025 electron was used for greater precision.

Third, we have calculated the total energy of a free
(pseudo) atom in a supercell configuration, using a three-
decay-constant set (3.5, 0.935, and 0.25 a.u. ) and a
four-decay-constant set (3.5, 1.070, 0.327, and 0.1 a.u. ).
The results were —144.51 and —145.58 eV for the three-
decay and four-decay cases, respectively, compared to the
corresponding exact LDA result —145.88 eV. We have
adopted the three-decay set, for reasons of coinputational
efficiency. We would argue that the error, which is due
mostly to the incomplete representation of the carbon
wave functions by the Gaussian basis orbitals, will remain
roughly constant for modest structural changes such as
those involved in surface reconstructions.

Finally, we have checked that the slabs are far enough
apart, when they are repeated in the z direction for the
construction of p(G ), so that E«t is independent of the
spacing. We find that this condition is satisfied if we use
a lattice constant of 33.9 and 30.4 a.u. for all reconstruct-
ed 12-layer and 10-layer slabs, respectively. These values
were adopted.

B. Calculation of the matrix elements

A convenient feature of the present approach is that all
of the necessary three-center integrals can be calculated
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and stored once and for all for a given structure. Then, as
the loops over iterations and k points are carried out, the
construction of the overlap matrix S' " ' and Hamiltonian

matrix H'" ' requires a negligible amount of computer
time.

The matrix elements which must be stored are

=(y;(r +R)
~
yj(r )), (35a)

hJ~ ——(p;(r+R)
~

T
~
QJ(r))

+ g (f (ir+R)
~
jeff(r —R' —'r') ~P,.(r))

(35b)

and

uj, = g (P;(r+R) ~g(r —R' —~ ) ~PJ(r )) . (35c)

Here i and j run over all the Gaussian orbitals centered in

one unit cell. Then S'" ' and H' " ' are constructed ac-
cording to

and

S(k ) ~ ik. R R

R

(36a)

H(k) ~ eik R
EJ

R

R R
Ii(~ + g c~ugj~ (36b)

The real-space sums in Eqs. (35)—(36) are infinite but
strongly convergent. In practice the sums are cut off
when the distance between any two centers exceeds a cut-
off R,„,. We have tested convergence with respect to
R,„„and have found that a value of 11 a.u. is safe for
carbon. For the narrow Gaussians with large decay con-
stants, this cutoff is unnecessarily conservative, and a
second cutoff is imposed to speed the calculation. Before
a given two- or three-center integral of Gaussians is calcu-
lated, its magnitude is estimated by discarding from the
integrand the polynomial factors (for p- and d-type orbi-
tals) and angular momentum projection operators (for
non-local potential contributions). If this "bare" integral
does not exceed a cutoff 21,„„it is discarded from the sum.
Again, we have tested convergence with respect to g,„„
and have settled on a safe value of g,„,=e

Despite the efficiencies introduced by these two cutoffs,
the initial generation of the matrix elements is still an ex-
pensive part of the calculation, requiring -50% of the to-
tal computer time. However, it should be noted that the
computer time for this portion scales only linearly with
cell size, so that for larger cells it becomes relatively less
expensive.

(37)

and

SR=U SU (38a)

HR=U HU, (38b)

and define g as a linear combination of the well-behaved
eigenvectors of S:

0—:UA . (39)

Now inserting the projection operator UU into Eq. (37)
and multiplying on the left by Ut, we obtain

(HIi eSz )gz =0 . — (40)

Note that Sz is a positive definite diagonal matrix whose
diagonal elements are just the eigenvalues s; &s,„t', thus it
is trivial to construct S~ ' . Then with the further defi-
nitions

and

a =—s-'"a s-'"
R R R

S—1/2ql

(41)

(42)

we finally obtain the secular equation

While the standard Choleski decomposition could be used
to solve Eq. (37), we have taken a slightly different ap-
proach which provides greater numerical stability when
the basis orbitals get strongly overcomplete. This problem
tends to arise when one of the orbital decay constants be-

comes too small, and S' " ' becomes nearly singular. The
finite cutoffs R,„, and q,„„and the finite machine pre-

cision, can then give rise to errors in S'" ' so that its
near-zero eigenvalues go negative, making Choleski
decomposition impossible. Even before they go negative,
the ill-behaved near-zero eigenvalues can give rise to
spurious results for some of the e . While this problem

k
does not arise for the three-decay set used here for carbon,
it does arise for some other cases we have tested, and we
have therefore implemented the following corrective
scheme.

First, the nXn matrix S is diagonalized, and the
"well-behaved" eigenvectors, those whose eigenvalues are
positive and exceed some s,„„are identified. (We use
s,„,=10 s~».) Let m be the number of these, m & n,
and we are particularly interested in the case m & n. Now
let U be the n&(m matrix whose columns are just the
well-behaved eigenvectors. Then U U =I is the (m Xm)
identity, and UUt acts as an (n )&n) projection operator
onto the well-behaved space.

The strategy now is to project everything onto the
well-behaved space. Thus we define the reduced m Xm
matrices

(H' —e)P' =0 . (43)
C. Solution of the secular equation

Once the overlap and Hamiltonian matrices have been
constructed according to Eq. (36), it remains to solve the
secular equation

The energy eigenvalues are obtained directly from the
solution of Eq. (43), and the eigenvectors are obtained
with the help of the back-transforms (42) and (39).

The use of this scheme increases the computer time by
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-30—40%. However, all these operations are easily vec-
torizable, so that the solution of the secular equation oc-
cupies only -35% of our total CRAY computer time
even though several iterations must typically be per-
formed.

III. RESULTS

TABLE I. Calculated total energies of diamond (111) 1)&1
and 2&& 1 surface reconstruction models.

Surface
model

Ideal 1)&1
Relaxed 1)&1
Buckled' (M =+0.26 A)
Chadi m-bonded molecule
Seiwatz single chain'
Ideal Pandey m-bonded chain
Relaxed Pandey m-bonded chain

Same with +2% dimerization
Same with +4% dimerization
Same with +6% dimerization

Fully relaxed Pandey chain

'Reference 18.
Reference 20.

'Reference 19.
Reference 11.

Energy
(eV/surface-atom)

0.00
—0.37

0.35
0.28
1.30

—0.05
—0.47
—0.46
—0.43
—0.38
—0.68

We have implemented the method outlined in the previ-
ous section on diamond (111)surface models consisting of
a single infinite slab with both upper and lower surfaces
reconstructed. For the 1& 1 models the slab was 12 atom. -

ic layers thick (12 atoms/cell), while for the 2&&1 models
it was 10 atomic layers thick (20 atoms/cell), except for
the Seiwatz chain model, '9 which was 8 layers thick (16
atoms/cell). All models were arranged to have inversion
symmetry about a point in the center of the slab. As in
the bulk calculations of CL, ' three decay constants were
used for each s- or p-type Gaussian orbital in the basis. A
Hamann-Schluter-Chiang pseudopotential is used in
conjunction with Hedin-t. undqvist exchange correlation.
Sets of 7, 8, and 16 k points in the irreducible zone were
used for 1&&1, mirror-symmetric 2)&1, and other 2)&1
models, respectively.

The results are summarized in Table I. In addition to
the ideal I )& 1 model, which is used as a zero of energy 2

four topologically distinct 2)&1 models have been tested.
These are the Haneman buckling model, ' the Pandey m.-

bonded chain model, " the Chadi ~-bonded molecule
model, and the Seiwatz single chain model. ' We will
discuss these in turn, and then address the question of re-
laxations in detail.

Buckling of the ideal 1 && 1 surface is found to raise the
energy. This is in agreement with energy-minimization
calculations for Si and Ge, ' and the highly localized na-
ture of the carbon orbitals would be expected to make
such a buckling distortion, with its associated charge
transfer, even less likely in diamond. Moreover, such a
buckled model would be expected to have a metallic sur-

face band entirely within the band gap, "' in contradic-
tion with ARUPS data.

The "ideal" Pandey chain model is defined" to have all
bond lengths equal to the bulk-diamond bond length, ex-
cept for the surface-chain bond lengths which are equal to
the bulk-graphite bond length. This definition is arbi-
trary, but will serve as a starting point for consideration
of relaxations. We find the ideal Pandey model to have
an energy slightly lower than that of the ideal 1)&1 sur-
face, and lower than that of any of the other initial
models, as we shall see.

The atomic coordinates- for the Chadi w-bonded mole-
cule model were provided by Chadi, and include relaxa-
tions as determined within his tight-binding energy-
minimization approach. Even so, the total energy is
found to be higher than for the unrelaxed Pandey chain
model. It therefore seems very unlikely that this topology
would have a lower energy when relaxations are taken into
account. Moreover, the calculated surface-state disper-
sion' is in very poor agreement with the ARUPS data.
For these reasons, we feel the model can be ruled out, and
we have not tried to relax it further.

Finally, we have tested the Seiwatz chain model, again
in an "ideal" configuration, this time with all bonds hav-

ing the bulk-diamond bond lengths. The resulting total
energy is a full 1.30 eV above that of the ideal 1)&1
model. This energy is so large that we feel it unlikely that
relaxations could lower it dramatically. Ho~ever, we
have also tested a single "relaxed" geometry provided by
Chadi, again based upon tight-binding energy minimiza-
tion. The energy of this geometry was found to be re-
duced to 0.97 eV, which is still very large. The dispersion
of the calculated surface bands' was found to bear a
weak qualitative resemblance to the ARUPS data, but the
position of th'e band is in error by more than 2 eV. Once
again, we feel these objections are sufficient to rule out the
model, and we have not considered it further.

We now turn to a consideration of relaxations for the
two remaining models which have not been eliminated.
We begin with relaxed 1)&1 models, which were tested as
follows. First, the surface bond length was reduced in
steps of 0.24 a.u. , and a minimum was extrapolated using
a low-order polynomial fit (in this case cubic). Then the
surface bond length was held constant while the subsur-
face bond length was varied in steps of 0.06 a.u., and
again a minimum was extrapolated. In principle the sur-
face bond should perhaps have been allowed to relax
again, but-the additional relaxation would probably be
small. The relaxation of these first two surface bonds
[Fig. 2(a)] lowers the energy by 0.37 eV.

The energy of the Pandey chain model was minimized
by adjusting the four surface-most bond lengths, labeled
d i to d4, in Fig. 2(b). Initially we kept d2 ——d z, i.e., we re-
tained maximum symmetry of the surface chain. Once
again, different bond lengths were optimized individually
in turn while the others were held fixed. We optimized
first with, respect to d&, then d2, then d3, and then d4.
Surprisingly, the bond length d4 was found to lengthen by
a large amount, —.8%. Therefore, in this case the bond
lengths d], dz, and d3 were readjusted. The resulting "re-
laxed" structure is shown in Fig. 2(b). The relaxations re-
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+2.1'lo

-4.4%

FIG. 2. Illustration of bond-length changes (with respect to
bulk) which occur upon relaxation of (a) 1&(1 model, and (b)

2&(1 Pandey chain model. Certain bond lengths have been la-
beled for later discussion in the text.

suit in a lowering of the energy to —0.47 eV. The surface
chain bond is contracted by -4%, a value roughly mid-
way between that of graphite and diamond. Finally, we
tested the introduction of asymmetry at the surface chain
by calculating the energy for models with d2&d&, and for
models with "tilting" or "buckling" of the surface chain
(i.e., bond angle variations only). For both types of distor-
tion, the minimuin was found to coincide with the sym-
metric configuration to the accuracy of the calculation.

Dimerization of this relaxed chain geometry was tested
carefully. Table I shows that the energy rises monotoni-
cally with the dimerization parameter. In order to test
whether the k-point mesh is fine enough to resolve the
band splitting at the J—K zone boundary, where a Peierls
gap opens in the surface bands, we have recalculated the
energies for small distortions (+1% and +2%) and with a
larger k -point set. If the initial 16 k -point set is
described in reciprocal-lattice coordinates as (i /16, +j/8)
(i =1,3,5,7;j= 1,3), then the 32-point set is derived from
it by first replacing the four points (7/16, j/8) by eight
points (i/32, +j/8) (i =13,15) with half the weight; and
finally by replacing the four points (15/32, +j/8) by the
16 points (i/64, +j/16) (i =29,31; j=1,3,5,7) with a
correspondingly reduced weight. This new k -point set is
very dense in the vicinity of the zone edge. Once again,
the energy change was found to be positive. Finally, we
tested a model proposed by Chadi in which a radically

TABL'E II. Coordinates of atoms for fully relaxed Pandey
m-bonded chain geometry. The magnitudes of the lattice vectors
in the x and y directions are 4.75860 a.u. and 8.24214 a.u. ,
respectively. Only the top half of the slab is given because of
the presence of inversion symmetry.

Atom

1

3
4
5
6
7

10

x (a.u. )

2.379 30
0.0
2.379 30
0.0
2.379 30
0.0
0.0
2.379 30
0.0
2.379 30

y (a.u. )

1.407 11
2.846 67

—1.13860
5.389 89

—0.10027
4.19815

—1.397 79
2.764 67

—1.391 60
2.76409

z (a.u. )

8.71602
8.789 99
7.270 79
7.329 44
4.285 62
4.420 88
3.17427
3.630 38
0.372 06
0.596 10

large dimerization occurs. The energy of this model is
found to be 1.1 eV/surface-atom, i.e., it entails a large in-
crease in the energy. Thus we conclude that dimerization
always raises the energy.

Finally, the chain geometry was relaxed further using a
Keating force-constant model ' to direct the relaxation of
the subsurface atoms in the middle of the slab. This
force-constant model contains five on-site terms X„, Es,E, , K„~, K~, and one additional term E&„coupling
coplanar bond angles on neighboring sites. It gives a very
accurate description of the phonon dispersion throughout
the Brillouin zone. ' A separate computer program was
written to relax the chain geometry iteratively so as to
minimize the energy within this model, subject to the ad-
ditional constraint that the four surface-most bond
lengths be held fixed at the values already determined.
Once this "fully relaxed" geoinetry was determined, the
LDA total energy was again calculated. As expected, the
LDA total energy of this final geometry was lowered; it
was found to be —0.68 eV. Evidently, this further relaxa-
tion relieves some of the bond-angle strains on the third-
layer atoms, where the chain topology causes fairly severe
departures from the tetrahedral angle. For example, an-
gles of 85' and 134' relax to 93' and 123', respectively.
The coordinates of the atoms in this fully relaxed
geometry are given in Table II.

It can be seen froin Table II that the structural relaxa-
tions due to the two surfaces have not entirely decayed to
zero at the slab center. In order to be sure that the in-
teraction between the strain fields of the two surfaces is
not significant, we have estimated the interaction within
the Keating model by carrying out parallel calculations
for the 20-atom slab and for a thicker 28-atom slab con-
taining four additional bulk layers, but with identical sur-
faces. Both models were fully relaxed, and the resulting
Keating energies differed by only 0.015 eV. (The atomic
displacements at slab center were an order of magnitude
smaller for the 28-atom slab, so any remaining elastic in-
teractions are presumably negligible. ) A correction of or-
der -0.02 eV is unimportant, and this effect need not be
considered further.

Figure 3 shows the calculated surface band structure in
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FIG. 4. Charge-density contour plots in the plane x =0 (per-
pendicular to the chain). Atom positions are indicated by filled
circles; only half are in the plane of the plot. (a) Total charge
density. (b) Charge density of the occupied surface band in the
gap.

FIG. 3. Calculated surface bands (solid lines) and resonances
(dashed lines) for fully relaxed Pandey chain model. The bulk
projected band structure (shaded) and the experimental ARUPS
data of Ref. 2 (black dots) are shown for comparison.

the gap region for this fully relaxed model. The major
features in the gap are the occupied and unoccupied sur-
face bands associated with the surface chains. The disper-
sion of the occupied surface band along I J has been great-
ly reduced from that of Pandey, "who found a difference
of )3 eV between E(I ) and E(J). This was already re-
duced to -2.3 eV in our previous calculation on the ideal
structure, ' and has now been reduced further to —1.7 eV
due to relaxations (primarily the lengthening of the sur-
face chain bonds by -4% from their "ideal" graphitic
values). The dispersion is thus in good agreement with
experiment without the need for dimerization, thereby re-
moving one of the major motivations for the dimerized
model. The calculated band is too high by a rigid shift of
—1 eV, but this is also true (by -0.3 and -0.8 eV,
respectively) for Si and Ge. ' This discrepancy will be
discussed further in the following section. Note that we
find a second unoccupied surface band in the neighbor-
hood of the conduction band edge; it is similar to the bulk
conduction band in character, and weakly localized in the
vicinity of the lengthened subsurface interlayer bonds.

Finally, the charge density has been calculated for this
fully relaxed chain geometry, and is shown in Fig. 4. The
total charge density is shown in Fig. 4(a). It is evident
that the bond charge is somewhat reduced along the
elongated subsurface interlayer bond dq, as should be ex-
pected. Figure 4(b) shows the charge density of the occu-
pied surface band, and clearly indicates the dangling bond
nature of this state. The degree of localization at the sur-
face chain is evidently very high. The orientation of the

dangling bonds is close to vertical, the deviation being
only —18'. It is therefore quite plausible that ~ interac-
tions between neighboring dangling bonds would be strong
enough to stabilize this structure.

IV. DISCUSSION

The driving force for the reconstruction of the (111)
surface is presumably the presence, on every surface atom,
of an energetically unfavorable dangling bond containing
an unpaired electron. The Haneman buckling model at-
tempts to pair electrons via a kind of charge-density-wave
distortion, while the Pandey chain, Chadi molecule, and
Seiwatz single chain models make use of topological
reconstructions which arrange for the dangling bonds to
become nearest neighbors, thereby allowing m bonding be-
tween the dangling bonds. However, all these pairing
mechanisms involve a cost. In the case of the buckled
model, it is the Coulomb correlation energy of putting a
second electron in one dangling bond; for the topological
models, it is the elastic strains associated with the rebond-
ing. Based on our total-energy calculations, it appears
that the costs outweigh the gains in all cases except that
of the ~-bonded chain model. One can make a plausibili-
ty argument in each case: the highly localized nature of
the carbon wave functions should make the Coulomb
correlation relatively large for the buckled model; the elas-
tic strains should be largest for the Chadi m-bonded mole-
cule, which requires the most severe subsurface rebonding;
and the n.-bonding energy gain should not be very large
for the Seiwatz single chain model, whose dangling bonds
are so far from vertical. The n.-bonded chain model evi-
dently strikes a profitable balance between favorable ~
bonding and unfavorable strain energies.

It is instructive to compare to the case of Si or Ge for
the m-bonded chain model. In carbon, both the ~ bonding
and elastic energies are relatively larger. The fact that m.

bonding is much more common in carbon chemistry is
one indication of the relatively stronger ~ bonding in C.
The elastic energies are also expected to be larger, because
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the principal strains are due to bond bending in the sur-
face region. Because the bonding is more directional in
carbon, the cost should be larger. A measure of this
directionality is the ratio of bond bending to bond stretch-
ing force constants, which is 0.23 and 0.11 A rad for C
and Si, respectively, in the Keating model used above. '

One consequence is that consideration of relaxations for
the Pandey chain model is considerably more important
for C than for Si. Energy-minimization calculations for
Si indicate' that the ideal Pandey chain model is already
at —0.22 eV with respect to the ideal 1&1, while relaxa-
tions only lower this to —0.36 eV; for C the correspond-
ing numbers are —0.05 eV and —0.68 eV, respectively.

The possible dimerization of the Pandey chain model is
a question of considerable interest, because it would open
up the possibility of observing soliton formation and
propagation on a crystal surface. The surface chain in
this model is analogous to trans-polyacetylene, (CH)„,
with the bonds to hydrogen atoms replaced by bonds to
the second-layer atoms. In suggesting the dimerization of
the chain model, Pandey was motivated by the need to
reduce the dispersion of the occupied surface band, as well
as by the analogy to (CH)„. As we showed in the previ-
ous section, the dispersion has been corrected without the
need for dimerization. Moreover, the analogy with (CH)„
is only approximate, and there are several reasons why di-
merization might be expected to be less likely here. First,
the elastic restoring forces against dimerization must be
stronger because of the bonding to the subsurface bulk;
the corresponding bonds to H atoms in (CH)„are entirely
unconstrained. Second, the m interactions are weaker here
because the dangling bonds are not entirely parallel.
Third, the interactions between the chains introduce some
dispersion along the J—K zone boundary, and the in-
equivalence between the two surface atoms making up the
chain introduces a splitting (see Fig. 3); while these effects
are smaller than for the chain model in Si and Ge, ' they
still allow us to circumvent the Peierls argument that suf-
ficiently small dimerization is always favorable in truly
one-dimensional systems.

Antiferromagnetic (AF) ordering is an alternative
mechanism which could open a gap along the J—K zone
boundary. This possibility has been considered within a
mean-field picture, and gives rise to a gap and to a split-
ting between spin-up and spin-down occupied surface
bands which is small as long the inequivalence of the two
chain atoms is small. Thus the fact that only a single
band is observed in the ARUPS data could well be con-
sistent with this picture. Moreover, the dispersion of the
theoretical surface bands would be slightly reduced, and
the position would be slightly lower. If the chains are
weakly interacting, a one-dimensional Hubbard model
might be a more appropriate starting point; here there is
no true long-range AF order, but a gap occurs neverthe-
less. We think it like1y that some such AF ordering
occurs; it has not been included in our calculations, but
would have the effect of lowering the energy of the vr

bonded chain model -further.
We end this section by reviewing the relationship of our

results to the experimental work for the diamond (111)
(2X2)/(2X 1) surface. The most serious discrepancy is in

the location of the occupied surface band, which is —1 eV
higher than indicated by the ARUPS data. There are
three sources of error which may all be responsible in part
for the discrepancy. First, the position of the experimen-
tal surface band is affected by the location of the Fermi
level, which can be determined only approximately.
Second, inclusion of the AF ordering mentioned above
might improve the agreement. Finally, the local-density
theory itself may be at fault. In the density-functional
theory, upon which it is based, the ground-state total ener-
gies are given exactly, while the eigenvalues have no physi-
cal meaning as electron removal energies. The photoemis-
sion experiment measures just such a removal energy,
which contains a component, namely the interaction be-
tween the electron being removed and the hole left behind,
that is not correctly taken into account in LDA. Qualita-
tively, a correction for this effect would be such as to
lower the theoretical occupied surface band, which is in
the right direction. In any case, the total-energy-
minimization procedure should be more reliable, in light
of these arguments, than a detailed indirect comparison of
the experimental and theoretical eigenvalues.

Other meaningful experimental work is largely unavail-
able, We are not aware of any attempt at a LEED refine-
ment for this structure. An analysis of missing spots in
the LEED pattern has led Yang and Jona to the con-
clusion that the surface structure should be constructed
out of chain-like units, but this ought to be consistent
with either the Pandey or Seiwatz chain models. Electron
energy loss experiments by Pepper indicate the existence
of unoccupied surface states near midgap, which is con-
sistent with the m-bonded chain model. They also appear
to indicate the existence of a sizable gap, although the
width of the elastic scattering peak makes this somewhat
uncertain; in any case, a gap is consistent with a m-bonded
chain model with AF ordering.

We hope the present work will serve to stimulate fur-
ther experimental investigation, which might confirm our
identification of the ir-bonded chain model as the correct
structure for this surface.

V. SUMMARY

We have developed a new ab initio LCAO approach to
the calculation of total energies within local-density
theory. The method relies on the variational principle for
the treatment of intra-atomic charge transfer, but incor-
porates a fully self-consistent treatment of interatomic
charge transfer. All wave functions and potentials are
represented in terms of Gaussians on the site centers, so
that all three-center integrals can be taken analytically in
an efficient fashion. An improved version of Broyden's
method is used to control the convergence upon the self-
consistent solution.

The method is applied to study a variety of proposed
reconstructions on the diamond (111) surface. A single
infinite slab geometry is used to realize these models,
which include the Haneman buckling model„ the Pandey
~-bonded chain model, the Chadi m-bonded molecule
model, and the Seiwatz single chain model. The undimer-
ized m-bonded chain model is found to have the lowest en-
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ergy, -0.3 eV/surface-atom lower than for the relaxed
1 X 1 surface. The other models are found to be implausi-
ble on the basis of total energies and surface-state disper-
sion. The dispersion of the calculated surface band is
found to'be in good agreement with experiment for the
fully relaxed m-bonded chain model, without the need for
dimerization. The position of the band is shifted by —1

eV; several factors are discussed which may be responsible
for this. Finally, we have argued that the n.-bonded chain
model is plausible in terms of energetic considerations,
and is consistent with all experiments reported to date.
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the vector Q of site populations, and

P(Q)=Q-((Q) —Q (A 1)
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to satisfy Eq. (A3). In general, on the mth iteration we
choose

( + ) (. )~ J( ) —.F( ) (A6)

Then F' +" is computed from x' ' and the normalized
differences

(m) (m+1) (m) i (m+1) (m)
~

—x

gp(m) (p(m~1) p(m))/
~

X (m+1) (m)
~

are obtained.

(A7)

(A8)

Now in the usual Broyden's method we observe that,
from Eq. (A3), J ought to satisfy

J.g~ (m) gF (m) (A9)

J (m +1).g~ (1) gp (1) (Al 1)

for l &m, as it should. Thus, information from the most

recent iteration is used to update J, but is allowed to over-
ride arbitrarily information from earlier iterations.

We propose here a modification in which information is
incorporated from all previous iterations on each update
of J. A weight w'" is associated with each previous itera-

tion, and a weight w' is assigned to the initial guess J' '.
The J' +" is determined according to a least-squares
minimization:

E= g w,
~

J' +"hx ' '+bF' '
~

1=0

although J ' ' fails to do so. Therefore J ' +" is chosen

so that (i) J ' +" satisfies Eq. (A9), and (ii)

~~J( +"—J' )~~ is minimized subject to constraint (i).

(//A// =—g, /

A,z f
.) The result is

J(m+1) J(m) [gp(m)+J(m). g (m)jg (m)

which corresponds to changing one column of J' ' in a
representation in which b, x ' ' is one of the basis vectors.

However, this new J' +"does not generally satisfy

F(V)=V,„,(V)—V . (A2) +w' ~~J' +"—J' '~~ (A12)
For structural relaxation, x is the vector of site coordi-

nates, and F is the vector of forces. In all cases the prob-
lem is to find x such that F (x ) = 0.

First an initial x is chosen and F' '=F (x ' ') is deter-
mined. Then we may predict that, in linear order, a new

x '" will result in an F '" satisfying

(A3)

Setting 0=az/a J,(J-+') gives

J {m +1) ~(~ +1).! n(~ +1)s —1

where

I3(m+1) ~ 2 1+ ~ 2g~X(1)g, gX (!)
w1 x

1=0

(A13)

(A14)

where the Jacobian is defined as

J"=——
BxJ

(A4)

and

m~(m+1) I 2 J (0) ~ 2gF (l)g~x (1)
w1

1=0
(A15-)

~~(l) ~ (0)+P(O))—l.p(0) (A5)

An initial guess J' ' is made to J, and since we want
F"'=0, x '" is chosen as

The appearance of the weights w' and w1 gives the
method considerable flexibility. For example, early itera-
tions for which x was far from optimal, or for which

smaller k -point sets or basis sets were used, can be
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TABLE III. Convergence test comparing Broyden convergence accelerator (Ref. 22) with present
method.

Iteration

Broyden
0
1

2
3
4
5
6
7
8
Present
0
1

2
3
4
5
6

2.345
2.345
1.745
1.645
1.304
1.251
1.129
0.968
0.961

2.345
2.345
1.745
1 ~ 157
0.776
0.419
0.056

2.236
2.358
0.700
0.432
0.154
0.075
0.032
0.003
0.000

2.236
2.358
0.703
0.305
0.135
0.035
0.000

1.000
0.490
0.388
0.217
0.141
0.072
0.029

—0.002
0.000

1.000
0.490
0.389
0.259
0.122
0.030
0.000

X2

1.000
—0.010
—0.006
—0.001

0.000
0.000
0.000
0.000
0.000

1.000
—0.010
—0.006
—0.002

'0.001
0.000
0.000

1.000
—0.510
—0.192

0.090
0.021

—0.013
0.008

—0.001
0.000

1.000
—0.510
—0.192

0.021
0.034

—0.015
0.000

1.000
—1.010
—0.168

0.244
—0.046

0.015
—0.010

0.002
0.000

1.000
—1.010
—0.167

0.143
—0.047

0.009
0.000

1.000
—2.010

0.524
—0.268

0.034
0.007
0.005
0.000
0.000

1.000
—2.010

0.529
—0.072

0.009
—0.002

0.000

weighted more lightly than recent iterations. Note that in
the limit that m »u' and to »wI &, the present
method reduces to the standard Broyden method.

It is convenient, but not necessary, for the weights to be
fixed (i.e., each wi is independent of m). If this is done, P
and y can be updated easily from one iteration to the
next, and there is no need to save the b, x ' 's and hF' 's
from earlier iterations. Moreover, P ' can be updated us-
ing the identity

(A+uv ) '=A ' —o. 'A 'uv .A
(A16)

a=1+v A 'u .

Thus no matrix inversion need ever be done explicitly; the
operations are all computationally efficient, even for
large-dimensional problems.

We have tested the method on a sample five-

dimensional problem in which F (x ) is given by

F;=—dx. —cx 3 (A17)

Clearly the solution is x =0 with Jacobian D, where D is
the diagonal matrix formed from the d;. The cubic term
was included to simulate some nonlinearity. We used

d=(3,2, 1.5, 1,0.5) and c =0.01. The initial guess J' '

was set equal to the identity matrix, and x ' ' was chosen
as (1,1,1,1,1). Convergence to the solution was tested for
the Broyden and the present methods; the results are
presented in Table III. Here we used m' =0.01 and
w'"=1 for all /. As can be seen, the convergence to the
correct x occurs more rapidly using the present scheme.

Moreover, while J does not conver'ge to the true value at
all in the standard Broyden scheme, it does so now.

In summary, the present approach improves the perfor-
mance of the Broyden method, provides added flexibility,
and is no more difficult to implement. %e see no reason
why its use should not become widespread in iterative cal-
culations.
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