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Binding energies of hydrogenic impurities in finite-quantum-well structures
with effective-mass mismatch: Simple and accurate variational treatments
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Simple two- and three-dimensional (2D and 3D) effective-mass approximations are applied to the
calculation of the energy levels due to hydrogenic impurities in finite-quantum-well structures. For
two materials with identical effective masses the 2D and 3D treatments both give results of accuracy

comparable to that of more sophisticated numerical calculations.

In the case of effective-mass

+ mismatch, however, only the 2D treatment can satisfy the correct boundary conditions, which leads
to the introduction of an equivalent parallel effective mass. The method is shown to be accurate and
can be extended to the determination of all levels derived from different subbands.

I. INTRODUCTION

Recent advances in crystal-growth techniques have al-
lowed numerous experimental'™® and theoretical*—!?
studies of one-dimensional periodic structures such as su-
perlattices (SL’s) and quantum wells (QW’s). Calculations
of the shallow hydrogenic impurity levels have been per-
formed,*~® and they give evidence of the finite potential-
barrier influence’~’ which first appeared in Ref. 12.
Here, we establish the first very simple model that can ac-
curately treat a mismatch in effective masses.

We first treat the case of a SL made of two materials
having the same effective masses, using the three- (3D)
and two-dimensional (2D) (more adapted to the 2D
feature of QW’s) effective-mass approximations (EMA).
The donor center position varies from the center to the
edge of the well. We also give a simple analytical formula
that describes the asymptotic behavior of very narrow or
large QW’s.

In Sec. III we apply the above-mentioned models to
more realistic cases (where the two materials present dif-
ferent electronic effective masses m?} and m3). We point
out that only the 2D EMA model can treat this problem
in order to satisfy the required boundary conditions. This
model imposes to consider an equivalent effective mass
derived from the SL band structure (we give its expression
as a function of mY, m3, L, and- Vy,—the latter two
denoting well width and depth, respectively). We show
that for moderately narrow wells the influence of the
effective-mass mismatch cannot be neglected (for
m? =0.067 and m3 =0.1, the relative change in binding
energy is +30% with respect to the case
mi=m} =0.067). Our single-parameter variational ap-
proach gives results comparable with those obtained by
much more sophisticated calculations.” We also give the
analytical asymptotical behavior for weak or large L.

II. SUPERLATTICES
MADE OF TWO MATERIALS
WITH THE SAME EFFECTIVE MASS

Here, we will neglect tunneling effects between the
equivalent wells. of the SL and thus study a finite quan-
tum well where V(z)=V,if |z | >L /2, and ¥V =0 other-
wise. Let us first rapidly recall the simple model first
proposed by Bastard* for infinite quantum wells. For
shallow levels belonging to a single band of the host ma-
terials, the single-impurity problem can be described by
the Hamiltonian
2

e
’
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2
H=2_41v@z- (1)

2m k[p*+(z

where p is the distance from the impurity in the plane
parallel to the layers, z; is the impurity’s position in the
perpendicular direction, and « is the relative dielectric
constant of the medium (assumed to be identical in both
layers). - .

The energy levels are obtained by a variational treat-
ment, with the trial wave function

=N exp —i—[p2+(z —z;)21V?% ¥o(2) (2)

where ¥g(z) is the z-dependent eigenfunction of the Ham-
iltonian corresponding to the system without any impuri-
ty. Here, we apply this treatment to the case of finite
wells. Figures 1(a) and 2 show the variations of binding
energy with L, the well width, for different well depths,

" for an on-center and on-edge impurity, respectively. The

results for a central impurity are equivalent to those re-
cently obtained by Chaudhuri.’

- In a previous work®® we derived a 2D EMA for infinite
quantum wells. Let us briefly\ recall this formalism,
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FIG. 1. Energy of the donor ground state with respect to the
first conduction subband, as a function of the slab thickness, for
different barrier potentials. Impurity at the center of the well;
k=13.1, m*=0.067. 1au. = 27.2eV. (a) 3D EMA, V=106
meV (curve 1), 265 meV (curve 2), 424 meV (curve 3), and infi-
nite (curve 4). (b) 2D EMA, V;=212 meV (curve 1), 424 meV
(curve 2), 848 meV (curve 3), and infinite (curve 4). (c) Compar-
ison between the 3D and the 2D EMA and asymptotic behavior
(dashed line) for very small L and V=424 meV.
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FIG. 2. 3D EMA binding energy for the donor ground state
as a function of the GaAs layer thickness for an impurity on
edge; m*=0.067, k=13.1, Vy=212 meV (curve 1), 318 meV
(curve 2), 424 meV (curve 3), and infinite (curve 4).

which we extend here to the case of a finite QW.

In the absence of impurity, the energy dispersion curves
can be grouped into two-dimensional subbands, due to
quantification in the z direction. We can thus write the
impurity states derived from a 2D subband as

I¢)=§,a;;“ LERE 3)

where | 1/1» ) are the Bloch states of parallel wave vector

k relatxve to this subband. We can then derive the 2D
ef ective-mass equation,

[e( K

F(?”)=0 . 4)

€( I?ﬂ) is the bottom of the subband considered, and m’|"|
is obtained from the band structure in the absence of im-
purity by

(5)

U(7)), the effectlve impurity potential, is an average of
V(T|,2) over z, defined as

+ .
U= [ covEdz, (6)
C= [ | (T2 | % (7)

ar”

With a trial function F(T)=Ne , the lowest
impurity-state binding energy below the lowest subband is
obtained by minimization of the variational energy E (a),

E(a)—e(k +Egla), (8

h2%a?
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Egla)=
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where F(z) is given by
F(2)=2T[H\(2az) N

where H; and N, are Struve and Neuman functlons of
the order 1, and f(z) is the subband eigenstate at k” In
Fig. 1(b) we have reported, for different well depths, the
variations of binding energy with the well width. Figure
1(c) allows the comparison between 2D and 3D EMA,
The 2D EMA is slightly better over the usual range of L
values. It becomes poorer for large L when the impurity
eigenstate is close to the bulk one. This is also the case
for very small L. In both limits we can obtain a very sim-
ple analytical approximation by using a trial function
exp( —ar) (which is exact for L =0 and L = ). Then,
the impurity energy level is equal to

#a? e’a —al 1+g2_l_._

——+Ve (1n

In Fig. 1(c) the results given by this expression are iden-
tical to those of the 3D calculation for thin layers with
L <10 A. In the large-L limit it becomes valid for quite
thick layers (more than 1000 A). For moderately narrow
layers, the 2D EMA is slightly superior to the 3D EMA.
The interest in the 2D EMA will become obvious in the
case of an effective-mass mismatch (inside and outside the
well).

III. SUPERLATTICES
WITH AN EFFECTIVE-MASS MISMATCH

In this case, Eq. (9), derived from the 2D EMA,
remains valid as long as one uses m“ and f(z) derived
from the new system without impurity. This means that
we have to describe the new subband structure. If the lev-
els we study are not too far from the conduction-band
bottom, we can approximate the system Hamiltonian in-
side the QW by

: J

1 1

12az)] -z, (10)

H =-£_ (12)
! 2m?}
and the one outside the QW by

2
H 2= —L* + VO , (13)
2m2

where m,; and m, are the bulk effective masses of GaAs

(0.067m,) and Ga,_,Al,As [0.1m for x =0.4 (Ref. 6)],

respectively. The perfect-system wave function can still

be factorized under the form f(z)exp(i ﬂ-f";). The prob-

lem thus reduces to a Schrodinger equation for f(z)
whose even solutions are of the form

f(z)=Ccos(kz) if |z| <L/2,

flz)=C'exp(—Az) ifz>L/2, (14)
fl=2)=f(2),
with
2 * — b —
k2= ;"2‘ &Y, =2 —E) 4K, (15)

where the values of k and A can be obtained by writing
the continuity equations at z=L /2. Here we have to
write the continuity of the wave function f and of the
current density, i.e., of the quantity (1/m*)df /dz)."3
Once k and A are known through

L A
k= | = ,
. 2 : (16)

it is a simple matter to evaluate
9’E

2
ok |«f

via (15) and (16). Then, using (5), we obtain the
equivalent effective mass m’ﬁ, given by

1

mi  m}

1+ —1 {cos¥ (koL /2)

m3 [ m3

m3 lm’i‘

with kq being given from (15) and (16) with k;; =0.

The behavior of m ” as a function of the layer thickness
is represented in Fig. 3. We can now apply Eq. (9) and
obtain the binding energies given in Fig. 4. We must no-
tice that our 2D approach has allowed the reduction of a
system of two materials with different effective masses to
a much simpler one corresponding to one material with
one single equivalent effective mass.

It is important to note that a 3D approach, with a trial
function as given in Eq. (2), could not satisfy the current-
continuity condition and thus is not adapted to the treat-
ment of effective-mass mismatch. Thus we have derived
a very simple method, suited to the treatment of impuri-
ties in quantum-well structures with effective-mass
mismatch and adapted to the determination not only of
the ground state but also of all excited states (note that
m}| will depend on the subband). The accuracy of this 2D
EMA treatment can be judged by consideration of Fig. 5,

14+-(m¥ /m% —1)cos® (koL /2)+ (koL /2)tan(koL /2) |’
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FIG. 3. Variations of the equivalent parallel effective mass
with the well width (m? =0.067 inside the well and m3 =0.1
outside the well) (Vo=424 meV, k=13.1).
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FIG. 4. Influence of the effective-mass mismatch: binding
energy of the donor ground state for mT =m3 =0.1 (curve 2),
mY=m3=0.067 (curve 1), and mf =0.067 and m3 =0.1
(curve 3); ¥V(=0.220 meV, k=13.1. Impurity at the center of
the well.

where our result is compared to a much more sophisticat-
ed calculation® (for the binding energy of a ground state
with an on-center impurity). In the range of moderately
narrow (10—50 A) superlattices we obtain a larger binding
energy, showing that our variational function is quite
adapted to the problem.

IV. CONCLUSION

We have presented different models that are quite sim-
ple and can accurately predict the ground-state binding
energy of hydrogenic impurities in finite-quantum-well
structures. Both 3D and 2D effective-mass approxima-
tions are comparable for materials with identical effective
mass. In case of effective-mass mismatch only the 2D
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FIG. 5. Comparison between our results (curve 1) and more
sophisticated calculations (Ref. 5) (curve 2) (m;=0.067,
m,=0.1, k=13.1, and V;=424 meV) for the donor ground-
state impurity at the center of the well.

treatment can be made to satisfy the correct boundary
condition, i.e,, the current continuity. The binding ener-
gies are found to be comparable to those of much more
sophisticated numerical treatments. Finally, an interest-
ing aspect of the 2D model is that it can also be applied to
the prediction of all excited states derived from any of the
subbands.
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