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Inelastic-electron-scattering measurements from Si(111)-7)&7and thin metal films on Si(111)are
obtained for several different temperatures and analyzed with use of dipole scattering theory. A de-

tailed discussion of the shape and temperature dependence of the quasielastic peak is presented. In
particular, we show how the temperature-dependent width of the quasielastic peak can be used to
obtain information regarding the surface free-carrier density, surface effective mass, and the surface
conductivity. Analysis of the Si(111)-7&7surface suggests an unusual surface electronic structure
where a narrow state occurs within a surface-state band gap and determines the Fermi-level posi-
tion. Analysis of Au and Pd metal films on Si(111)allows us to determine film resistivities as well

as delineate microstructural features which influence surface transport properties.

I. INTRODUCTION

In recent years, electron-energy-loss spectroscopy
(EELS) has emerged as an important experimental
method to study surfaces. In these experiments a beam of
almost monoenergetic electrons are incident upon a sur-
face. By analyzing the energy distribution of the scattered
electrons, information about the electronic and vibrational
properties of the surface can be obtained.

An important aspect of EELS is that most of the exper-
imental data can be analyzed using the relative simple di-
pole scattering theory which accounts for the long-range
Coulomb interaction between the incident electrons and
the medium. ' Here, the excitation process starts when the
electrons are at a large distance d from the surface, where
d-(2Ep/fico)/kp, with Ep ——irt kp/2m being the kinetic
energy of the incident electron and %co the energy transfer
to the excitation in the medium. The momentum transfer
is therefore small, q~~ 1/d kpfld)/2Ep and the dipole-
scattered electrons form a narrow lobe centered close to
the specular direction. The width of the lobe is
b,8- irito/2Ep.

In this work we will mainly focus on the inelastic
scattering which involves very small loss energies, typical-
ly fico equal to a few milli-electron-volts. For an incident
electron with energy Eo-10 eV one finds d =10 A and.
58=0.01'. Thus, these very-low-energy' excitations start
when the electron is very far away from the surface and
the inelastically scattered electrons form an extremely nar-
row lobe located almost in the specular direction. As a
consequence of the latter fact, all the scattered electrons
pass into the acceptance angle of the analyzer (typically
—1'). Note also that since the excitation process starts
far away from the surface, it is possible to use the sim-
plest version of the dipole scattering theory, which
neglects the electron-image electron force. Additionally,
since the energy and momentum transfer to the excita-
tions in the medium is so small, the reflectivity of the

elastically and inelastically scattered electrons will be
practically identical. All these facts together make the di-
pole scattering theory a highly accurate theory in the
study of the quasielastic peak and very-low-energy excita-
tion processes.

Dipole scattering theory, in its simplest form, is a
single-scattering theory where the incident electron is as-
sumed to scatter inelastically from the surface at most
once. This theory is valid for most practical purposes,
e.g., in studies of vibrations in adsorbates or interband
transitions in the substrate. As pointed out earlier, for
small loss energies fico, the distance d from the surface
where the excitation process starts will be very large. As a
result, for sufficiently small fico one must, in general, ac-
count for multiple losses. At which loss energy multiple
scattering starts to be important depends strongly on the
particular physical system under consideration and also
on the temperature. For example, for a thin metal over-
layer on top of silicon and at room temperature, inelastic
multiple scattering occurs when flu(35 meV. Since the
instrumental resolution of a typical EEL spectrometer is
about 10 meV, the multiple scattering will appear mainly
as a broadening of the "elastic peak. " The study of the
shape and temperature dependence of this quasielastic
peak for several important physical systems is the main
aim of the present work. Our work is the first to quanti-
tatively consider and analyze these multiple-scattering
processes. The theoretical results will be illustrated with
two applications, the 7X7 reconstructed Si(111) surface
and thin Au and Pd films on Si(111).

The 7&(7 reconstructed Si(111) surface is one of the
most studied systems in surface science. Despite this,
very little is known about its electronic structure and
about the driving force for the reconstruction. We will
present and analyze inelastic-electron-scattering data from
Si(111)-7)&7 obtained for several different temperatures,
which suggests that this surface has an unusual electronic
structure. In earlier work by Backes and Ibach, the same
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system was studied at room temperature and without
analyzing the width of the quasielastic peak. Our analysis
of these latter features provides a physically different pic-
ture of Si(111)-7&&7 than achieved in this earlier work or
other studies.

The structure of thin metal overlayers on top of semi-
conductors has been studied with EELS by Backes and
Ibach and by Dubois et al. However, these authors
again analyzed only the loss data in the single-scattering
regime, while we focus on the multiple-scattering regime.
We will derive a very simple formula for. the width of the
quasielastic peak which agrees well with the experimental
data, and from which the conductivity properties of the
metal films can be deduced almost trivially.

This work is divided as follows. In Secs. II and III we
review some basic equations which relate to inelastic elec-
tron scattering from surfaces. Section IV contains a short
introductory discussion of what is known about the elec-
tronic structure of the Si(111)-7X7 surface from photo-
emission measurements. In Sec. V we present experimen-
tal EELS data and in Secs. VI and VII these data are
analyzed theoretically. Section VIII contains a discussion
of the experimental and theoretical results. In Sec. IX we
present a detailed discussion of the shape and temperature
dependence of the quasielastic peak in a general case, and
in Sec. X we present illustrative applications to thin metal
films on Si(111). Section XI contains a summary. Ap-
pendixes A—E contain the derivations of the main
theoretical results and form an important part of this
work.

II. INELASTIC ELECTRON SCATTERING
FROM SURFACES

The experimental results to be presented in Sec. V are
obtained by electron-energy-loss spectroscopy. Here we
will briefly review some of the basic equations which re-
late to EELS.

Let us first define the surface response function

g(qII, co) which plays an important role in what follows.
Consider a semi-infinite medium (Si in our case) occupy-
ing the half space z~O. Let

—=3 (k, k ') Img(qtl~co (3)

where qz ——k, —k,', and cc is the angle of incidence. Thus
the inelastic scattering probability is a product of two
factors —a kinematic factor 2 ( k, k ') which depends
strongly on the loss energy fico(A-co as co~0), but
which is independent of the properties of the medium, and
the loss function Img (qII, co) which is proportional to the
power absorption in the medium due to an external poten-
tial of the form (1). g (qII, co) enters the inelastic scattering
probability (3) because it determines the induced electric
field outside the substrate [via (2)] and it is this time-
varying field that can scatter the incident electron inelasti-
cally. We note that Eq. (3) is valid at zero temperature-
at a finite temperature there is an extra factor (n„+ 1)
where

n„=[exp(irico/kg T)—1]

is the Bose-Einstein factor.
Equation (3) is based on a single-scattering theory, i.e.,

the incident electron is assumed to scatter inelastically at
most once. However, if the coupling to the medium is
strong or if the loss energies are very small, so that the in-
teraction occurs during a very long time (see the Introduc-
tion), then an incident electron can undergo multiple in-
elastic scattering. At small loss energies the full lobe of
inelastically scattered electrons passes into the analyzer
and the measured relative loss intensity (in the single-
scattering regime) is therefo're proportional to

excitation in the media and fico=A (k k—' )/2m is the
energy transfer. Let P(k, k')dQkd(fico) be the probabili-
ty that an incident electron is scattered inelastically into
the range of energy losses between fico and fi(co+dco), and
into the solid angle dQk around the direction of k '. For
small momentum transfer, q

I I
« k, and for "weak"

scattering (to be defined below), one has, from standard
dipole scattering theory, '

2 1 k'
P(k, k')=

2 z 2, Img(qII, co)
(8ct01T)

i qII +q J

P, (co)= I dQ„,P(k, k'), (4)

be an external potential which polarizes the medium. The
induced polarization changes will give rise to an induced
potential which for z & 0 (i.e., outside the medium) can be
written as

(x t) — g(q co)e
~

II II+~ll

This equation defines g(qII, co). It is implicitly assumed
that the media can be treated as translationally invariant
parallel to the surface.

Now consider an electron with a few electron volts en-
ergy incident upon the surface. The electric field from
the electron penetrates into the media where it can excite,
e.g., electron-hole pairs, plasmons, or phonons. Let k and
k ' denote the wave vectors of an incident and inelastical-

ly scattered electron, respectively. Thus RqII
——iii(kII —k I'I)

is the momentum tr'ansfer (parallel to the surface) to the

where the integral can be taken over the whole solid angle
4'. The index s on P, stands for single scattering. To
obtain the probability for multiple scattering one can
proceed as follows: Assume that the excitations in the
substrate can be treated as independent bosons. Let Ace

q
be the energy of the excitation with wave vector q. Con-
sider now the independent boson Hamiltonian,

H= gAco b b +F(t)QM (b +b ).

Here, F(t) is the time-dependent force exerted on the os-
cillators by an incident electron, which is treated as a clas-
sical point particle moving along a well-defined trajectory.
The probability, at zero temperature, for excitation of an
oscillator from its ground state to a final state nq, is
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P(O~n )= (B ) 'e
(n )!

where

P(cu) = 1 dte
2m

Xexp f de'P, (co') [(n~ + 1)(e'"'—1)

dt F(t)e +n„(e '" '—1)j

Since the bosons are independent, it is now trivial to cal-
culate the probability P(co) (at zero temperature) that the
incident electron loses energy fico:

P(co)= g g P(O~n )P(O~n )X .
ql q&n~ =0 n~ =0

q 1

X5(co n —co —n co — ),91

where

n ~ = [exp(fico/kii T) —1]

is the Bose-Einstein factor. We will use (9) in Sec. Vll,
where we calculate the line shape of the quasielastic peak
for electrons inelastically scattered from the Si(111)-7X 7
surface.

where qi, qz, . . . denotes the different q!!. Now since
—i(co—n~ co —. ~ . )t

ql ql1
5(co n—co — ) = dte

2m'

we obtain from (5)—(7),

(7)

P(co)= f dte '"'exp g B (e ' 1)—2'
q

(8)

In the weak-coupling limit (i.e., B ~0), we obtain
q

The second term in P(co) describes single scattering, so
that at zero temperature,

P, (co)= g B 5(co —co ) .

We now multiply this equation with e' '—1 and integrate
over u to obtain

exp gB (e ' 1) =1+—QB (e ' —1),
q q

and thus
r

P(co)= 1 —g B 5(co)+ g B 5(co co-) . —
q

III. STRUCTURE OF g(qII, co)

We will assume that the 7X7 reconstructed Si(111)sur-
face can be treated as a two-dimensional electronic system
on top of, a semi-infinite dielectric medium characterized
by the bulk dielectric constant e(co), which for small loss
energies can be treated as a constant, @=11.7. Within this
model it is almost trivial to derive an expression for

g (q!!,co). Consider the response of the system to an exter-
nal potential of the form given by Eq. (1). The electric
potential outside the medium (z & 0) will then be

=(e —ge )e
—qllz qllz i( q

II
x

II
cot)

The electric potential in the medium satisfies 7' / =0, and
can therefore be written as

te e-—-qllz l(qll. x II-~t)

It is convenient to imagine there is an infinitesimal
separation between the two-dimensional electronic system
and the underlying rnediurn; see Fig. 1. In the vacuum re-

gion in between the system and the underlying medium,
the potential takes the form

(a e'ill +be ~II )e' qll "II

Both the potential P and ed//dz must be continuous at
the vacuum-medium interface, which gives

t =a+b, —et =a —b,
from which one obtains

e(a +b)+(a —b) =0 . (10)

Substituting this expression into (8) gives

Next, the discontinuity of the electric field over the two-
dimensional electronic system must be related to the sur-

/IIIIIIIIIIIIIIIIII, IIIIIIIIIIIIIIIIIIIIII
I 00

P(co) = f dt e ' 'exp f da)'P, (co')(e' ' 1)—2' 0

This formula gives the inelastic scattering probability at
zero temperature. The finite-temperature generalization
of this expression has been derived by Lucas and Sunjic
and Schaich:

FIG. 1. Semi-infinite medium with a two-dimensional elec-
tronic system on top.
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face charge density cT(q)), co) in the two-dimensional elec-
tronic system in the usual way

d'k f» f—»+,
Xintraband

(2~) nco —(e»+e —e» }
(16a)

or

dP dP
dz dz

where we assume that e»
'

is well approximated by
e» =A' k /2m' and where f» is the Fermi-Dirac distribu-
tion function. If qll «k+ and (co/co+)(kF/ql)) »1, then
one can expand (16a) to second order in q)) to obtain

(a —b) —( —1 —g) = —4~a/q)) .

Furthermore, the electric potential itself must be continu-
ous across the two-dimensional electronic system, which
gives

e n
Xintraband

m co
(16b)

where n is the number of free carriers per unit surface
area. Substituting (15) and (16b) into (13) gives

a+b=1 —g .

From Eqs. (10)—(12) we obtain

(12)
Img = —Im

2

e+ I+4rrnoaq)) 4n—ne q)) /(m "co )
(17}

e—1
g

4m o
6'+ 1 g[(

IV. ELECTRONIC STRUCTURE OF Si{111)-7X7

2g=1-
e+1—4nX/q)l

Thus

2
Img (ql), co) = —Im

e+ 1 —4~X(q)),co)/q))

Mills' has derived an expression for Img for a thin
dielectric film (thickness d) with a dielectric function
ei(co) on top of a semi-infinite dielectric with a dielectric
function e(co). For q))d «1, Mills' obtained

(13)

2
Img = —Im

e+ 1+q)ld [ei(co)—e /E'i(co)]
(14)

If we define the surface polarizability X(q)),co) by

o ( q)), co ) =X(q)),co)P(q)), co},
where P(q)), co) is the potential in the two-dimensional sys-
tem, i.e., P = 1 —g; then we obtain

4~g= (l-g),E'+ 1 1+& g)i

As background for what will follow, this section re-
views what is known from photoemission experiments"
about the electronic structure of Si(111)-7X7. First con-
sider the fictitious case of an unreconstructed Si(111) sur-
face. This surface will have dangling bonds perpendicular
to the surface arranged in a two-dimensional lattice struc-
ture. Extensive numerical calculations' have shown that
these dangling bonds form a surface-electron band which
occurs in the gap between the bulk valence and conduc-
tion bands of Si, as schematically shown in Fig. 2(a),
(This result is expected from simple physical arguments;
see Harrison, Ref. 13.) A dangling-bond state containing
one unpaired electron is an energetically unstable configu-
ration which tries to lower its energy by pairing up with
another unpaired dangling bond, forming a double occu-
pied bonding orbital and an unoccupied antibonding orbi-
tal. In the absence of adsorbed gases this requires the Si
atoms change their positions, thereby giving rise to a
reconstruction. When a Si(111) surface is generated by
cleaving in vacuum and at room temperature, it will
reconstruct into a 2X1 structure. This is, however, not
the ground state, and when the Si(111)surface is heated to

This result differs from (13) in two ways: First, (13) ac-
counts (if necessary) for spatial nonlocality within the
two-dimensional system via the dependence of X(q)),co) on
q)). Second, the term e /ei(co) within the parentheses in
(14) has no analog in (13). However, this term disappears
from (14}in the limit d ~0 and ei~ 00, with dei ——const.

Suppose that it is possible to use an independent-
particle picture to describe the electronic structure of the
Si(111)-7X7surface. Then, contributions to X(q)),co) will
arise from interband and (if there is a partly filled band)
intraband transitions. For small q~~, which is the case
relevant to us, the contribution from interband transitions
can be written as

2
Xinterband 'q))no

» (III)
unreconstructed

e mwE
F

FÃYz~

where noa(co) is the polarizability per unit area ( no is the
number of Si atoms per unit area}. The contribution from
intraband transitions can, for q))a « 1 (where a is the sur-
face lattice constant), be written as

Si (III) -7x7
FIG. 2. Schematic representation of the surface density of

states of an unreconstructed surface (left) and for a 7X7 recon-
structed surface (right),
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=600'C, it reconstructs into the much more complicated
7X7 structure. Figure 2(b) shows the surface density of
states for the 7X7 reconstructed surface as deduced from
photoemission experiments. The "center of mass" of the
surface density of states is obviously displaced towards
lower energies, compared with the unreconstructed sur-
face which indicates that the 7 X 7 surface is more stable.

Since there is an odd number of electrons in the 7 X 7
unit cell, if an independent-particle picture is valid, then
there must be at least one partly filled band of surface
states making the Si(111) surface metallic. This is con-
sistent with the photoemission data, which show a surface
density-of-states peak in the vicinity of the Fermi energy
EF. However, the resolution of photoemission experi-
ments (-0.1 eV) is not sufficient to resolve the detailed
surface-state structure near EF and tell whether there is a
finite density of states at EF. It will be shown in the fol-
lowing sections that EELS can provide us with an answer
to this question.

V. EXPERIMENTAL PROCEDURE

These measurements were performed in an ion-
turbomolecular-titanium sublimator-pumped ultrahigh-
vacuum system having a base pressure of 4X10 " Torr.
This system contains a cylindrical mirror analyzer (CMA)
for Auger and ultraviolet photoemission spectroscopy
(UPS), a three-grid Varian Associates low-energy
electron-diffraction (LEED) optics, and a set of hemi-
spherical deflection analyzers (2.5 cm diam) for high-
resolution electron-energy-loss measurements (EELS). A
baron-doped sample (1.3 X 10' atoms/cm ) was ultrasoni-
cally machined to size (9 mm diam and 1.5 mm thick),
mechanically and chemically polished, and physically
clamped to the sample support by a tantalum retaining
ring. The sample could be indirectly cooled and heated
between 15 and 1400 K, as measured with a Chromel-
Alumel thermocouple spot-welded to the retaining ring
and/or an infrared pyrometer. Cooling of the sample was
preceded by cooling of the cryostat which reduced system
pressures below 2&10 " Torr and virtually eliminated
ambient contamination during cool down and measure-
ments at low temperatures. The sample was cleaned by
initial argon-ion bombardment (400 V) followed by repeat
ed oxidation cycles, annealing to 1350 K, and slow cool-
ing to produce atomically clean, well-ordered, 7&&7 sur-
faces.

Palladium was evaporated by resistively heating a Pd
wire, while Au was evaporated from a Au bead on a W
filament. In both cases, system pressures remained in the
10 ' -Torr range during evaporation, and EELS and UPS
did not detect any co-absorbed background impurities.
After metal evaporations it was not possible to achieve the
same initial 7&7 surface due to a small concentration of
palladium impurities ( —1 at. %%uo ), whic hcoul dno t bere-
moved. These impurities eliminated the surface states
seen in UPS right near EF, prevented any detectable
(temperature-dependent) elastic beam broadening from
occurring, and produced a 1&(1 LEED pattern. One ad-
vantage of these impurities is that they thus provide no
elastic beam broadening from the starting surface, so as to
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FIG. 3. Electron-energy-loss data from Si(111)-7&&7 for two
temperatures, T= 300 and 20 K. Incident-electron energy
Eo——15 eV, angle of incidence a =45', and half-angle of
analyzer 8& ——2'.

allow us to analyze the beam broadening arising after
metal evaporation.

EELS was performed using a fixed total scattering an-
gle of 90, and for specular scattering conditions (a=45')
and incident-beam energies (12—20 eV) where optical (di-
pole) selection rules are applicable. The beam energy was
calibrated by the zero-kinetic-energy "cutoff" of the loss
spectrum. Off-specular measurements confirm that the
features we report here are dipole excited. Our EELS
resolution, as determined after reflection from the crystal,
was typically 7—9 meV [full width at half maximum
(FWHM)], but was degraded to 20 meV to examine the
lower-intensity losses above 0.5 eV. Measurements of the
temperature-dependent beam broadening were performed
(with the ion gauge off) on both clean and metallized sur-
faces by initial cooling to 20 K followed by continuous
monitoring of the elastic beam and temperature after ter-
minating the He flow. Temperature cycling back to 20 K,
as well as nitrogen cooling to 78 K directly, were used to
check for possible contamination effects during warm up.

Figure 3 shows the loss spectra at room temperature
( T=228 K) and T=20 K obtained for an incident kinetic
energy Eo ——12 eV and a total acceptance angle 0~ ——2'.
Several different acceptance angles from 0.75—2' were uti-
lized with comparable results: The 2' acceptance angle
provided the best signal-to-noise ratio in the loss region,
and was therefore used to determine Img in Fig. 4. The
room-temperature data are quite structureless and mono-
tonically decreasing out to Ace = 1 eV. The low-tem-
perature data have more structure, particularly for small
loss energies, fico-50 meV. Note also that the width of
the quasielastic peak depends strongly on temperature: it
increases from about 8.8 meV at T=15 K to 13 meV at
T=288 K. %"e will discuss this in greater detail in Sec.
VII, but we point out already here that it is caused by
multiple excitations of very-low-energy plasmons in the
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FIG. 4. Surface loss function Img for Si(111)-7&(7as a func-
tion of the loss energy %co for four different temperatures,
T=300, 1SS, and 100, and 15 K. Eo——12 eV, +=45', and

Oi ——2'.

strate and thus much easier to interpret physically than
the original loss spectrum AP(co).

Figure 4 shows Img(co). Note that as the temperature
is lowered, a band gap of about 40 meV tends to open up.
The low-temperature curves are rather uncertain for
1m&35 meV because they involve subtracting away the
tail of the elastic beam from the data in Fig. 3. This tail
was obtained from a hydrogen-saturated Si(111) surface
where the entire loss background up to Ace-1 eV has
disappeared. At room temperature the gap seems to have
disappeared. However, the broadening of the quasielastic
peak caused by multiple excitations of low-energy
plasmons produces "wings" which could obscure this gap
as well as its temperature dependence. Thus, it is not
clear to what extent the temperature dependence of this

gap arises from electron-phonon effects, as is suggested
for the higher-lying transitions.

Using a sum rule one can obtain the oscillator strength
contained in the structure between 40 &%co&450 meV.
The result is 5+1 electrons per 7&& 7 unit cell.

VII. ANALYSIS OF EXPERIMENTAL DATA
IN THE MULTIPLE-SCATTERING REGION.

surface. The inset of Fig. 3 shows two loss peaks at about
Ac@=0.9 and 1.7 eV. These features are sensitive to ab-

sorption and are likely surface interband transitions (the
1.7-eV peak also having a contribution from bulk inter-
band transitions), but they will not be discussed in the fol-
1owing. In the next section we wiH analyze the structure
between 35 & Ace &400 meV where the single-scattering di-

pole scattering theory is applicable. For Ace(35 meV,
multiple scattering becomes important: This loss region
will be analyzed in Sec. VII using the multiple-scattering
formula (9).

As pointed out in the preceding section, within a one-

particle picture there must be at least one partly filled
band at the Fermi energy. The last term in the denomina-
tor of (17) accounts for this partly filled band. For suffi-

ciently small co, Eq. (17) takes the form

2
Img = —Im

e+1—4~ne'q „/(m*~')

4 2

q~~5(co —4~ne q~~/[m'(1+e)]) .
(e+1) m*

(19)

VI. ANALYSIS OF EXPERIMENTAL DATA
IN THE SINGLE-SCATTERING REGION

For %co) 35 meV, inelastic multiple scattering is negli-
gible (see Sec. IX), and the experimental data for these
loss energies can therefore by analyzed using the single-
scattering formula (3). In EELS one does not measure

P(k, k ') directly, but rather P(k, k') integrated over the
solid angle of detection hA; we write

Here we have neglected the screening by the interband-
transition term 4~noaq~~ since this is a very good approxi-
mation for those co and q~~ which are relevant here. Sub-

stituting (19) in (3) and integrating P(k, k ) over the so]id
angle of the entire upper half plane gives (see Appendix
A)

P, (co)= f dQkP(k, k')= f(co/P, u),

where

EP(co) = f dQk P(k, k ') .

In Fig. 4 we show Img(co) defined by

4 1 1 1C=-
m a+1 cos2u kao

(21)

f~ndQk A(k k ) Img(q(( ~)
Img(co) = . (18)

f dQk A(k, k')

Thus Img is obtained by dividing the experimental loss
spectrum in Fig. 3 by the kinematic dipole scattering fac-
tor A (k, k ') integrated over the solid angle of detection.
If Img is independent or only weakly dependent on q~~,

then Img=Img. In any case, dividing out the strong-co-

dependent factor A (k, k '), according to (18), gives a
quantity which is largely an intrinsic property of the sub-

and

=1 1/xf(x,a) =—f dP 1+ —tana cosP
x coscx

2 —2

and

4m.ne 1

m*(e+1) U

(22)

where U is the velocity of the incident electron. Note that
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~ P(mev ")

/

I
g l

I

'l

kgT=44K

$P =O.2meY

x =co/P, and C, are dimensionless. The integral (22) can
be evaluated analytically, but the result is complicated: It
is easier to calculate f directly from (22) by numerical in-

tegration, or by use of the following simple, but accurate,
formula:

1.57x a =45
1+0.47x"—0.4x

This expression has the correct limiting forms (a=45'):

2 1.57 1f- (1+c—os a)cosa= ' —asx-~,
x 047 x

f-2m.x cos a=1.57x asx-0.
Substituting P (co), as given by (20), into (9), and evaluat-

ing the integrals numerically gives the quasielastic peak.
The result depends only on the parameter P, which has
been chosen to give the best agreement between theory
and experiment. The dashed lines in Fig. 5 show P(co)
for three different temperatures and with AP=0.2 meV.
Note that the temperature dependence of P(co) is due to
the Bose-Einstein factor n„. Since the incident electrons
in EELS have a finite energy spread (typically 10 meV)
around the mean energy Eo, one must broaden the dashed

profiles in Fig. 5 according to the instrumental resolution
in order to compare theory with experiment. By studying
the elastic peak from a hydrogen-saturated Si(111) sur-
face, we find a nearly-Gaussian-shaped peak with a
FWHM of 8.4 meV. The solid curves in Fig. 5 show the
theoretical result for the quasielastic peak after convolut-
ing the dashed curves with a Gaussian with a FWHM of
8.4 meV. The circles are the experimental data which
agree very well with the theoretical predictions. The
sma11 deviation between the theoretica1 curve and the ex-
perimental data points on the gain side is associated with
focusing problem of the spectrometer in this particular
run. The variation of the FWHM with temperature is
shown in detail in Fig. 6. The agreement between theory
and experiment is again very good (note that there is only
one fitting parameter, P, in the theory) The. dashed curve
in Fig. 6 will be discussed in the next section.

Backes and Ibach and Froitzheim et al. ' have also
performed EELS measurement on Si(111)-7&&7. In Table
I we have collected their results for the width of the
quasielastic peak at'room temperature, and also stated the
experimental conditions under which these experiments
were performed. Note, in particular, that their silicon
samples have a much lower bulk doping than our sample
(n~ —1.3X10' boron atoms/cm). Nevertheless, the
theoretical predicted width for the quasielastic peak, using
the value of n/m* we find, also agrees with their experi-
mental results. These results show that the observed
broadening is reproducible and does not depend on the
particular experimental conditions or bulk doping. This
provides evidence that the broadening cannot be caused by
the bulk doping (also see the next section) or by random,
extrinsic imperfections at the surface which one might ex-
pect to vary between the different samples.

r .-0

Jl

--0.1

kBT =155K
meV

keT= 230K
'hP = 0.2mev

12
E

11

10

~, E=NmeV

I I

200
T (K)

300

FIG. 5. Scattering probability P(Rco) for three different tem-

peratures, T=230, 155, and 44 K. The open circles denote the
experimental data for Eo——12 eV and a=45'. The dashed and
sohd lines represent the theoretically predicted results for P(Ace)
before and after convolution with a Gaussian with a FTHM of
8.4 meV. In the calculation, we used A'P=0. 2 meV, Eo 12 eV, ——
and a=45 .

FIG. 6. Temperature dependence of 'the peak width (full
width at half, maximum) of the quasielastic peak from Si(111)-
7)&7. The open circles represent the experimental data and the
solid line is the theoretical result with AP=0.2 meV. The
dashed line is the result of a theoretical model which assumes
that three carriers are thermally excited so that A'P

—T exp( —Eg p/2k&T) where Eg p 40 meV is the band gap.
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TABLE I. Results for the quasielastic peak width at room
temperature.

)& Energy

(deg) (eV)
Io

(meV)
I {expt)
(meV)

I (theory)
(mev)

65

60

Backes et al. ' (n& -3.7&(10' cm )

7.3 11.7 18.9

Froitzheim et al. (n~-10' cm )
5 6 19

19.7

18.8

~ 40 meV
='t meV

45
This work (n&-1.3&(10" cm ')

12 8.5 13.8 14

'Reference 5.
Reference 14.

VIII. DISCUSSION

We saw in the preceding section that the temperature
dependence of the FWHM of the quasielastic peak for
electrons scattered from Si(111)-7X7 can be explained
within a very simple model which attributes the broaden-
ing to multiple excitation of plasmons in a two-
dimensional electronic system. Since there is an odd. num-
ber of electrons in the 7X7 unit cell, in a independent-
particle picture there must be at least one partly filled
electronic band. The electrons in this band can perform
low-frequency two-dimensional plasma oscillations. ' Fit-
ting the theory to the experimental data gave A'/3=0. 2
meV. Using the definition of jt3, which we now write,

m 4~ne
m* (~+I)k '

where k is the wave vector of the incident electron, we ob-
tain m'=60m if AP=0.2 meV and n= 1 electron/[(7)&7)
unit cell]=0.0016 A . (For a discussion of m', see Ap-
pendix E.) With this effective mass one can estimate the
bandwidth B:

A' kp
B =2 =2vrh n/ *m=1 meV .

2m

Thus the half-filled band is extremely narrow, and we are
led to the picture of the electronic structure in the vicinity
of the Fermi energy as shown in Fig. 7. To be consistent
with the electron-energy-loss data in Fig. 4, there must be
a band gap of about 40 meV between the partially occu-
pied sharp band at EJ; and the first unoccupied (occupied)
density-of-states structure above (below) EJ: This. model.
is consistent with a number of experimental observations.

(a) The broadening of the quasielastic peak disappears
already with a very low concentration of absorbed hydro-
gen atoms. Based upon our relative exposures, LEED
patterns and absolute coverage calibrations by Culbert-
son, ' this occurs for 8-0.01 to 0.02, or about one H
atom per 7&(7 unit cell. This is expected since the band
at the Fermi energy (which carries one electron per 7X7
unit cell) is the most easily polarizable electronic state on
the Si(111)-7X7 surface, and therefore it is the first at-
tacked by the hydrogen atoms.

Surface density of states

FIG. 7. If the Si(111)-7&7 has a half-filled electron band,
then the theory predicts that it must be extremely narrow, about
1 meV wide.

(b) There seems to be one unique "active site" per 7X7
unit cell. That is, there is a site in the 7&7 unit cell
which is much more reactive than others, as observed in
absorption experiments involving hydrogen' and noble
gases. ' It is tempting to associate this single site with the
large "holes" seen at the corners of the 7X7 unit cell in
scanning-tunneling-microscope pictures. ' We propose
that these special sites are associated with the sharp band
at the Fermi energy.

Thus the model we present seems to be consistent with
all the experimental observations. However, there is one
theoretical objection with this model associated with the
narrow level. Since the bandwidth B is so small, the
independent-particle picture on which the discussion has
been based up to now must be questioned. For example,
for a Hubbard Hamiltonian,

H = g @0&;~+ g V&jC[~~CJg+ g 'Uttt)71$
i,a

it is well known that if the bandwidth B« U then the
single-particle picture is incorrect and the ground will be
spin polarized. The magnitude of U depends on how lo-
calized the state c;

~

0) is, but it is hard to imagine a case
where U& l meV. If E(k) =eo+ V(k) denotes the eigen-
values of (23) when U=O, then the eigenvalues for U»B
are given by

E+(k)=eo+ U+ V(k)/2, E (k)=co+ V(k)/2 .

Thus the electronic structure would in this case consist of
a filled lower Hubbard band E (k) and an empty upper
Hubbard band E+(k). Such a system would not have
any partly filled band, and would therefore not exhibit
any low-frequency plasmons. We have therefore con-
sidered a number of alternative explanations which we
will now discuss.

(a) Assume that there is a band gap of =40 meV at the
Fermi energy on Si(111)-7X7. At nonzero temperature
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thermally excited electrons and holes will generate a low-
density electron-hole plasma in which two-dimensional
low-frequency plasma oscillations can occur just as dis-
cussed above. The broadening of the quasielastic peak
will now depend on temperature not only via the Bose-
Einstein factor but also because the number of thermally
excited electrons and holes will depend (exponentially) on
the temperature. That is, as the temperature is lowered
the thermally excited electrons and holes will be "frozen
out. " The dashed line. in Fig. 6 shows the theoretical re-
sult for the FWHM assuming that

n —T exp[ Es,~—l(2k~ T)]j,

where Eg p 40 meV is the band gap. Obviously, the
agreement between theory and experiment is unsatisfacto-
ry and this process can therefore by ruled out.

(b) The incident electron will couple to the surface and
bulk phonons of Si and this might give rise to the
broadening of the quasielastic peak. However, as shown
in Appendix 8, coupling to phonons is, in general, too
weak to explain the experimental results.

(c) If there is a non-negligible concentration of free car-
riers in the bulk and/or surface layers (say, due to un-
known impurities), then these will exhibit a low-frequency

plasma oscillation which can broaden the quasielastic
peak. (This is also a reasonable possibility as our probe
will "sense" -10 A into the sample. ) It was suggested
by Backes and Ibach that this is not the case since hydro-
gen adsorption eliminates the broadening. However, this
conclusion is noi completely free from objections because
adsorption of hydrogen changes the band bending and
thus the concentration of free carriers at the Si(111) sur-
face. However, the detailed discussion in Appendix C
shows that the bulk free carriers cannot give rise to the
observed broadening in the present ease. This also follows
from the observation made in Sec. VII, that the experi-
mental data by Backes and Ibach and by Froitzheim

et al. ' both show a broadening of the quasielastic peak
which at room temperature agrees very well with our
theoretical predictions. Since these n- and p-type samples
had a bulk doping about 10 times smaller than our
sample, one might anticipate widely different values of fig
if bulk-derived, near-surface free carriers dominated the
broadening.

Thus none of models (a)—(c) are consistent with all the
experimental data. Thus, perhaps, the states c;~ ~0) are
quite delocalized within the 7&7 unit cell. This would
then also explain why no temperature dependence is ob-
served for the effective mass m' due to electron-phonon
coupling (the small-polaron problem). Alternatively, there
might be important many-body effects, as discussed by
Louis et a/. ,

' which can introduce a finite density of
states at the Fermi energy, even for the Hubbard Harnil-
tonian (25). In this case one can still apply the theory
presented above if n and m* are interpreted as the quasi-
particle density and effective mass, respectively, as ob-
tained from the one-particle self-energy X(co, q~~) in the
usual way.

IX. SHAPE AND TEMPERATURE DEPENDENCE
OF THE QUASIELASTIC PEAK (GENERAL)

In Sec. VII we calculated the shape of the quasielastic
peak using (9). Equation (9) is quite complicated and it
would be useful to have a simple formula from which one
can estimate the width without anv extpgsive nuymerira1
calculation. Here we will derive a simple expression for

where

(co) = f dcocoP(co)—:(co)p

We first rewrite (9) as

f dcoP(a))e' '=exp f dcoP, (a))[(n + l)(e' '—1)+n (e ' '—l)j

Next we expand both sides of this equation in powers of t:
Oo t2

1+it f dtocoP(to) —f dto—e'P(co)+. . .
oo —oo

oo t2 oo oo=1+it f dtotoP, (co) —f deuto —P, (to)(2n„+1)+ f drotoP, (co) + 0 ~ ~

Thus, identifying the coefficients in front of t and t,
( ') =( '(2n +1)& +(( & )',

so that

&~'&p —(&~&p)'=(~'(2n +1)&p,

or

((ha)) ) = f dcoP, (co)co (2n, +1) . (24)
0

We will illustrate the usefulness of this equation with two

examples. Consider a two-dimensional electronic system
on top of a semi-infinite dielectric. Assume that Irng is
well approximated by

2
Img = —Im

e+ 1 4~ne qj~ /[m *co(—co+i lr) J

which is identical to (19), except that we now have includ-
ed a finite relaxation time ~ to account for Drude darnp-
ing within the two-dimensional electronic system. Substi-
tuting (25) in (3) gives, after some simplifications (see Ap-
pendix A),
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ce 1
P, (co)= dx f(x,a)

(1/13') +(colP x—)
h (g,a) = f dx f(x,a)

0 g +xi (30}

where, as before,

(26) The function h (g, a) is shown in Fig. 8 and Table II for
several a values. Equation (28) shows that, for il « 1, i.e.,
A'P &&kii T,

and

4 1 1 1C=-
7T cos ~ kQ0 6+1

(21) ((b,co)~)T ~ TlnT,

while for il » 1, i.e., Rp »kz T,

(31)

=1 1/xf(x,a) =—f dP 1+ —tana cosP
x cosa

'2 —2

x x,a

I /Pr
(1/P~)'+ (x —y)'

Now, it is easy to see that the y integral diverges (logarith-
mically) at its upper integration limit. The reason- for this
divergence is the slowly decaying tail of the loss function
P, with increasing co. However, if we only consider the
temperature-dependent contribution to ((itic,co) ), then
this is finite and given by

((A'b, co) )r —— (iriP) f dy
0

X f dx f(x,a)

g +(x —y)2

Note that

1 I/Pr ~5(co/13 —x)
~ (I/Pr) +(co/P —x)

as r ' +0, so—that (26) reduces to (20) when r '~0.
Substituting (26) in (24), and changing the integration

variable co =Py, gives

((fib.co) ) =—(iris') f dy y(2n~~+1)

((Aco) )z cc T (32)

Thus the temperature dependence of ((b,co} )T is dif-
ferent in the two limiting cases which can be used to dis-
tinguish between them. For example, we have found for
Si(111)-7&&7 (see Fig. 6) that the temperature dependence
of the width of the quasielastic peak is weaker than linear
at higher temperatures, which is consistent with (31). On
the other hand, for a thin metal layer on top of an insula-
tor or semiconductor, one has A'I3-1 eV (see next section),
so that fiP»kii T. Thus for this system one expects from
(32) that the peak width increases linearly with tempera-
ture for large temperatures. As discussed later, this is ex-

actly what we find experimentally for thin Au and Pd
layers on top of Si(111).

Note that for AP«kliT, ((Aco) )T is independent of
the Drude damping 1/r, while in the other case, when
AP»kiiT, ((b,co) )T~O as 1/r~O. This indicates that
the physical origin of the broadening is different in the
two limiting cases. Indeed, for A'P «kiiT the broadening
is caused by multiple excitation of low-frequency plasma-
oscillations in the two-dimensional electronic system,
while for irip»kz T the broadening instead arises entirely
from the Drude damping and thus vanishes as I/~ +0. —
We will now present numerical results which illustrate
these points. Let us first set 1/r=0 and study how the
quasielastic peak changes with the parameter 13. Assume
that T=230 K (kiiT=20 meV). The solid lines in Fig. 9
show P(co) for three different values of P. The dashed
lines show the single-scattering probability P, (co), which
agrees with P(co) for fico & 30 meV, i.e., for %co & 1.5k& T.
The quasielastic peak has, for tiiP « kii T, an approximate-
ly Gaussian shape with a width which varies with P as
shown in Fig. 10. As p is increased towards irip=kz T, a
no-loss line starts to intensify, while the loss structure

where we have introduced the dimensionless parameters

1

13m
'

kii T

If we write

1.5—

1.0
0

~+

g. =45

60

((A hco)') T
—= (trip)'g (g, il,a),

then one can easily prove that

g-ir cosa(l+ cos a)—ln —as F1~0,2 2 1 1

7l 7l

1.643g- ' h(ga) as il~ao,

(27)

(29)

0.5

00

75

where
FIG. 8. Function h(g, a), defined in (30), shown for three

different angles of incidence, +=45', 60', and 75'.
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TABLE II. Values of h (g, u) for several different a.

0.2
0.4
0.6
0.8
1 .0
1.2
1 .4
1 .6
1 ~ 8
2.0
2.5
3.0
3 ~ 5

4.0
5.0
6,0
9.0

12.0
15.0
18.0
21.0
24.0
27.0
30.0

a =45'

0.416
0.738

0.964
1.1 12
1.2 16
1 .277
1.313
1.33 1

1.336
.1.333
1.303
1.257
1.207
1 ~ 1 58
1.065
0.984
0.801

0.679
0.592
0.526
0.475
0.434
0.400
0.371

h (g, a)
a= 60'

0.300
0.542
0.7 17
0.834
0.908
0.952
0.974
0.983
0.982
0.975
0.941

0.899
0.855
0.813
0.738
0.675
0.539
0.45 1

0.390
0.346
0.31 1

0.283
0.260
0.24 1

,~
P (meV-")

a=75'

0.158
0.290
0.388

0.454
0.494
0.5 16
0.526
0.528
0.525
0.5 18
0.494
0.467
0.440
0.416
0.373
0.338
0.266
0.22 1

0.190
0.167
0.149
0.135
0.124
0.115

I

0.5

Ap (m ev)

FIG. 10. Full width at half maximum of the quasielastic
peak shown as a function of fiP for T=230 K. The solid and
dashed curves are the results before and after convolution with a
Gaussian with a FWHM of 8.4 meV. Eo ——12 eV and a =45'.

splits into a gain part and a loss part which both move to-
wards larger

~

co
~

as p increases. If we write

P (co ) =A 5(fico) +B(co),

then the weight A of the no-loss line is given by [see Eq.
(g)]

A = exp — dco P, (co)(2n„+ 1 )
O

--0 1
I

I

\

]i & g
I

A» 0.06
I

T= 230K
'h P = 0.5 meV

5 P =7meV

1.0
P (v) = A5(~) + B(~)

The variation of A with p is shown in Fig. 1 1 (again for
Ep ——12 eV and a=45' in all the numerical calculations).
We note that A =0 for fPi«k Tii, while A =0.47 for
RP » kz T. Thus, for fiP »kz T, the loss spectrum P (co)
in the absence of Drude damping will consist of a 5(fico)
contribution carrying about 50% of the incident electrons
in addition to a loss contribution B(fico) centered at
fico -fiP and caused by excitation of undamped plasmons.

Some aspects of the behavior of P(co) as a function of
P, shown in Fig. 9, can be understood as follows. The
dispersion relation for two-dimensional plasmons is given
by the pole of g (q~ ~, co ), i.e.,

fico = (2Ep RPq
~ ~

/kp )
'

A= 0.473

bP ~» ksT
~ oo 0,473+~ &

-20 -10
%u) ( meV }

10 20

FIG. 9. Loss probability P (%co ) at T=230 K is shown for
AP=0. 5, 7 meV, and AP»k~T. The dashed line is the single-
scattering "probability" which agrees with the multiple-
scattering probability (solid line) for fico) 30 meV. 1/~ =0,
Eo ——12 eV, and a=45'.

hp/k~T
FIG. 1 1 . Weight A of the no-loss line shown as a function of

A'Plkg T. Eo = 12 eV and a=45'.
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10
O
E
3

where I =2Ch(1/Pr, a)kiiT and Q=Ch(I/Pr, a)/2. On
the gai6 side, this equation, is valid only as long as
P(co) &0. In deriving (33) it has been assumed that
P «1. The second term in P(co) gives rise to the expect-
ed asymmetry between the gain and loss sides of the spec-
trum. Note that P(co) only depends on one material pa-
rameter, h (g,a). Furthermore, as a function of g= I/Pr,
h and, thus, the FWHM =I as well, has a maximum at
/=2, as seen in Fig. 8. Figure 13 shows P(co) for T=230
K and h=1.33.

0
0.5 'I.O

q,„(10 A )

1.5 2.0

FIG. 12. Dotted area shows the region in the (m, q~~) plane
where the kinematic dipole scattering prefactor takes its largest
value (schematically). The other two curves show the dispersion
relation of two-dimensional plasmons [fico=l2EpA'Pq~~/kp}' ]
with fiP= 0.5 and 7 meV, respectively. Eo= 12 eV.

P (co)=—
z 2 cosP+ sing, (33)

1 I /2 67

co +(I /2) co'+(I /2)'

P (meV '}

--01

T= 230 K

h —1.33

I

10
I

20-10 0,
hto (meV)

FIG. 13. Loss probability I'(Ace) for T=230 is shown for
h = 1.33, Eo ——12 eV, and o, =4S'.

In Fig. 12 this dispersion relation is shown for AP=0.5
and 7 meV. The electric field from an incident electron
contains all possible q~~, and can therefore excite any of
the two-dimensional plasmons without violating the
momentum-conservation law. However, the kinematics of
dipole scattering is such that the largest fraction of the
inelastically scattered electrons has transferred a momen-
tum q~~-kpfico/2Ep to the excitations in the substrate
(the dotted area in Fig. 12). Thus one expects to find a
peak in the inelastic scattering probability P(co) when the
surface-plasmon dispersion curve overlaps the dotted area
in Fig. 12. For A'P=7 meV this occurs at fico =7 meV, in
good agreement with Fig. 9. For ih'P=0. 5 meV it occurs
at fico= 1 meV, thus falling within the broadened quasi-
elastic peak.

Let us now introduce a finite Drude damping I/r. This
will broaden the 5(fico) function in Fig. 9 into an approxi-
mately Lorentzian function (see Appendix D):

X. CONDUCTIVITY PROPERTIES
OF THIN METAL FILMS ON Si(111)

In this section we will study the conductivity properties
of thin Au and Pd overlayers on Si(111). These data will
be analyzed using the theory outlined above.

For a thin metal overlayer, we have

24irne m, d
m

(e+ 1)k (e+ 1)k
(34)

Here, n = dN /V where N/V is the number' of conduction
electrons per unit volume of the metal and d is the film
thickness. m' is the effective mass for an electron on the
Fermi surface. Considering Au, we would determine
iiiP(Au)=0. 48d, where iiiP is measured in electron volts
and d in angstroms. Thus for most physically realizable
metal films (d &2 A), we have fiP»kiiT, and, as dis-
cussed in the last section, the broadening of the quasielas-
tic peak is entirely due to Drude damping and depends
only on g= I!Pr. The film resistivity p can be obtained
from

p= (SI units),dg
(e+ 1)epU

(35)

where ep is the dielectric permeability of vacuum and U is
the velocity of the incident electrons.

'

We first consider the equivalent of 8.5 A of Au eva-
porated at room temperature on top of Si(111). It was
found experimentally that the broadening of the quasielas-
tic peak was maximal for this film thickness, and from
the discussion in the preceding section we therefore know
without any further calculation that g= I/Pr=2. Figure
14 shows P(co) for three different temperatures, T=55,
180, and 223 K. The solid lines in Fig. 14 represent the
theoretical result calculated from the equations given in
Appendix D with /=2. The agreement between theory
and experiment is remarkably good if one realizes that
there is no fitting parameter in the theory. [Here, P(co)
depends only on the (known) material parameter g. ] The
only disagreement between theory and experiment occurs
on the gain side for %co) 7 meV, where the experimental
data points are located above the theoretical curve.
Again, this can be attributed to an alignment problem of
the spectrometer. The circles in Fig. 15 show in greater
detail the temperature dependence of the FWHM. The
agreement between theory (solid curve) and experiment is
again good. Using the known value of /=2 we calculate
a film resistivity of p(film)=660 pQ cm for this Au film.
A Au crystal at room temperature (RT) has a resistivity
p=2 pQcm, while the resistivity of liquid Au at T
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P(meV ')
)i-- .1

T= 55K

10k Pd/Si(ill)

0

T =180 K

h =1.33

100
T(K)

I

200
I

300

T= 223K
h =1.33

FIG. 16. Temperature dependence of the peak width (full
width at half maximum) of the quasielastic peak from a 14-A-
thick Pd&Si layer on Si(111). The open and solid circles
represent the experimental data without and with adsorbed hy-

drogen, respectively. The solid line is the result of a theoretical
calculation with h=1.17 and I 0——9.5 meV.

I

101
h~(meV)

FIG. 14. Loss probability P(Ace) from a 8.5-A-thick Au film
for three different temperatures, T=223, 180, and 55 K. The
open circles represent the experimental data for Eo ——12 eV and
a =45'.

8.5A Au/Si {Ill)

0

E
Ol

1

3:

l

100
T{K)

l

200 300

FIG. 15. Temperature dependence of the peak width (full
width at half maximum) of the quasielastic peak from a 8.5-A-
thick Au layer on top of Si(111). The open circles denote the ex-

perimental data and the solid line denotes the result of a theoret-
ical calculation with h = 1.33 and I o ——9 meV (I o is the FWHM
of the instrumental resolution function taken as a Gaussian).

= 1500 K is p =32 pA cm.
We have also studied the conductivity properties of thin

Pd layers on top of Si(111). In this case it is believed that
Pd evaporated at RT on Si(111) forms a metallic silicide

layer, Pd~Si, on the surface. Figure 16 shows the results
for 10 A of Pd evaporated onto Si(111), forming a 14-A-

thick PdqSi film. The open and solid circles represent the
experimental results without and with adsorbed hydrogen,
respectively. The solid curve is the result of a theoretical
calculation with h=1.17 corresponding to /=0. 9. There
is good agreement between theory and experiment. Note
that the hydrogen-saturated film has almost the same con-
ductivitv as the film without hydrogen. With /=0. 9 and

d = 14 A we calculate p =554 pQ cm, while for a bulk

PdqSi crystal at room temperature, p=25 pQ cm.
Before we discuss the structural implications of the re-

sults presented above, let us briefly discuss the measure-
ments by Dubois et al. on thin Ag films on GaAs. The

Ag films were grown and studied at T=170 K. - The
width of the quasielastic peak for filrh thicknesses d = 1.7,
2.5, 3.4, and 17 A was found to be 9.5, 16, 11.3, and 6.5
meV, respectively. The instrumental resolution was
I 0——6.5 meV, Eo ——5 eV, and a=60'. Using the theory
above we calculate the film resistivities (in pQ cm) as fol-

lows (with d in angstroms):

p=2583 for d =1.7,
p=94 for d =2.5,
p=62 for d =3.4.

A Ag crystal at T=170 K has a resistivity p=1 pQ cm,
while the resistivity of liquid Ag at T=1500 K is p=20
pQcm. Thus the silver films have an even larger resis-
tivity than liquid Ag. To understand the physical origin
of this, and, in particular, the particularly large resistivity
of the d=1.7 A Ag film, let us first note that from vari-
ous measurements it is known that Ag films grown at
T=170 K are "uniform" [the diffusivity of Ag atoms,
and thus the tendency to form large clusters (bumps), at
this low temperature, is small]. Figure 17 shows a possi-
ble configuration of Ag atoms on GaAs for the d=1.7 A
film. This figure is constructed by randomly distributing
72 Ag atoms among the lattice sites of a hexagonal lattice
with 100 sites, and with a nearest-neighbor distance equal
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p(film) =p(bulk)
4/3

d ((4
(d/Io) 1n(lo/d)

' (36)

where lp is the bulk mean free path in PdzSi. Using
p(bulk) =25 pQ cm and lo =220 A (Ref. 22) gives
p(film) =200 pQ cm, which is rather close to the observed
film resistivity. We note that diffuse scattering at the sur-
faces cannot explain the large resistivity of the gold film
since Eq. (36) would predict a film resistivity of
p(film) =33 pQ cm, which is still well below what we ob-
serve. The large resistivity of the Au films can arise from
either the occurrence of Au bumps or the formation of a
Au-Si surface compound with its own intrinsically higher
resistivity.

0

FIG. 17. Possible configuration of Ag atoms for a 1.7-A-
thick film of Ag on GaAs.

to that in bulk silver (=2.89 A). This number of Ag
atoms per unit area corresponds to a 1.7-A-thick Ag film.
The hatched circles represent the Ag atoms adsorbed
directly on the GaAs substrate, while the solid circles
represent Ag atoms absorbed on top of the first layer of
Ag atoins. The effective coverage (defined as the ratio of
lattice sites occupied by hatched circles to the total num-

ber of lattice sites) is 0=0.58. This is close to the (site-)
percolation threshold which, for a hexagonal lattice, is

0, =0.5. Below the percolation threshold, 8&8„ the
resistivity is infinite, p= oo. Thus the high resistivity of
the d=1.7 A film can be attributed to the fact that this
film is just above the percolation threshold where a very
low concentration of connected (and thus conducting)
paths exist in the film. The relatively high resistivities of
the d=2.5 and 3.4 A films are probably, in part, caused
by the same phenomenon, because one would expect the
Drude damping (elastic scattering of electrons from lattice
imperfections) to be similar, for these films to liquid Ag.
When the low-temperature-deposited Ag films were slow-

ly warmed to room temperature overnight, most of the
broadening disappeared, which Dubois et aI. interpreted
as the growth of metal islands (bumps) separated by areas
of almost uncovered GaAs. We point out that the dipole
scattering theory is valid for such inhomogeneous systems
if the inhomogeneities are small and uniform relative to

q~~
'. [Recall that our studies of the quasielastic peak in-

volve q~~
—10 A and the response of the metal film to

the slowly varying components P,„,—exp(iq~~ x~~) of the
potential from the external electron. ] Thus our analysis
provides the resistivity of an "effective" homogeneous
film whose average resistivity can be related to its actual
microstructure —which, in general, can be very complicat-
ed.

As pointed out above, Pd on Si(111) tends to form
Pd2Si already at room temperature. From various mea-
surements it has been concluded that these Pd2Si films are
very uniform. The rather large resistivity, p =550
pQcm, for this film is therefore likely caused by diffuse
scattering at the PdqSi film boundaries. A simple free-
electron theory can be used to estimate this, and it
predicts

XI. SUMMARY AND CONCLUSION

We have presented a detailed discussion of the nature of
the quasielastic peak for electrons scattered from a variety
of interesting physical systems. Illustrative applications
were given for the 7&(7 reconstructed Si(111) surface and
thin metallic layers on Si(111). We have shown that from
studies of the temperature dependence of the width
(FWHM) of the quasielastic peak it is often possible to
obtain detailed information regarding surface free carriers
and surface conductivities as well as models for the elec-
tronic structure of surfaces.

We expect that the unique ability of EELS to provide
such information will stimulate a wide range of studies,
ranging from studies of surface defects and surface con-
ductivity of semiconductor surfaces to studies of phase
transitions in the transition-metal dichalcogenides.
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APPENDIX A

In this appendix we will prove (26).
Since flu «Eo we have k =k', and from (3) we obtain

&, (co) = 2 1
dQI, z z Img(q~~, co) .

(eaovr) cos& Iq~~+qi I

(Al)

The integral in (Al) is of the form

f dQ, y(q~~, q, )

and can be evaluated as follows: Energy conservation
gives

Ak
2p7z

Ak'
+%co,

or

k'=(k —2m'/R)'~ =k —co/v,
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where u =A'k/m is the velocity of the incident electron.
Thus,

f de&f(qll, qi)= f d'k'f(qll, q&)5(k' —k+~/u)ik

(A2)

Since k=k'+q we obtain k'=k —q klk. Changing
the integration variable from k ' to q in (A2) gives

f dQI, f(qll, qi)= z f d q f(qll, qi)5(q k —co/u),
1 3

k

where k=k/k. Since

q k =qll cosp sina+qj cosa,
we obtain

de„,f(q, )= d q dq f(q, q )5(q cospsina+q cosa —co/u)
1

k2

1 f d2 f co/u

cosa
—

qll tana cosP
cosQ

Thus we can write (Al) as

2 1 2 2 co/u
P, (m) =

& 2 2 d qllqll qll+ —
qll tana cosa

(eao~) k cos a cosa

2 —2

Img(qll, co) .

We define [see Eq. (22)]

2e 1/xf(x,a) =—f dP 1+ —tana cosP
x coscx

2 -2

so that

2 1 U 1
P, (co) = —

dqll
(eaom) k cos a ~

Ug iiXf,a Img (qll'co
N

X
)&Img m —,a)

U

(A4)

(A3)

or if uqll/co=« is introduced as a new integration vari-
able,

P, (co)= —f dx f(x,a)—2 1 v 1

(eaom) k cos a ~

By inversion symmetry, the long-wavelength lattice-
vibrational modes in bulk silicon have zero dynamical di-
pole moment. Now, at a surface of a silicon crystal this
symmetry is broken; thus surface silicon atoms have
nonzero dynamical dipole moments. ' ' This makes it
possible to excite both bulk and surface phonons using in-
elastic electron scattering. The surface phonons cannot
broaden the quasielastic peak since they occur at discrete
loss energies iruui, fico2, . . . . We will now prove that
bulk-phonon excitation cannot broaden the quasielastic
peak either. Since the momentum transfer, A'qll, in EELS,
from low-energy excitations, is negligible, only bulk pho-
nons with qll-0 can broaden the quasielastic peak. (Bulk
phonons with q~~-G, where 6 is a reciprocal-lattice vec-
tor of the surface lattice structure, can also be excited, but
cannot broaden the quasielastic peak since they have finite
frequencies. ) Thus we need only to consider bulk phonons
which propagate normal or almost normal to the Si(111)
surface. We have, therefore, a one-dimensional problem
for the phonon dynamics which can be solved analytical-
ly. Following the same procedure as described elsewhere,
we can derive

To proceed, Img must be specified. Assume that Img is
given by (25). Introducing

4mne 1

m'(e+1) u
where

qlla
mg )phono n v'3 (e+ I)'

2. -2

Imf (co),
COp

co;,„=[4~e /(Ma /8)]'~2,
0a=5.43 A is the Si lattice constant, cop is the highest

longitudinal-phonon frequency in the [111]direction, and
e is an effective charge. The function f is given by

we obtain

which is identical to (26).
f(co)=1+4' —8' +i 8' (1—co 2)'~2 .

P, (co)=-C 1 ~ I/Prdx f (x,a)
m %co ( I /P~) + (~/P «)'—

APPENDIX 8

In this appendix we will discuss the contribution from
phonons to the width of the quasielastic peak.

We have introduced co=co/coo. Now, as co —+0, Imf
~8' . Thus, n P, (co)-co as co~0, implying that bulk
phonons cannot broaden the quasielastic peak.

The following reservation must be added to the discus-
sion above: If there is a very-low-energy surface phonon
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(%co&-1 meV), then owing to the finite resolution of EEL
spectrometers, it would be impossible to resolve the indivi-
dual surface-phonon —loss peaks, which therefore would
broaden the quasielastic peak. However, there is no
reason for expecting such a "soft" surface phonon on the
Si(111)-7X 7 surface.

APPENDIX C

In this appendix we will discuss the influence of a low
density of free bulk carriers on the quasielastic peak. We
will first assume that the carrier concentration is a con-
stant up to the Si-vacuum interface, i.e., that there is no
band bending. The bulk dielectric function is taken to be

2
COp

e(co) = eh
co(co+i /r)

where

cop =cop(eb + 1 )

Substituting this into (A4) gives

P, (co)=—&(co —cop) f dx f(x,a)—.1

2 o x
(Cl)

The integral in this expression is evaluated as follows:
We have

where cop 4——one /m*, with n the concentration of car-
riers with effective mass m*. We find if I/r is infini-
tesimal,

6—1 VT
Img = Im = cop5(co —cop),6+ 1 6'b+ 1

oo 1 ao 1 xf dx —f(x,a)= f dx
z f dP 1+ —tanacosP

0 @ 0 COSA

Substituting 1/(x cosa) =y on the right-hand side gives the integral

'2 —2

f dy dP z z
=cosa F(g)

0 [1+(y —tana cosP) ]

where

F(g) = dy dP = —, dy dP
0 g+ (y —tana cosP)

—~ g+ (y —tana cosP )~

Closing the y integration in the upper half of the com-
plex y plane gives

F(g)= —,
' 2iri f dP

2l

If fuop «AT, then

((Amoco)~&= n.2ficopk&T —cosa .
2

This should be compared with

((i' hco) ) 2Cm cosa(1+cos a)fipkz T 1n(kz T/tip),

(C4)

1 d —m m
dx —f(x,a) = cosa = cosa .

x dg g g i 2

Substituting this into (C 1) giv'es

Cm
P, (co)= o(co cop) cosa . — (C2)

Substituting (C2) into (9) gives

P(co) = 1 —icet F(t)
2m'

(C3)

((b,co) ) =—m cop4
+ COSA .2

1
P Bfico /k T

From (C3), P(co) is easily obtained by nuinerical integra-
tion. Using (26) and (~C2) it is possible to calculate
((hco) ) analytically:

(C5)

which is the broadening in a two-dimensional electronic
system when Ap«ksT [see Eq. (28)]. The ratio between
(C4) and (C5) is

fKop

4(1+cos2a) Tip ln(ks T/A'p)

With a boron doping of 1.3 X 10' atoms/cm and
m*=0 16m„one. obtains fiB p-1 meV. With irip=0. 2
meV the above ratio is approximately equal to 0.5 at room
temperature. Thus, if there were no band bending one
would expect the free bulk carriers (holes) to give an im-
portant contribution to the broadening of the quasielastic
peak in the present case. However, it is known that the
separation between the Fermi energy EF and the valence-
band top at the surface of Si(111)-7X 7 is Ep
—E„(surface) ==0.51 eV. For a p-type doping,
Nz ——1.3&(10' cm, one can calculate

Ep —E,(bulk) =kz T 1n(N„ /N~ )=8k& T =0.2 eV
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conduction band )~ Energy F() f" dx Ch

x m
+1 (e'"y —1)e"—1

08000 0
+ + + + + +

valence band

F' MFA%
))

~0.6eV

+ (e '"y—1)
1

ex ]
(D5)

where y=tk&T, and where R is a large number (say,
R -20), but R « fiP/k+T. Now, since

Si {i{i)-7x7

FIG. 18. Band bending in the vicinity of a clean Si(111)-7)&7
surface. The bulk-Si crystal is doped with acceptor impurities. we obtain

F(t)= Ch fR dx 1

x
(e'""—1)

at room temperature. Thus the bands will bend so that
there will be a depletion of free carriers (holes) in the sur-
face region of Si(111)-7X 7; see Fig. 18. Note also that for
a hydrogen-covered Si(111) surface, EF E„(surf—ace)
=0.46 eV, so that this surface has a smaller band bending
and thus also a higher concentration of free carriers at the
surface. Nevertheless, there is no observable broadening
of the quasielastic peak for the hydrogen-covered surface,
giving additional support to the idea that the observed
broadening on Si(111)-7X7 is an intrinsic surface effect
and not due to bulk-derived free carriers in the surface re-
gion.

APPENDIX D

We will prove (33). We write (9) as

P(co)= dte-'"'e '"1

2'
where

(Dl)

It was shown in Appendix A that

P, (co) =
oo

dx f(x,a) 1/Pr
(1/Pr)'+ (co/P —x)'

(D3)

Assume now that co//3«1 (for a metal film a few
angstroms thick; for example, imp-1 eV, while we are in-
terested in fico & 10 meV). Equation (D3) then reduces to

P, (co)= h (1/Pr, a), (D4)
C

77"i6CiP

where

h (g,a) = f dx f(x,a)
Q f2+x 2

The function h (g,a) is shown in Fig. 9 for a few different
a. Equation (D4) is valid for co «P. Substituting (D4)
into (D2) and changing the integration variable co =kz Tx,
we obtain

F(t)= f dco'P, (co')[(n ~ +1)(e'"'—1)+n„(e ' '—1)] .

(D2)

Ch f dx 1
(

p'zy

e"—1

Changing the integration variable x~ —x in the second
integral gives

RCh f dx 1
( j~y

g x e
—x (D6)

Note also that the integral diverges logarithmically as
R —moo, thus R must be kept finite but large. Equation
(D6) is conveniently evaluated using the residue theorem.
The integrand has single poles at x =2mni, n =0, +1,
+2, . . . . Consider first y & 0 and study the integral

H (y) =——f (e'"y —1),
e "—1

where the closed curve M is shown in Fig. 19. The resi-

I

I

I

l

l

l

-R I R
= Rex

I

I

I

FIG. 19. Solid curve is the integration contour I of the in-
tegral H defined in the text.

Note that the integrand in (D5) is finite at x =0, while the
integrand in (D6) diverges as x ' as x~0. We must
therefore interpret the integral (D6) as a principal integral:
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due theorem gives

N
H(y)= g —(e 2 ~ la'

I 1) + —ln(1 —e &~Is 1)+const
n=1 n

as N~ao. Strictly speaking, X should be chosen as a
large but finite number, but for practical purposes one can
take X—+ 00 because the exponential series converges very
rapidly (for

~ y ~

&0.1, which are the only important y).
For large R it is easy to evaluate the integral over the
half-circle M~ (set x =Re'~, PC [0, n]),

ax —t
(

g~y
)

~

~

M1 x e
—x 1 2

Finally, the integral over the contour Mc gives (set
x =ee'~, m. &$&0

Thus,

F(t)= H( ) —f —f Ch —ln(1 —e '~ ~ )+i ——m. ~y ~

+const .

This equation is valid for y& 0 as well as y &0, as is easily shown by closing the integration contour in the lower half
plane when y ~0.

We have used (Dl) and (D7) in all the numerical calculations in this paper. However, if Ch/rr «1, then we can ap-
proximate (D7) by

F(t)=Ch i —~y ~

Substituting this in (Cl) gives

Pl co) = 1 ~ —

idiot

"ka ~ i'/2 1 ~ —i cot " a~~ —i'�/2dte e e + ate e e
0 2'TI

1 I /2 CO

2 cosg+ 2 sing
co +(I /2) co +(I /2)

(D8)

where I'=2Ch (1/13r, a)k&T and P=Ch (1/f3', a)/2. Fi-
nally, the measured quasielastic peak is obtained by con-
voluting I' (co) with the instrumental resolution function.

APPENDIX E

Here we will give a very simple estimate of the effective
mass m' associated with conduction within a lattice of lo-
calized orbitals (e.g., dangling bonds) on the Si(111) sur-
face. Consider first two orbitals

~
a) and

~
b) separated

by a distance R. The energy levels of these orbitals are lo-
cated in the silicon bulk band gap, a distance V below the
conduction-band edge, as schematically shown in Fig. 20.
Suppose now that the orbital

~

a ) contains one electron,

while orbital
~

b) is empty. If R is large, there will be
negligible overlap between the two orbitals, and the only
way that the electron in orbital

~
a ) can propagate to or-

bital
~

b ) is via the silicon valence or conduction bands.
There are two possibilities, as illustrated in Fig. 20: (a)
the electron in orbital

~

a ) can be virtually excited to the
silicon conduction band where it can propagate to the or-
bital

~
b) and recombine with the hole in orbital

~
b),

and (b) an electron in the silicon valence band can jump
virtually to the orbital

~

b) and the created hole in the
valence band can propagate to the orbital a) where it
recombines with the electron in orbital

~

a ).
The amplitude for the electron to propagate

~

a )~
~

b ) via process (a) can be estimated as follows:
Consider the propagator

conduction
band

F/8//88/1/8/rrrrrrrrrr. F/lFrYlZYW rlrYll/XZr

G(a b)=(b a) .1

co —H (El)

ilv

) ap —lb)

rrrrrrrrrrrrrrrrrrrrrrrrrr.
valence
band

Let us write H =Ho+ U, where U is an interaction poten-
tial which allows the electron in orbital

~
a) (or

~
b)) to

jump to the conduction state
~
k, c ). We have

FZF/8/rrrrrrrrrrrr. pF/r.

1
Go+ Go UGo+ Go UGo UGo+

IIo —U
(E2)

FIG. 20. An electron in a dangling-bond orbital
~
a ) on the

Si(111) surface can propagate to another, originally empty,
dangling-bond orbital

~
b ), either via (a) the silicon conduction

band, or (b) the silicon valence band.
G(a

(~—E,)'—i' ' (E3)

where Gc (co Hp) '. Substi——tutin—g (E2) into (El) gives
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where

[(k,c]U~a)~"' ~~ "~~

ro E—p V——A' k /2m, *

G(a~b)=
(ro E—p ) t—

and comparing this with (E3) gives t =p. The energy lev-
els of (E5) are

p-R exp[ —R(2m,*V/A' )' ] . (E4)

Now, assume that we have a square lattice (lattice con-
stant a) of localized orbitals. The Hamiltonian for this
system is written as

H = g t(c;+sc;+H.c. ) . (E5)
i, 5

Using this Hamiltonian we can again calculate the propa-
gator G (a ~b),

[ (k,c
/

U
[
a) /'e'

V+I k /2m, *

Here, Hp
~

a ) =Ep
~

a ), x~~
——xb —x„ is the separation

between orbitals
~

b ) and a ), and m,
' is the effective

mass for an electron near the bottom of the silicon con-
duction band. For large separation R =

~ x~~ ~, p can be
calculated by asymptotic expansion:

ek=4tsin ka/2-tk a as k~0.
Thus m* ~ 1/(ta ), and with (E4) (note R =a),

m' ~ exp(2m,*V/A R)'r

or

m (R)=m" (Rp)exp[(2m,*V/A' )'r (R —Rp)] .
With I,*=0.18m„V=0.5 eV, and measuring R in
angstroms, we obtain

m*(R) =m*(Rp)e (E6)

From the calculations in Ref. 12 one obtains

~

m*(Rp)
~

=1.5m, when Rp-3.85 A. Assuming that
Rp is sufficiently large for expression (E6) to be valid, one
obtains, for R =7Rp

~

m*(R)
~

=60m, . A similar effec-
tive mass would be obtained for propagation via the sil-
icon valence band.
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