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A detailed theoretical analysis of deep-level transient spectroscopy and deep-level optical spectros-
copy data is worked out with application to some irradiation centers in GaAs. A simple model in-

cluding the local point-defect symmetry is proposed to deduce from experiment the physical param-
eters characterizing the defects. The originality of the proposed method is to extract from the ex-
perimental results quantities corresponding to "ionization energies at zero distortion, " which are
directly comparable to the predictions of available theoretical calculations. For this the optical line-

shape function is represented by a Gaussian curve adjusted to reproduce the exact first two mo-
ments, in the case of degenerate electronic states. An application is made to the case of E) and E&

in GaAs where the hypothesis that these centers correspond to two consecutive charge states of the
arsenic vacancy Vz, is explored. Comparison between theory and experiment strongly supports the
identification of El and Eq with VA, and VA„respectively.

I. INTRODUCTION

The deep-level optical spectroscopy (DLOS) technique
represents a major improvement in the measurement of
optical ionization cross sections of defects in semicon-
ductors. It is an extension of the deep-level transient
spectroscopy (DLTS) technique of Lang' to include opti-
cal excitation, and it has more sensitivity and selectivity
than conventional optical methods, such as optical ab-
sorption, photocapacitance, photoluminescence, etc. It
was used by Henry and Lang to measure the ionization
cross section for GaP:0 and was clarified and compared
to other optical techniques by Chantre et al. , who labeled
it DLOS. In spite of these advantages and the fact that it
provides a bridge between optical and electrical methods,
the main weakness of DLGS is that it is more dependent
than other methods on the theoretical model used to ex-
tract the physical information.

There have already been several attempts to calculate
the optical ionization cross sections using simplified
theoretical models ' which could help in the modeliza-
tion of experimental results. The difficulty here is to find
the best compromise between simplicity and accuracy of
the model in order for the defect parameters which are ex-
tracted to have physical sense. Some of the difficulties lie
(i) in the description of the wave function for the initial
and final states of the defect, and (ii) in the way one in-
corporates the effect of the electron-lattice interaction
which is known to play a fundamental role for many
point defects. All approximate expressions which have

been used factorize the optical cross section into a purely
electronic part and a vibrational broadening function re-
sulting from the electron-lattice interaction. They also as-
sume that couplirig to phonons occurs only with one local
lattice mode, which allows one to describe the situation in
terms of a simple configuration-coordinate diagram. Fi-
nally, this lattice mode is taken to have the same frequen-
cy in the initial and final states, an approximation which
obviously is not correct in general, as illustrated experi-
mentally by the system Gap:O.

In this context the originality of the present work is to
propose a theoretical model allowing one to extract, from
experimental data, physical parameters which are directly
comparable to the predictions of first-principles calcula-
tions. ' This is the case, for instance, of the extension of
the deep-level wave function, but our central result here
will concern the "ionization energy at zero distortion. "
Such information can be obtained from the knowledge of
the thermal-ionization energies (DLTS) and from a fit to
the experimental curve of the photoionization cross sec-
tion versus frequency (DLOS). A detailed application of
the procedure is worked out for the irradiation centers E

&

and E2 in GaAs. In this case we test the hypothesis that
E& and Ez correspond to two consecutive charge states of
the arsenic vacancy VA„and we find that their respective
identification to VA, and VA, is strongly supported by
the comparison between theory and experiment.

In Sec. II we describe how the general expression for o.
is simplified by factorization and modelization of the elec-
tronic and vibrational parts, taking into account the sym-
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metry properties of the defect. An example of fit to ex-
perimental data is presented for an irradiation center in
GaAs to illustrate the interest of the technique. In Sec.
III we show how the "ionization energies at zero distor-
tion" can be obtained and apply the method to the case of
E~ and E2. We present experimental evidence that E~
and E2 correspond to intrinsic defects and examine in de-
tail their interpretation in terms of lattice vacancies.

mi =ET+dFc (4)

often realized for deep-level centers, so that it has been
largely used in the literature. ' ' ' We shall discuss its
validity in more detail in Sec. III considering the specific
example of Ei and E2. The two quantities mi and mz
are the first and second moments of the optical line-shape
function which turn out to have the following simple ex-
pressions (see, for instance, Ref. 2),

II. THEORETICAL MODELS
FOR THE OPTICAL CROSS SECTION

and

m2 ——~dFc(2n+1),
We first present the general basis of the treatment

where the optical cross section is the convolution of an
electronic part by an optical line-shape function and dis-
cuss the techniques used to modelize these two parts. We
give details for two types of allowed transitions with dif-
ferent symmetries. Finally, we discuss the validity of the
fitting procedure.

A. General basis of the models

The calculation of the photoionization cross section
o(E) is based on the Fermi golden rule,

~(E) ~ —Av g I &kf I
A'p

I 4 & I
'5(E —«f —E ))E

in the case of transitions between two nondegenerate elec-
tronic states and assuming an average phonon frequency
co. In this expression, ET is the threshold energy for
zero-phonon transitions, dFC is the Franck-Condon shift
(see Fig. 1), and n is the Boltzmann factor,

%co
n = exp —1

AT
At high temperatures (condition realized for T & 100 K in
GaAs), expression (3) of S (E) can be simplified further

n, k
to give

S „(E)=(4m' TdFc)

where Av; denotes a thermal average over the initial
states, and E is the energy hv at which the optical transi-
tion between the initial state P; and the final state Pf
occurs. In this expression, A is the vector potential and

p is the impulsion of the electron. In general, P; and Pf
are vibronic states. Using the adiabatic approximation
and following the method due to Huang and Rhys, " we
can write cr(E) under the simplified form

o(E) ~ —g ] (P „~ A. p ~ Pg) [
'S -„(E) .

n, k

(2)

Here, g~ is the defect electronic wave function and P - is
n, k

the Bloch wave function of wave vector k belonging to
band n, of energy E„(k). This already is an approxima-
tion since, in the general case, the band wave functions are
modified by the presence of the defect, the effect being
nonnegligible. ' However, it is difficult to improve this
approximation if one wishes to obtain a simple model
from which a fit to experiment is possible, and thus no
realistic calculation has been done up to now incorporat-
ing this effect. For the vibrational broadening function
S -(E) we take a Gaussian form,

n, k

(3)
[E E„(k)—mi]—

-(E)=(2mm2) '~ exp
n, k 2EPZ 2

[E E„(k ) E—z dFC—]-
4k' TdFC

It is this expression which we shall use in the following in
order to fit the experimental curve o(E).

Long ago, simplified models for the photoionization
cross sections were derived to describe the experimental
situation in terms of a restricted number of physically
meaningful parameters. Lucovsky's model has been
largely used and is still in current use, ' but it completely
neglects the electron-lattice interaction. Chantre' has
classified the existing models as taking into account this
interaction ' ' ' ' or neglecting it. ' ' ' ' Those of
the last group cannot describe the experimentally observed

E
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Q

with the origin for E„(k) taken at the absolute extremum
of either the conduction or the valence band. Such a sim-
plified expression only holds under certain conditions (i.e.,
strong-coupling or high-temperature limit) which are

FKJ. 1. Single configuration-coordinate diagram for nonde-
generate electronic states interacting with one lattice mode.
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broadening of cr(E), ' while the others are usually too
simplified to reproduce o(E) over all of its spectral exten-
sion;

From the theoretical point of view, the model due to
Chantre ' is a combination of Jaros's model' for the in-
clusion of the electron-lattice coupling and of the one de-
rived by Monemar and Samuelson' to calculate the elec-
tronic matrix e1ement. Its success is that it describes the
photoionization curves over the entire energy range.
Indeed, Chantre was able to show that the electronic tran-
sition did occur not only from the defect level to the
minimum I (k=0) of the conduction band, but also to
the other minima at point L [k=(2m. la)(1, 1,1)] and at

point X [k =(2m/a)(0, 0, 1)] (Fig. 2), an important feature
which had been neglected before. This approach has
greatly clarified the understanding of the photocapaci-
tance results for which such transitions were believed to
originate from different defects. DLOS experiments have
shown that these results correspond, in fact, to transitions
between the same defect level and different conduction-
band minima.

To obtain an improved model, our theoretical expres-
sion for o(E) will be given by Eqs. (2) and (7), where we
shall take into account the symmetry properties of the
states in the calculation of the electronic matrix element.
As in previous treatments we take here a simple form for
the defect wave function gd, but with well-defined sym-
metry properties (pure s, p, or d wave function). We then
consider the transition toward one given extremum of
band n at k = k„, for which we write the wave function
in the form

f,(r), (&)

where f„(r) will be taken as the simplest function of r
having the correct symmetry properties at k= k„. To il-
lustrate our technique we now consider some typical situa-
tions.

B. Transition from an "s"-like level to a "p"-like band

For the defect the simplest wave function is given by

e
—IXP

(9)

where the quantity s is defined by

The only allowed transition will occur towards the valence
band whose maximum is at k„=0. To simplify, we con-
sider the strongly localized situation (where g~ only ex-
tends appreciably over the defect cell) and use a tight-
binding approximation for g -, replacing f„(r) by

n, k'
x;exp( —A,r), with x;=x, y, or z (such an approximation
will be justified later). This gives, for the Bloch functions,

1(;(k)ccx;e "e'"'' . (10)

From the two wave functions (9) and (10), it is easy to cal-
culate all quantities

I (gd Ip; I QJ(k)) I, where p; is the
ith component of p. We must take the average of this
quantity over all orientations, which gives

2

[1&Cd pi I
4~(k) & I

']av ~. ..[(»'—k')'+32k'l
(s+k )

s =ex+A, , (12)

~e 2

0)
e 0
CI

(100) X wave vecfQf

I& (100)

and k is the square modulus of k.
In the absence of spin-orbit coupling the top of the

valence band in GaAs has sixfold degeneracy (including
spin). As shown on Fig. 2, spin-orbit coupling splits the
valence band. The states at k=O are of symmetry I 8

and I 7, and have, respectively, fourfold and twofold de-
generacies. However, this does not change the result
(11) of our model calculation, since each function contri-
butes in an identical way. There will thus be only an ef-
fect due to the density of states, the I 8 subband giving
twice the contribution of I 7. This is an important test in
practice, since, if the experimental value of o attributed to
I g is about twice the I 7 value, then this is an indication
that one has a transition due to an s state.

Let us conclude this case by giving the entire expression
of cr as obtained from (2) combined with (7). We obtain
the simple analytic formula

0
m =0.6

0 =o p +0.5C o'p

each o.; being given by

(13)

7»

~ 1/2 —( —e —x}o;=—I 6 [(3e, ;—x) +32x ]e ' dx,(x+e,,
;)'

(14)

FIG. 2. Band structure of GaAs: (a) without spin-orbit cou-
pling', (b) taking spin-orbit coupling into account.

i standing for I'7 or I 8, A being a normalization coeffi-
cient, and all other symbols being defined as follows:
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C =mr, /mr „, x =A' k /2m;u

in each subband, and

y =hv/u, e, ;=A s /2m;u, e;=E,~+6,;/u,

u =(4k' TdFC)'i

b,r, ——OeV and ht, ——0.35 eV for GaAs,

(15)

D(A.U)
100 .-

80

60 "

40 ~-

E,&
being the optical threshold. To obtain this expression

for o. we have replaced the sum in (2) by an integral and
introduced the corresponding densities of states.

This result for the photoionization cross section has
been applied to a deep level created by irradiation with 1-
MeV electrons in vapor-phase-epitaxy (V PE) p-type
GaAs. This center gives rise to a level ET located about
0.71 eV above the top of the valence band. It can also be
obtained in liquid-phase-epitaxy (LPE) samples, but with
a strong irradiation dose (& 10' e cm ). It corresponds
to the case discussed above, i.e., the contribution of the I s
subband is twice as intense as the I 7 one. The fit to ex-
periment has been obtained by using expressions (13) and
(14) with only two adjustable parameters: the Franck-
Condon shift dFC and the combined extension s of the de-
fect and Bloch-state wave functions. The quality obtained
from such a fit is reasonable, as shown by Fig. 3. The
corresponding parameters are

dFC ——0.12 eV, s '=3.5 A . (16)

It is interesting to note that the values obtained for dpc
are insensitive to the details of the model used to simulate
the electronic matrix element (for instance, a model based
on a transition between a defect s state to an s-like —band
extre~um gives essentially the same value of dFC). This
is an important point which we discuss in Sec. II D.

C. Transition from a "p" level to the conduction band

We proceed in a similar way as in Sec. IIB, but take
into account the characteristics of the conduction-band
minima. In GaAs the eigenfunctions of the different
minima at I, I., and X have well-defined symmetry prop-'
erties. Let us call A and B the atoms from which the
III-V compound is built. The I ~ minimum corresponds
to a combination of pure "s" functions sz and sz (in an

I

20 "

0
0.4 0.5 0 6 0.7 0.8 0 9 1.0 1.1 1.2 1.3 1.4 1.5

FIG. 3. Photoionization cross section versus energy for one
irradiation center in p-type GaAs: solid line, experiment;
dashed line, theory.

s-p atomic-orbital picture). The L~ minimum is a mix-
ture of these "s" functions (sz and sz) and of (1 1 1) com-
binations of "p" functions [e.g., (p„+p„+p,)z s]. As to
the minimum X~, its wave function is a combination of"s" states and "x"-like p states, for instance. To
represent the defect state we use a trial p function of the
simple form

1tg . Ccxje (17)

The average square of the optical matrix element can be
determined using the same technique as above, which
leads to

which we assume to be centered on a given lattice site.
For the final states in the conduction band we again use
Bloch functions as given by (8). We neglect the possible
k dependence of f„(r) (this approximation will be dis-
cussed below) and, for our model, consider that only the"s" component of f„(r) on the defect site will contribute
to the optical matrix element. This leads to the following
expression for the "active" part P'„(k) of the Bloch func-
tion:

2

[ [ (14. ~p; ~
p„(k)) ) ],„cc I[3(s +k ) —e(3s —k )] +32e k I, (19)

where now this expression depends on one extraparameter e defined as e=a/s. We now consider that the total photoion-
ization cross section is the sum of contributions from regions around the points I, L, and X, which gives

I

o.= A (or+Pl. err. +Pxox), (20)

where, in our simplified representation, PL, and Px should represent the relative "s"character near points L and X (these
two parameters are not calculated, but rather are deduced from the fit). Each individual o; is given by

1/2I I [3(e, ;+x)—e(3e, ; —x)] +32e'x'I exp[ —(y —e; —x)']dx
y 0 (x+e, ;)

(21)
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where M; corresponds to the number of equivalent mini-
ma (three for point X and four for point L ). Here the no-
tation is the same as in (15), except that we have (see
Table I for detailed values of the parameters in
Gai „Al„As)

C=mr/m;, b,r ——0, b,L,
——0.29 eV, b,z 0——46. eV .

Again, we obtain a simple analytical expression which we

apply in Sec. III to the case of the E j and E2 centers. Be-
fore this, we will discuss the validity of the models which
we have introduced.

D. Reliability and justification of the remodels

The models which we have derived above essentially de-

pend upon the following quantities.
(i) The functional form of the matrix element upon k,

i.e., upon the energy in the corresponding subband.
(ii) The quantity m i, which defines the average position

of the Gaussian broadening function (7), representing the
effect of the electron-lattice interaction.

(iii) The quantity kz TdFC itself, which defines the
width of the Gaussian.

Let us first consider the approximations involved in the
use of a Gaussian. This corresponds to the high-
temperature regime of the strong-coupling case and, in
the simple case described above, mI and dpc are related
through Eq. (4). However, as discussed in Sec. III, it is al-
ways possible to approximate the broadening curve by a
Gaussian having the correct first two moments of the
spectral function. An important point concerns the sensi-
tivity of the parameters mi and dFC to the expression
used for the electronic optical matrix element. The width
in energy of the Gaussian is given by the quantity
u =(4k&Td„c)' . From the experimental data repro-
duced later for Ei and E2, values for this quantity range
from 0.06 to 0.09 eV. This is substantially weaker than
the energy interval over which the fit is performed. It is
then clear that m ~ should be relatively insensitive to the
details of the model used for the optical matrix element,
as confirmed by comparison of different models. This is
less true for the value of (4k' TdFc)', which, regardless,
is more difficult to analyze in the general case.

Let us now try to justify our models for the optical ma-
trix element. Expression (8) for the Bloch function near
the extremum k=k„of the nth band corresponds, in

fact, to the starting point of k p theory, where it is writ-
ten as

TABLE I. Experimental parameters used in the model calculation of the photoionization cross sec-
tiOnS in Gal „Al„AS.

EI- (eV)

EL (eV)

E~ (eV)

x =0.00

1.424

EI- +0.29

EI- +0.46

x=0.14

1.605

EI +0.202

EI- +0.27

x =0.25

1.750

EI- +0.13

Er +0.15

x =0.47

2.082

EI- —0.06

EI- —0. 13

Eg 1.424 1.605 1.750 1.952 (indirect)

mI- ~ CI-1
1

mL ~ CL1
1

mx ~ Cx1
1

0.067, 1

0.22, 0.3045

0.41, 0. 1634

0.079, 1

0.227, 0.348

0.406, 0. 195

0.088, 1

0.233, 0.378

0.403, 0.218

0. 106, 1

0.244, 0.434

0.396, 0.268

MI-

MI
M~

1

4

3

fi'a /2m I-

(a '=1 A)
(unit, 1 eV)

56.94 48.29 43.35 35.99

M C~~2
Il Il

M C~~2
Ll Ll

Mx, Cx,
'

0.1

0.032

0.286

0.05

0.35

0.067

0.496

0.1 1

Cr —e,
1

mCL =e L
1

mC~ =e~g
1

56.94

17.34

9.305

48.29

16.81

9.40

43.35

16.37

9.47

35.99

15.64

9.63
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P„(k,r)=e " ga (k)P (k„,r) . (23)

This shows that the function f„(r) depends on k. At
k=k„,a„(k„) is equal to unity, whereas all other a~(k)
vanish. Our first approximation is to assume that the rate
of change of the a~(k) with k is small compared to the
one due to exp[i(k —k„) r ] itself. This is actually con-
firmed by the actual numbers, as discussed in Appendix
A.

A second approximation is to consider that the function

f„(r ) [which is now equal to g„(k„,r ) ] can be reduced to
a simple "s"-like [exp( —Ar)] or "p"-like [x;exp( —A,„)]
function centered on the defect site. This can be easily
justified in the extreme tight-binding limit. In that case,
gd(r) reduces to an atomic function at the defect site. If
f„(r) =g„(k„r) is itself expanded in terms of atomic or-
bitals, then only those centered on the defect site will in-
teract with g~(r), and these can be represented approxi-
mately in terms of the simple "s" or "p" states used
above. It was in this spirit that we introduced our simple
models for the optical matrix elements. However, the pa-
rameter A, describing the decay of atomic orbitals is, for
free atoms (using Slater rules, for instance ), of the order
of 1.5 a.u. Here, from the values given in (16), we see that
A, &s =0.14 a.u. , corresponding to a much weaker decay.
This will be confirmed by the other cases discussed in Sec.
III, where we shall find A, =0.06 a.u. , thus again much
weaker than typical values in atomic orbitals.

This means that any serious justification of our model
cannot be based on this tight-binding limit. Furthermore,
the small values (a '=8 A) found for the decay con-
stant in gd(r ) suggest that an effective-mass-like approxi-
mation for the defect wave function might be more ap-
propriate. In that case, a should characterize the decay
constant of the envelope function. We show in Appendix
B that such a formulation can indeed be used and cast in
the form of our simple models, thereby bringing a more
fundamental justification for their use.

III. EXTRACTION OF PHYSICAL PARAMETERS:
APPLICATION TO E~ AND E2 IN GaAs

In this section we show how DLTS and DLOS data can
be combined to obtain physical parameters characterizing
the defect, the most important of which is the "ionization
energy at zero distortion, " eT. We directly illustrate the
procedure in the case of E~ and Eq in GaAs, for which
we first summarize the known experimental results. We
then relate the experimental quantities m~ and ET to eT,
whose value can be deduced from the fit to experimental
data. This "experimental value" is finally compared, for
E~ and E2, to predicted values for the arsenic vacancy
~A.

A. Summary of known experimental results

A large number of experimental results on irradiation
defects in GaAs:n exist. However, despite this favorable
situation their microscopic nature has not yet been firmly
identified. This probably results from the lack of infor-

B. Photoionization cross sections for E~ and E2

For E~ and E2 we have been able to measure the ioni-
zation cross section o„o (between the defect level and the

// /// // / /// /
2

C

E3

E

5

'H1

H0

0.04 V

Ep 0. 18
E3.

0.70
0.90

0.33

H&. E +0.29 eV1
H0. 0.09

FIG. 4. Gap levels resulting from electron irradiation in n-

type GaAs.

mation about their local symmetry, which is a decisive
element in their identification.

The irradiation of n-type GaAs with electrons produces
five electron centers and two hole centers (Fig. 4). The
centers created at 4 K in GaAs:n do not differ from those
created at 300 K, and their introduction rate does not de-
pend on temperature. They are found to anneal at 500
K (Ref. 30) and their annealing follows first-order kinetics
(Refs. 31—33). This can be interpreted by a mechanism
involving either close-pair recombination or dissocia-
tion ' (recombination seems to be favored since no other
defect is found to appear after the annealing of Ez and
E3). The annealing rate of E2 depends on the doping
concentration, which has been shown to be a pure charge-
state effect.

These traps are thought to originate from simple intrin-
sic defects for the following reasons.

(1) They do not depend on the nature and concentration
of doping impurities.

(2) Their introduction rate is close to the theoretical
value, with a threshold of 10 eV characteristic of the dis-
placement of one atom.

(3) They originate from the arsenic sublattice. 3s 39

(4) The concentration of E~, E2, and E3 does not de-
pend on x in Ga~ „AI~As (x =0 to 0.47).

This experimental evidence shows that E~ and E2 are
intrinsic defects belonging to the As sublattice and having
identical introduction rates ' ' and annealing kinetics.
They also have a behavior in C(V) measurements which
can simply be explained by assuming that they are accep-
tor centers ' ' [note that Hall-effect and C( V) data could
also be explained by assuming E~ to be an acceptor, and
E2 to be a donor plus deeper acceptors with a concentra-
tion of the order of E2 (Ref. 42)]. It thus seems reason-
able to believe that E

~
and E2 are two charge states of the

same intrinsic defect involving the arsenic vacancy VA,
[this could be the vacancy alone, but also could be a com-
plex such as V~, + As; (Ref. 42)].

Here we shall investigate the possibility of the isolated
vacancy VA, . However, our results could still be relevant
in a more complex situation such as VA, + As;, provided
the interaction between the two defects is not too strong.
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conduction band), but not ohio (between the defect level

and the valence band). This might be due to the fact that
this last transition is not allowed by symmetry. As the
top of the valence band has local p character, this can be
taken as an indication that the defect state has similar lo-
cal symmetry. This is coherent with the identification of
E& and E2 with VA„since it is known theoretically that
the vacancy level has T2 symmetry (corresponding in the
simplest case to local p character). We shall thus discuss
the DLOS results for cr„o by using the model leading to
Eqs. (20) and (21) for a transition between a "p" level and
the conduction bands.

As E~ and E2 correspond to the same center, we have
assumed that they have equal values for the quantities Pz,
Px, a, and s in GaAs [in these compounds we have also
assumed a(x) to be independent of x j. In this way the ex-

perimental results are well reproduced by the expression

a(A. U)

80--

60--

40--

20--

40--

20--

o = A (or )+0.2ol )+O. lax)) . (24) 40--

The quality of the fit is illustrated on Fig. 5 for E& and on

Fig. 6 for E2. They correspond, respectively, to the
model parameters of Tables II and III. In these tables the
theoretical temperatures T,h are those producing the best
fit for the term u =(4k&TdFc)', where dFC is the
Franck-Condon shift defined above [as we shall see in Sec.
III C, the fact that T,h is different from the experimental

20--

40--

20-.

0
0.5 0.7 0.9 ].1

I

1.3

E(eV)

1.5

80--

v(A.U) FIG. 6. Photoionization cross section versus energy corre-
sponding to E2 in Ga~ „Al„As for different values of x: solid
line, experiment; dashed line, theory.

60--

40-

20.-

value is an indication that the simple model leading to ex-
pression (7) is not valid here]. It is interesting to analyze
if the parameters of Tables III and IV do lead to reason-
able physical situations. In a single configuration-
coordinate diagram the change Aq in the equilibrium
value of the local lattice mode is related to the Franck-
Condon shift dFC by the simple relation

20- —,Mco (hq) =dFC, (25)

0-
40--

20--

40--

20-.

E(eV)

In GaAs the mass of Ga and As is almost the same. To
determine b,q we must then know the effective value of co

for this mode. Assuming the defect to be an arsenic va-
cancy VA„we can use arguments derived in Ref. 44 to
show that the effective frequency for a displacement in-
volving nearest neighbors of the vacancy site is of the or-
der of the transverse-acoustic frequency nor&(X) at point
X, i.e., fu'o=10 meV. Using this value and that of dFC
given in Tables II and III for GaAs, we easily obtain

hq(E~ )-0.6 A, bq (E2)-0.4 A, (26)

0 I I

0.5 0.7 0.9 1.1 1.3 1.5

FIG. 5. Photoionization cross section versus energy corre-

sponding to E~ in Ga& „Al„As for different values of x: solid

line, experiment; dashed line, theory.

Both values represent a reasonable order of magnitude for
such displacements, confirming, to some extent, the
coherence of our physical picture.

We now consider in Inore detail the microscopic models
which could account for all the experimental information,
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TABLE II. Model parameters deduced from the fit to experiment in the case of E&.

E~ (eV)

x =0.00

0.04

x =0.14

0.12

x =0.25

0.17

x =0.47

0.30/Xl
0.43/I i

dFc (eV)

s ' (A)

0.38 0.48

3.2

0.45

3.2

0.45

3.2

@=a/s 0.5 '-. 0.4 0.4 0.4

pt (K)

Th (K)

Ace (meV)

60

10

24

60

10

81

81

142

142

5. 1X10' 8.8X10 3.3X10 5.9X10'

g»(10 ' cm) 30 170

i.e., the possibility that E& and E2 are two charge states
of the same defect, which we assume to be Vz, . However,
before doing this it is necessary to go beyond the simple
model leading to expression (7). We show in the next sec-
tion how the parameters of the Gaussian broadening func-
tions can be calculated in the case of degenerate electronic
states.

C. First moment of the optical line-shape function

The optical line-shape function S (E) occurring in
n, k

Eq. (2) has been approximated in (3) and (7) by a Gaussian

curve. This is exact only in the strong-coupling limit, or
at high temperatures and for nondegenerate states.
Here we must consider more complex situations, where
the electronic degeneracy of the system gives rise to Jahn-
Teller distortions. In such cases a Gaussian curve can no
longer represent the exact expression of the line-shape
function. However, it can still represent a useful approxi-
mation to the exact function if one makes use of Eq. (3),
where m ~ and m2 are taken to be the first two moments
of the exact curve. Such moments can be calculated
directly, even when electronic degeneracy in the excited
state is taken into account, as shown in Ref. 46.

TABLE III. Model parameters deduced from the fit to experiment in the case of E2.

E~ (eV) 0.18

x =0'.14

0.20

x =0.25

0.34

x =0.47

0.43/X)
0.56/I i

dFc (eV)

s ' (A)

0.22 0.38

3.2

0.32

3.2

0.32

3.2

@=a/s 0.5 0.4 0.4 0.4

a-' (A)

T,„pt (K)

Th (K)

%co (meV)

32

60

10

78.5

78.5

116

116

192

1.8X10' 6.9X10' 3.7~ '.0' 7.5X10

50
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Pair of
charged
states

Model with

As ~A.

(0, +)

Model with

~A. ~A.

(2—,—)

eT'(i,f)

er"(i,f)

—0.04

0.52

0.1

0.27

0.05

0.27

0.01

0.02

Here we are, in principle, interested in defects for which
there is electronic degeneracy and thus Jahn-Teller distor-
tions both in the initial and final states. It is well known
that such systems exhibit several equivalent stable mini-
ma. We thus consider optical transitions from one such
minimum of the initial state to all vibronic states derived
from the electronically degenerate final state. The first
two moments can then be calculated by the method
described in Appendix C. However, the best parameter
that can be deduced from the fit to experiment is m

~
and

one can obtain its theoretical expression by using a very
simple physical argument which we now produce. We
then consider that both initial and final states are coupled
to a set of lattice modes labeled by q and denote, by q;,
the equilibrium value of each such lattice mode in the ini-
tial state. As usual, we consider that the quadratic terms
—,'k~q~ are identical in both initial and final states, so
that all energy differences depend only on the linear cou-

pling coefficients. According to the Franck-Condon prin-

ciple, the average transition occurs at q =q; and the sit-
uation corresponds to the one depicted on Fig. 7. It can
be seen on this figure that there are, in general, transitions
to all components of the split final state. Here we make
the simplifying assumption that, when averaging over
equivalent minima and directions of polarization, each

TABLE IV. Experimentally deduced (e&") and theoretically
predicted (eT') values of the ionization energy at zero distortion.

such transition contributes with an equal weight [prelimi-
nary calculations show that this is a good approximation
for the cases we consider, i.e., VA, and V~, (Ref. 47)].
Then the average transition will occur at the average ener-

gy of the degenerate excited state. For pure distortion
modes the Jahn-Teller matrices are traceless matrices, so
that, to first order, this average energy corresponds to the
energy of the undistorted final state. Thus our conclusion
is that m ~ is equal to the ionization energy at zero distor-
tion, eT(i,f), plus the first-order energy gain in the initial
state at one of its equilibrium configurations. As this last
quantity is trivially equal to twice the Jahn-Teller energy

EJT in the initial state, we find the important result that

m ) =eT(i,f)+2EJ'T' . (27)

This reasoning is semiclassical and somewhat qualitative,
but nevertheless it allows one to understand the physical
origin of Eq. (27). We give, in Appendix C, a more gen-
eral quantum-mechanical proof which also allows an ex-
tension to the determination of the higher-order moments
m„and, in particular, of m2. It can be shown that there
is no longer a simple relation between in ~ and m2, as was
the case in Eqs. (4) and (5). One might eventually ques-
tion the use of a simple Gaussian curve for the situation
depicted in Fig. 7 where the final state exhibits two
separate branches (there, a superposition of two Gauss-
ians, one for each branch, should be more appropriate).
However, to be seen experimentally, the splitting between
the two Gaussians must be larger than the sum of their in-

dividual half widths. This is not the case experimentally
for E& and E2, so that we have only considered one
overall Gaussian curve. Its width is given by the second
moment m2, which is not equal to 2k~T(m, ET), as-
would result from relations (4) and (5), which lead to (7).
This is the reason why, in fitting with (7), we have been

obliged to use a theoretical temperature T,h different
from the experimental one. This is equivalent to the use
of (3) with

m r ——EZ. +dFC ~2 =2k' TthdFC

D. Discussion of the identification of E~ and E2 with VA,

t Ef
l

I

eT(i, f) i
7

I

I

& Eo

qml

FIG. 7. Linear splitting or shift of the energy levels in the in-

itial and final states versus the amplitude of the distortion mode
9'm.

We shall base this discussion on a comparison between
known experimental data and the possible theoretical ar-
guments which one can obtain with confidence. From
Secs. III A and III 8 it is obvious that a possible candidate
to explain the properties of E~ and E2 is VA, . As dis-
cussed before, the C( V) measurements can be simply in-
terpreted with the hypothesis that they are two consecu-
tive acceptor states for which the most probable charge
states would be V&, (E2) and V&, (E&). We shall then
first try to work out the consequences of such an assump-
tion. It is well established" that the arsenic vacancy gives
rise to two levels, one of 3& symmetry found as a
resonant state in the valence band, and the other of T2
symmetry falling into the gap just below the bottom of
the conduction band.

For the neutral vacancy VA, these levels must be popu-
lated with three electrons: two in A

&
and one in T2. For

VA, and VA, , one adds, respectively, one and two elec-
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trons in 1z. From the similarity with Vs; one expects
that substantial distortions will occur, either of tetragonal,
trigonal, or mixed symmetry. This favors the observa-
tion of a Franck-Condon shift, dFc. In adchtion, the sym-
metry of the state Tz favors o„o over ozo, which is con-
sistent with experiment.

Let us now discuss the experimental data concerning
the electron-lattice interaction. For each center one
knows (Tables II and III) Er from DLTS data and m&

from DLOS data. Theoretically, the latter quantity can
be written in the form of Eq. (27), where eT(i,f) is the op-
tical threshold for the undistorted vacancy and EJT is the
Jahn-Teller distortion energy in the initial state, i.e., be-
fore ionization (note that both quantities depend on the
charge state). On the other hand, the DLTS energy ET
can be expressed as

ET(i,f)=eT(i,f)+EJ'T' Eq~', — (29)

Ey'g being the Jahn-Teller energy in the final state. From
the experimental values of the quantity m~ Er, it —is a
very simple matter to show that

EJ(T)+EJ(T )=0.22 -ev, E(JT-)+E(J2T-) =0.38 ev, (30)

where (0), ( —), and (2 —) designate the charge state. To
proceed further, we must note that VA, should behave as
Vs;, but in different charge states ( V~, = Vs+;, Vz, ——Vs;,
and VA, ——Vs;). If we acce~t this, V&, and Vz, should
distort tetragonaHy with EST -4EJT'. '" From this rela-
tion, Eqs. (30) can be solved, leading to 0.045, 0.175, and
0.205 eV for EJT', EJT', and EJT ', respectively. Such
values are quite reasonable, but smaller than in silicon.
We can now insert these numbers into (27) or (29) and ob-
tain an experimentally determined value for eT in each
case, i e , eT"( —. ., 0) and er"(2—,—), where (—,0) and
(2 —,—) designate the pair of charge states involved in
the ionization process. Both values are reported in Table
IV, where they are compared to the results of pseudopo-
tential local-density calculations using Slater's
transition-state argument. To evaluate these theoretical
values eT", we have taken for U, the Coulomb energy, a
value 0.25 eV (identical to the silicon value), as obtained
from. a tight-binding determination. The agreement
between ez' and eT" is strikingly good, and we think that
this represents a positive argument in favor of the identifi-
cation of EI and E2 with Vz, and VA, .

It is tempting to apply the same considerations to
another possible pair of charge states, e.g., Vz, and Vz,
(in which E& would correspond to a single donor). The
system of Eqs. (30) remains valid, but with (0), ( —), and
(2 —) replaced by ( + ), (0), and ( —). However, VA, has no
electron. in the Tz state, and thus no Jahn-Teller energy.
We thus obtain directly EJT' ——0.22 eV and EJT ' ——0.16 eV
(their ratio is no longer equal to 4, as in silicon). From
these values we obtain er' (0, +) and eT' ( —,0), as given
in Table IV, where they are again compared to the
theoretical values. Clearly, the experimental values show
no coherence since they are in inverted order (which can-
not be explained) and now quite far from the expected
values. Then the hypothesis of the two acceptor states
VA, and VA, seelns more justified theoretically.

One consequence of the numerical values obtained for

VA, and VA, is that we predict, for the arsenic vacancy, a
single donor level at about 0.5 eV from the conduction
band. This level is not found experimentally. Preliminary
calculations show that the corresponding capture cross
section should be very small (in the 10 -cm range), so
that it has probably not been observed. One can also
question whether or not the fact that E2 is found to have
a large capture cross section (o.„=10 ' cm ) is in con-
tradiction with its identification with a single acceptor. It
will be shown in planned further work that this is com-
patible with the small ionization energy ET found in this
case. Finally, it is worth noticing that, with the values of
the Jahn-Teller energies given above and a Coulomb ener-

gy U of 0.25 eV, the system formed by VA+„VA„and Vz,
should not behave as a negative U center, contrary to
what happens in silicon.

IV. CONCLUSION

We have described in this work an original procedure
allowing one to extract, from DLOS and DLTS data,
physically important parameters which help in the deter-
mination of the microscopic nature of the defect. To do
this we have shown how the modelization of the optical
matrix elements can be improved by incorporating the
symmetry properties of the defect, the effect of the
electron-lattice interaction being incorporated through a
Gaussian broadening function. Three important physical
quantities can then be deduced from combined DLOS and
DLTS experiments: the optical threshold energy, the
DLTS energy level, and, to some extent, information on
the localization of the defect wave function. From the
two first pieces of information it is possible to derive an
experimental value of the "ionization energy at zero dis-
tortion" which can be compared to theoretical predictions.
The application of the method to E~ and E2 in GaAs
leads to the conclusion that they can, respectively, be
identified with VA, and VA, .
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APPENDIX A

We must justify the neglect of terms such as a (k)
with m~n in expression (23). For this we first use a sim-
ple two-band model for an extremum lying at k=0,
which wilI allow one to derive simple useful orders of
magnitude. Equation (23) can be written near k =0 as

P„(k)=e' " ' '[a, (k)f, (k=0)+a„(k)f,(k =0)], (Al)

where c and U denote the conduction and valence bands.
Standard k- p theory applied to this case gives a 2& 2 Ina-
trix,
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Eg /2
E, +E„ m

Rk

m

(A2)

where M is the k p matrix element and Eg is the energy
gap. A second-order expansion of the energy gives the ef-
fective masses m, and m„

m

1+2
I

M
I

/mEs —1+RIM I
/mE

(A3)

and (A4)

Ia„j'=—,
' 1+ 1+, , k'4$2IM Iz

m Eg

The quantity of interest is the rate of change of
I a,

I

and
I
a„j near k=O (where a„=l and a, =O). To ob-

tain a change of 15%%uo with respect to the values at k = 0
in (A4) requires a value of k such that

4' IM I (A5)
2E 2

g

Choosing for m„ the reasonable value 0.5m fixes
I
M

I

in
(A3} so that condition (A5) can also be written as

It is also possible to express
I
a,

I

and
I a„j in terms of

the parameters

I2 & I I
4&' IM

I
'I 2

E

For k values such that k —k ~, and if one assumes that
F(r) is well delocalized in real space, then only terms
such that kn = k~ will contribute, which gives

I(k)=a &0 -, p IFW, -„&

As discussed in the text and in Appendix A, we take

(B3)

i(k —k)). r
P -=e '

P (r),
c, k c, k I

which allows one to obtain I(k) as the sum of two terms:

(B4)

I'(p;F)=boe "(p;F)+ g b„f.(r),
c, ki n (&0)

where the f„(r) are taken orthogonal to the first term on
the right-hand side, e " being chosen to have the max-
imum overlap between this term and the left-hand side.
Then e "(p;F) represents the best approximation to the
left-hand side of (B6), and one can write

(B6)

+&e' ' "p -„F Ip, I1t „&). (Bs)

The second term is negligible. Indeed the Fourier expan-
sion g F e'q'' of F only involves small q vectors.

q q

This means that one must have k —k&
——q, leaving the

matrix element (P - Ip; I
t/r - ), which obviously van-

e, k&
' c, k&

ishes. The first term of (B5) can be transformed by using
the following argument: It is always possible to make the
following expansion:

l(k) 0: (e ' e ~"
Ip; I

F) . (B7)

2mv 6
(A6)

We want to calculate the optical matrix element I(k)
between a defect state Pd ( r ) and, for instance, a
conduction-band wave function near the minimum

k = k&. For this we consider situations where gd is suffi-
ciently delocalized so that it can be expressed in the fol-
lowing form,

P~(r)=F(r) ga„g -„(r),
n

(B1)

valid in the limit of effective-mass theory. Here, F(r) is
a variational envelope function, g - being a Bloch state

n; k„
at the extremum of band n.. Then I(k) is given by

I( k }= g a„(g -„ I p; I
F0„,-„

n

(B2)

which is of the order of 0.25 eV for GaAs. Furthermore,
the maximum variation of

I a„j is limited to 0.5. This
cannot explain the extremely fast change of the experi-
mental o'(E), where o is reduced to half of its value for
A' k /2m„, equal to 0.06 eV for a defect with transitions
to the valence band. Such conclusions have been con-
firmed more quantitatively in a recent calculation by
Chaudhuri.

APPENDIX B

In cases where F corresponds to a p function, this expres-
sion exactly corresponds to our approximate model of
Eqs. (17) and (18), but at the condition of replacing lt~ by
the envelope function F. This has consequences concern-
ing the physical meaning of decay constants. From (B7)
it is apparent that A, has no particular significance, while
the decay constant a in the approximate form
F-xjexp( ar) is—a measure of the extension of the en-
velope function, i.e., also of the wave function Pd itself.

APPENDIX C

This appendix is devoted to a calculation of the mo-
ments of the line-shape function S -(E) in the case of

n, k
electronically degenerate states. The moment of order p
«Eo(E) can be written from Eq. (1) as

Mz ——Av g 1&kg I
A p I &t) I'-(E/ E}(Cl)'

l

Here, P; and P/ are vibronic wave functions which are,
respectively, eigenfunctions of the Hamiltonian operators
Ho and H~. The states

I PI) are derived from a degen-
erate electronic state of eigenstates

I f, ). A complete
basis set for

I Py) can thus be built from all products
I P, ) IX~), where IX~) is the jth vibrational eigenstate

of the entire system in the undistorted situation. From
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the closure relation, one obtains

(C2)

since the g & form a complete set for the lattice prob-
lem. For P; & we consider the static limit where we can
write

where ~Xst& represents the vibrational eigenstates cen-
tered on a set of lattice positions which tninimize the
ground-state energy. %'e can thus write

(C3)

» this expression one has to average over the different
minima in the ground state, and over the vibrational
states, but also over the different polarization directions.
This could be done in detail when one has a precise micro-
scopic description of the defect T. his is not the case here
and all we can do is assume that the averaging procedure
and the symmetry conditions are such that only terms
with e =e' survive, and that the average of

~ &pg ~

A. p ~
1(t, & ] is a constant independent of the pair

of states g, e. This leads to

(C4)

It is only when the conditions leading to (C4) are met that
cr(E) (and all its moments) can be factorized into a purely
electronic part and a vibrational one, 5 -(E).

n, k

Our theoretical expression for the moments is thus
completely coherent with the expression we have used to
analyze the experimental results. With this we can calcu-
late the reduced moments M~/Mo,

Mp/Mo ——Av &gsi i
t(Hi E;)t'~gsi &—, (C5)

where t stands for a 1/g trace, where g is the degeneracy
in the excited state. To evaluate the moments we have to
know the expression of H, and Ho

Ht (Ef+Hg—)—Ig —g Vaqa, Ho ——(E; +Hg) —Q Jaqa,

I

matrices of size g)&g, and Ja is the electron-lattice in-
teraction parameters in the lower-energy branch of the in-
itial state. With this, the calculation of tni ——Mi/Mo
easily reduces to

(C7)

Using (C6) and the fact that, for pure distortion modes,
the V are traceless matrices, one obtains

0 0mi ——Ef E; + g Ja—qas, (C8)

where the qas correspond to the equilibrium values of the
distortion modes. It is then a simple matter to show that,
with ez.(l,f) =Ef Et, —

m i eT(i,f)+2Ei'T——(&) (C9)
(C6)

where E;~ are the undistorted electronic energies, If is
the unit matrix in the degenerate final electronic state, q
is the distortion mode, V is electron-lattice interaction

which is the required expression. It is not trivial that the
approximations leading to (C9) are always met in practice,
but preliminary calculations show that they are well satis-
fied in our case.
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