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The lifetime of Rayleigh surface phonons as opposed to decay via anharmonic three-phonon pro-
cesses is calculated in the regime ~»&k~T. The surface phonon decays predominantly by com-

bining with a bulk transverse phonon to create another bulk transverse phonon. The energy-
momentum conservation of the processes imposes the condition that those bulk phonons which may
interact with the surface phonons should possess frequencies of the same order of su&. However,
such high-frequency phonons are rarely excited thermally under the condition considered here, lead-

ing to an anom alously long lifetime of the surface phonons in proportion to
u~ 'T 'exp( AAcu~ /k~ T), where A is a constant of the order of 0.1. We also estimate numerical-

ly the magnitude of the lifetime.

I. INTRODUCTION

Lifetimes of surface acoustic phonons (Rayleigh waves)
as opposed to decay via anharmonic three-phonon pro-
cesses considered so far are restricted to those in the re-
gime ficott (kttT, where toit is the angular frequency of
the surface phonons (R means the Rayleigh mode) and T
is the ambient temperature in a solid. ' It is well estab-
lished both theoretically' and experimentally that the de-
cay rate (i.e., the reciprocal of lifetime) of surface phonons
is proportional to co+ T under the conditions fuzz &~k&T
and cott r,h » 1, where r,h is the relaxation time of
therinally excited phonons which interact with surface
phonons. It should be noted that this frequency and tem-
perature dependence is identical to that of the attenuation
rates of bulk phonons satisfying the same conditions. A
slightly different result was deduced by Sakuma and
Nakayama on the decay rate of surface phonons in the
regime truott —kti T. By numerical calculations they found
that it is approximately described by co~ T .

The purpose of the present work is to discuss the life-
time of surface phonons of frequencies satisfying
Ace~ &&k&T, which is motivated by the experiment con-
ducted by Guo and Maris several years ago. They at-
tempted to generate and detect, at low temperatures, sur-
face heat pulses on a Si wafer, which are composed of
high-frequency surface phonons. If they are detected,
sharp focusing patterns of the surface phonons due to the
elastic anisotropy of the crystal surface should be ob-
served. Unfortunately, however, no signal was seen. The
experiment was tried at temperatures of about OA K
where the condition fico »ktt T is well satisfied for pho-
nons of frequencies higher than 50 GHZ. Hence, we be-
lieve that the frequencies of most of the nonequilibrium
surface phonons excited in their experiment may satisfy
the above inequality. However, no theoretical analysis on
the anharmonic decay of such high-energy surface pho-
nons has been reported up to the present.

The lifetimes of bulk acoustic phonons in the regime
%co &&k&T have been discussed extensively by Orbach and
Vredevoe. According to their results transverse-acoustic

(TA) phonons possess an anomalously long lifetime,
though longitudinal-acoustic (LA) phonons have a very
short lifetime. This is because (unlike the case of LA
phonons) the spontaneous two-phonon decays of the TA
phonons are prohibited by energy and momentum conser-
vation. We expect that a similar situation may hold for
surface phonons, whose velocity (Utt) is slower than that
of the TA phonons (V,), e.g., typically Utt-0. 9V, . By
kinematical considerations we indeed find that surface
phonons cannot decay into two phonons except through
the co11inear process R —+R+R and that their decay
necessitates the presence of thermally excited phonons
with energy of the order of ficott However. , such high-
energy phonons are rarely excited in the temperature re-
gime we consider leading to the anomalously long lifetime
of high-frequency surface phonons satisfying ficott »kti T.

In the next section, we specify the phonon modes based
on kinematical considerations in the elastic half-space
which interact efficiently with the surface phonons. The
formula for the lifetime of the surface phonons is derived
and some numerical estimations of the lifetime are given
in Sec. III. Throughout this work we employ the isotro-
pic approximation. The continuum elasticity theory is
also assumed and the acoustic dispersion due to the
discreteness of the lattice is neglected. This is because we
are interested in surface phonons of frequencies of about
100 GHz, that correspond to a wavelength of 500 A for
Si, a length much longer than interatomic distances.

II. KINEMATICAL CONSIDERATIONS

In this section we shall study energy and momentum
conservation imposed kinematically on three-phonon pro-
cesses and specify the phonon modes and spatial configu-
ration of the interaction which contribute predominantly
to the decay of the surface phonons. To begin, let us con-
sider the process in which a surface phonon specified by

(hatt, cott ) combines with a thermally excited bulk phonon
(q ', co') to create a second phonon ( q ",to"). Then denot-
ing by qadi

the component of the wave vector q parallel to
the surface, the energy and momentum conservation can
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be written

My+CO =CO

qR+q //=q ['j (2)

+[(v') —(u") ] (4)

where 4 is the angle between qR and q t~. The condition
fmR » kJJ T implies coR »co' for almost all phonons
(q ', co') excited thermally at a temperature T of a medi-
um. Hence

Next we introduce the velocity v defined by
~=v

I q~~ I =vq~~ (simi»riy ~R =UR
I qR I

=URqR) ~ If we
denote by V a phase velocity of the bulk phonons (i.e.,
V= Vl or V, ), we have

V=U sin8,

where 8 is the angle of the wave vector q measured from
the surface normal and u takes a value larger than V, .

Now, eliminating q II
from Eqs. (1) and (2), we have

UR U l 2 „qgcosa= + [VR —(u") ](v")i 2(

(z) ~ cos(oqiiz),

u3(z) =0,
for the Tll mode and

u)i(z) =0

u3(z) a: sin(crq~~z),

for the Ti mode, where
2 1/2

(7)

pending on the angle of incidence of 8 to the surface of q.
The second mode (Ti mode) consists of TA phonons po-
larized in the saggital plane followed by an evanescent
pseudo-surface-wave. The velocity of this mode is con-
fined in the finite range V, &u & Vl. In the limit of
u~ V„both modes are reduced to bulk TA phonons trav-
eling parallel to the surface, and the evanescent com-
ponent of the Ti mode vanishes in this limit. However,
there is an important difference between these two modes
in regard to the depth dependence of the displacement
vector u of the medium. In order to satisfy the boundary
condition at the free flat surface, as u~ V„

and we may approximate Eq. (4) as

cos4= VRV + 2[UR (U ) ](v")'
/~I

(6)

The right-hand side of Eq. (6) is now much less than —1

and accordingly the scattering of surface phonons is prac-
tically impossible. Energy and momentum conservation
requires that the surface phonons are scattered only by
phonons with q t~

-q~. However, such phonons are excit-
ed insignificantly under the present condition and there-
fore the lifetime of the surface phonons will become
anomalously long.

From Eq. (4) or (6) we can specify the modes of pho-
nons which may interact efficiently with the surface pho-
nons in question. Here we note that the bulk phonons
other than the surface phonons in the half-space are clas-
sified into two groups by their velocity spectra, one with
v ) V, and the other u) VI where U~-0. 9V,=0.5VI. To
minimize qR/q t~

= (u'/uR )(~R /co') in Eq. (6), smaller
values of v' are favorable. Furthermore, to minimize the
modulus of the prefactor [VR (u") ]/(—v"), u "=V,
should be most desirable. Therefore, the predominant
contribution to the interaction comes from the processes
in which a surface phonon collides with a surface phonon
or a bulk TA phonon propagating nearly parallel to the
surface and as a result produces a TA phonon which trav-
els also in the vicinity of the surface.

In the isotropic elastic medium occupying the half-
space, there exist two kinds of phonon modes which have
the velocity spectrum u & V, .' " The first mode ( T~

~

mode) consists of TA phonons polarized parallel to the
surface, and its range of velocity u is V, to infinity de-

and we have fixed the Cartesian coordinate system so that
the medium occupies the half-space x3 ——z&0 with the
free flat surface parallel to the x~~=(xi,xz)=(x,y) plane.
From Eqs. (7) and (8) we see that the T~~ mode has a fi-
nit amplitude at the surface, but the displacement vector
of the Ti mode vanishes there. Because the surface pho-
nons are associated with lattice vibrations localized in a
wavelength from the surface and furthermore q~~=qR for
phonons which interact with the surface phonons, it is the
T~~ mode that should contribute effectively to the decay
of the surface phonons. This is valid even when the in-
teraction is described through the strain fields g;j =juju;,
because o. also vanishes in the limit of u ~V, .

III. CALCULATION OF LIFETIME

4
l

eij kl Qij Qkl +
l

eij klmn qij 9kl 9mn +0(i1

where g is the deformation tensor defined by
I

9~J 2 (4 J +NJ +0k'Ckj )

(10)

and the summation convention over repeated indices is as-
sumed. In the isotropic approximation, the second-order
and third-order elastic constants cfJkI and cIJkIppfpg which
form the components of the fourth-rank and sixth-rank
tensors, respectively, are written in terms of Lame con-
stants k,p, and three other constants a, P, and y as

When the atoms of a solid are displaced from their
equilibrium positions, the local potential energy in the
solid may be expanded in the long-wavelength approxima-
tion as follows:



SHIN-ICHIRO TAMURA 30

ijkl ~5ij 5kl +P(5ik5jl+5i!5jk ) ~

Cijklm &5ij5k15mn+P[5ij (5km5!n+5kn51m )+5kl(5lm5jn+5in5jm )+5mn(5lk5jl+5il5jk)]

(12)

+ Y[( ik 1m + l!5km )5nj +(5jk5lm +5jl5km )5ni+(5 k51„+5115kn )5mj +(5jk51n +5115k„)5m;] . (13)

Substituting Eqs. (12) and (13) into (10) and retaining the cubic terms in the particle displacement, we have

II ~~3 T(P+~)kiikjkkjk+( Y+O'Cijkkikkj + 0iibjj 4kk+ kii(jk(kj+ kijkjkkki~ ~ ~ ~ ~ ~ ~

6 2 3
(14)

IajU (r)+aj[U (r)]~], (16)

where p is the mass density of the medium and

J=(qII, U, M) is a set of quantum numbers in which M
specifies the propagation modes of elastic waves both sur-
face and bulk in character. The sum over J is to be un-

derstood to be

The total potential energy due to cubic anharmonic terms
in the half-space is then obtained by integrating W3 over
z)0,

8'«, ——f W3 ( r )d r, (15)

where r=(xII,x3)—(x Jp z).
In the elastic half-space with a free flat surface, the dis-

placement vector can be expanded as"
1/2

J J'] 5J,J' 5J,J' 5 '5v, v'5M, M' '
II' ll

If U and U' belong to continuous spectra, we understand
5, , as 5„„=U5(v —U '). Because the medium is assumed
to be homogeneous in the directions parallel to the sur-

face, the x
I I

dependence of U ( r ) should be described by
a plane wave, i.e.,

U (r)=u (z)e " "/Vs (19)

where DM denotes the spectral range of the velocity U for
the bulk mode M. In Eq. (16), aj and its Hermitian con-
jugate aj are the annihilation and creation operators of
the phonons in the half-space, which commute with each
other except for the case

gf(~)= g f(qII=q
J q

II .

+ g f f(qII UM)
MAR ™

where S is the surface area.
Now, the substitution of Eqs. (16) and (19) into (15)

yields the anharmonic interaction Hamiltonian which
causes three-phonon processes in the half-space. Then,
rewriting the left-hand side of Eq. (15) as H3, we have

2p

' 3/2
1 1

I/2 QJQj~QvJ FJJ Jl +ajaj aJ 'FJJ J )5~ ~l ~IfS J J j" (coj~j coj-) qII+qII qII

+(QJQJ QJ FJJ,J„+aJQJ QJ FJJ,J„)5
I
I+

I I
' q

I I

+(QJaj aj FJJ J +QJQJ QJ FJJ Jl )5~ ~l ~ II]
qll'qII+qII ' (20)

where

FJJ J —J dz —,(@+A )p (z)g&~(z)[gk (z)]*+(Y +@ )g z (z)gg;(z)[pkj (z)]*

+—g.;(z)gj~j (z)[gqk(z)]*+ —g;(z)gjk(z)[ggj (z)]*+ g~j(z)g~g(z)[gg. (z)]*
(21)

etc., and here we have introduced Pj defined by

() .[ii j(z)e' q
II "II]=P.(z)e' q

II "II (22)

In deriving Eq. (20), the terms containing aaa and a a a which do not contribute to the energy-conserving processes are
omitted.
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The lowest-order perturbation theory tells us that the lifetime rj of the phonon J via three-phonon processes takes the

7TA
[2(nj n—j )GJJ J-5, „5(coj+coj —coj )

SP Q)JS J ~ J» ~J '~J" qII+ q
II

~
II

+(I+nj'+nj")HJJ'J "5—& -&& ~ &5&(coj CUJ' coj")]
II' " II+ II

(23)

where

26jj j —
i Fjj j +Fj JJ»+FJJ j +Fjij j&+Fj jj +Fj

2Fjj,j„+FjJj „+Fjj„J,+Fj,j,,j+Fj-„jj,+F
and nj stands for the Planckian distribution function in the thermal equilibrium, i.e.,

nJ ——[exp(fico j /kz T )—I)

(24)

(25)

(26)

We apply these formulas to the decay of the surface phonons J =(qR, UR, R). In this case, as we have remarked in the
preceding sections, the second term in square brackets of Eq. (23) which expresses the spontaneous decay into two-
phonon states is neglected. Taking account of the fact that iiicUR »kRT, the lifetime i(coR) of the surface phonons be-
comes

~A du' du" n[cu(ql)&v')]
(~R) i g g D & DM„» G(qR, q l)'UR U, U )

4P MRS M M, I v' "
u CU(ql)'u )co(

I qR+qq
II

X 5(CUR +co(q j),u ') —CU(
~ qR + q j) ~, v )), (27)

where G(qR, q ll,'UR, u', u ") represents Gjj J- with q l'l' being replaced by qR+q jl
When the phonon mode M, (M' oi

M") represents the surface mode, du/u should be understood to be du5(u —uR). The summation over q ll
in Eq. (27) is

transformed into two-dimensional integrals over polar variables (qj),p(q ll)), where the angle p is measured from the
direction of qR. The integration with respect to p(q ll) is readily carried out with the aid of the formula

f f(cosg)5(a +b cosP)dP=, 6(b —a )f( a/b), —

where 6(x) is the unit step function, i.e., 6 is unity if x & 0 and vanishes otherwise. The result of this integration yields

where

i6Ug
(COR)= z g . G(qR&qj)&P(q ll)=4;UR&u'&u")

&Sirp~co ~
' (u') " (u" ) i ~ q))

(29)

U —Ug„qR—=e (iURU', u)q Rfor v'&u",
U —V

gmax =
V U

, qR =e,(UR, U', v—")qR for u'&u",
U —V

(30)

II
U —Ugqmin»& qR =~0(VR&u &u )qRU'+U '

and 4 is defined by Eq. (4). The explicit expression of sin@ is given by

)
(v') —(v")

sin@ =
2 (q jl

—EiqR )(q'
jl
—E2qR ) q j)

— q;„(q jl
—q;„)

V

1/2

(32)

Now, q;„=qR and then also fico(q)), u') »kzT holds. Therefore, in Eq. (29) the distribution function n may be ap-
proximated as

n [co(q)),u )]=exp( —A'u qll/kRT ) .

Because n decreases abruptly with increasing q )), we may write Eq. (29) as follows:

(33)
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' 1/2

4&P &R M M (U ) M" v (v ) —(U ) (&1—62)(Eo —e2)EO
U (U

X«qR q .0(q l'l)=~;UR, U', U")K(eiq„q;„;O',T )

1+ D „~)2 i2
(U ) —(U ) (&i & 2)(sp E—i)ep

U &U

1/2

(qR, qmin 0(q ll) ~ UR U U )K(~2qR, q;„;O',T) (34)

where

exp( A'v'q/kR T—)
K(q,„,q;„;V',T )= ii2 dq =irexp[ —A'

v( q,„+q;„)/2kRT]Ip[AU'(q, „—q;„)/2kRT] .
[(q ..—q)(q —q;.)l'" (35)

In Eq. (35), Ip is the modified Bessel function of zeroth order. Incidentally, note that 4=ir when qll=q;„. The argu-
ment of Io is much larger than unity and we may use the formula for the asymptotic expansion of Ip, i.e.,

exIo(x)-, , x »1 .
(2m.x) 'i'

Then, we have

B
K(qmaxrqminiv i T ) =

qmax qmin )

1/2

exp( fiv'q;„/k—R T ) .

(36)

(37)

dU dU 1

M' (U ) M" ( ) U U (U +VR)ep
7

Substituting Eq. (37) into (34), it is deduced that
' 1/2

AUR 7TkB T
'(COR ) =

8&p Q)R 2f2gR

' 1/2

G(qRiqmin 4(q tl) =~ivR&v iv )

257) —gqRz

1+~' j=1,2
qR

&(exp( fiv'q;„/kR T ) .— (38)

In order to perform the integrations over v' and v" we need the explicit expressions for G. As we have remarked in

Sec. II, the thermal phonons which may scatter the nonequilibrium surface phonons effectively are the surface and Tll
phonons. The depth dependence of the displacement vector for the surface phonons J=(qR, UR, R) is given by' '"

' 1/2 -s,.
u (z)=iJ Y

R

u3(z)= —5
qR

Y

' 1/2
—5q~ z

e
—YfggZ

e
1+~'

where

UR

VI

2 1/2
UR

V,

2 1/2

I'= (5—q)(5 —i) +25il2) /25i12 . (40)

cos(cTq
l
lz ),

For Tll phonons J—(qll U, TII we have
1/2

(qll)2
u, (z)=—

2
qi~ mV o-

u2(z)= 2
qadi

m. V, o.

u3(z) =0,

' 1/2

cos(crqllz), (41)
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(43)

After straightforward but tedious calculations we find that for the process R +R~T~~, G is proportional to sin P.
However, P=m yields the dominant contributions through energy and momentum conservation [cf., Eq. (38)] and this
process is suppressed in comparison with the contribution from the process R + T~~ ~T~~. For the latter process we ob-
tain

g gg 4(5U V ) (Ee')
(qR&qmin~f(q t~) vari Rtu t

w V, o'o"F

where o. is defined by Eq. (9). Here we remark that the displacement vector of the T~~ phonons is orthogonal to those of
other mode phonons in the elastic half-space polarized in the saggital plane and satisfies

J [U (r)]* U (r)dr=5' J (42)

J u (z).[u (z')]* =5(z —z') .
V

Xqi'i (P+&)
I

+2(A, +p)

X
5 +(e'cr') +(e"o")

[5 +(e'o'+e"o") ][5 +( eo' e"cr"—) ]

where
1/2

IIo

'2
II 1/2

g +(e'cr') +(e"cr")
I+il [g +(e'o'+e"o") ][rI +(e'o' e"o")—]

(44)

(45)

and we set ep ——e' and 1 ep e"—for——the sake of convenience. In deriving Eq. (44), we have retained terms of the form of
—Sq~ z

dz e " cos(o'q t~z)cos(cr"q IIz ) (46)

in Eq. (22) and neglected the contributions of integrals which involve sinusoidal functions which vanish at the surface.
In the curly brackets of Eq. (44), the term proportional to the third-order elastic constant a does not appear because
g;; =0 for TA phonons and the term proportional to y is suppressed because it depends on sin P (P m). Accordingly,
the contribution of this process to the decay rate is

A5 COR 77ks T2
' 1/2

'(cpa ) =
2m puzV, F

5/2 1

u'v "(v'+ u")
2

x (p+&)
I

i)'+ (e'cr')'+ (e"cr")'
1+g' [g'+(e o +e o ) ][g +(e'o' "ec)r']—

5 +(e'o') +(e"o")+2 A, +p [5'+( ' e+cr" er"c) ][25 +(e'cr' — oe")']
2

&( exp( A ficoii /ks T—), (47)

where

A =cpu /ua

From this equation, we find that the lifetime of the surface phonons is very long as indicated by the presence of the ex-
ponential factor of the form of exp( —Airico~ /k~ T ).

In order to estimate the order of magnitude of the lifetime, we convert the integrals over u' and u" of Eq. (47) into in-
tegrals over o' and o" by the relation

du= V, do. .
~2+ $

(49)
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With increasing o' and cr" the factor A varies only slowly, whereas the integrand other than the exponential factor de-
creases rather rapidly. Therefore, we may approximate 3 to be its value at o'=cr" =0 (or O'=U" = V, ), i.e.,

3 -+Ap —— (50)

(51)

and remove the exponential factor from the integrand. Note that AQ is the minimum value of /1 of the order of 0.1.
With this approximation, we finally obtain the expression for the decay rate,

fi5 cQii irk' T2 5 1/2

r (cQit ) = 3 3 ii/2 7/2 exp( AQflcg)g /kyar T )I

where

00 dgI= (e'e" )
Q [( l)2+ 1]3/4 Q [( Il)2+ 1]3/4

1

[(cr~)2+ 1]1/2+ [(~ii)2+ 1]1/2
L

' 1/2

URx (p+&)
V)

+2(A, +p)
&'+( 'ec'r)'+(e"cr")'

[5 +(e'cr'+e"cr") ][5 +(e'o' e"c—r") ]

—4(A, +p) rI +(e'o') +(e"cr")
1+rI2 [rI2+(e'c '+ e"cr")2][ri2+ (e'cr' e"o"—)'] (52)

3 =3.5&10 ' secK,

9=27g 10 sec K
(54)

For instance, at T=0.4 K the lifetime of 100-GHz»r-
face phonons is

g=4. 8&e =8.3,
in units of sec, and the corresponding mean free path be-

comes a macroscopic distance.

IV. CONCLUDING REMARKS

Stimulated by the experiments of Guo and Maris, we

have calculated the lifetime of high-energy surface pho-
nons satisfying iricu~ &&AT and found that they are sub-

stantially stable against anharmonic decay. The formula
obtained for the lifetime is similar to that of the bulk TA
phonons satisfying the same condition but they are dif-
ferent from each other in details. Other than the power
dependences on the frequency and temperature, the value
of the coefficient AQ (=0.05) in Eq. (50) is 1 order of
magnitude smaller than that of the bulk TA phonons for
which Ap-0. 3. This is due to the fact that the velocity
of the bulk TA phonons which interact predominantly
with the surface phonons is very close to Uii (Uz-0. 9V, ),
whereas the velocity Vi of the I,A phonons into which the
TA phonons decay satisfies V,=Vi/v 3.

Through this work, it is concluded that. the otherwise

Using the numerical values P=5.7 && 10" dyn/cm,
A, =5.35 )& 10" dyn/cm, p =6.86 &( 10" dyn/cm,
V, =5.42)( 10 cm/sec, Vi =9.04 && 10 cm/sec,
Ug

——4.96X10 cm/sec, and p=2.33 gcm for Si, ' we
have

r '(cQk) =BcoIi T'/ exp( —Acing /T ),
where

unavoidable intrinsic damping of the surface phonons due
to anharmonic interaction essentially does not work in the
regime fico~ &&kiiT. Our calculations are based on the
isotropic approximations. Real crystalline solids are an-
isotropic in general. However, similar to the case for the
decay of bulk TA phonons, the conclusion we have ob-
tained here would be likely to be applied to the decay of
the surface phonons in anisotropic solids. This is because
the spontaneous decay of a phonon by anharmonic pro-
cesses into a set of phonons of higher-phase velocity is
prohibited by the energy-momentum conservation even in
anisotropic crystals. '

Besides the anharmonic interaction, the propagation of
surface phonons is influenced severely by the presence of
various elastic inhomogeneities localized in the vicinity of
the surface. The scattering of surface phonons by these
inhomogeneities is highly frequency dependent. ' ' For
instance, the frequency dependence of the attenuation rate
due to scattering by surface roughness is proportional to
co~f(co~ ), where f +1 as co~ ~0 but f—=co+ ' for
coii »Uz /a (a is the correlation length of the rough-
ness). ' According to the formula of Maradudin and
Mills' the mean free path of about 10 cin is estimated
for 100-GHz surface phonons propagating on a surface
with the amplitude of roughness of 100 A (also for
a= 100 A). Hence, a very flat surface, e.g. , one flat on the
atomic scale, is required to observe the ballistic propaga-
tion of high-frequency surface phonons of about 100
GHz.
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