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Theoretical study of the aluminum melting curve to very high pressure
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A detailed theoretical study of the Al melting curve from normal melting conditions to pressures
in the vicinity of 2 Mbar is presented. The analysis is based on two parallel, but distinct, treatments
of the metal: the first from rigorous generalized pseudopotential theory involving first-principles
nonlocal pseudopotentials and the second from a parametrized local pseudopotential model which
has been accurately fit to first-principles band-theory and experimental equation-of-state data. Both
treatments utilize full lattice-dynamical calculations of the phonon free energy in the solid, within
the harmonic approximation, and fluid variational theory to obtain the free energy of the liquid.
Particular attention is focused on the choice of the reference system in implementing the fluid varia-
tional theory. It is shown that in Al the soft-sphere model of Ross produces a lower {and hence
more accurate) liquid free energy than either the hard-sphere or one-component-plasma reference
systems, and is, moreover, necessary to obtain a reasonable quantitative description of the melting
properties. With the soft-sphere system, the two theoretical treatments give results in good overall
agreement with each other and with experiment. In particular, melting on the shock Hugoniot is
predicted to begin at about 1.2 Mbar and to end at about 1.SS Mbar, in excellent agreement with the
recent preliminary measurements of McQueen.

I. INTRODUCTION

The calculation of the melting curve in metals remains
a challenging and important theoretical problem, with the
basic difficulty being that of obtaining free-energy differ-
ences between solid and liquid phases which are only a
tiny fraction of the cohesive energy. For simple metals,
the basic ingredients required for a quantitative theory of
melting were identified some time ago by Stroud and Ash-
croft. ' These ingredients include pseudopotential pertur-
bation theory ' for treating the ion-electron interaction in
both the solid and liquid phases, a lattice-dynamics model
for the phonon free energy of the solid, and fluid varia-
tional theory for calculating the free energy of the liquid.
Using a simple one-parameter local pseudopotential, a
self-consistent Debye model for the phonons, and a hard-
sphere reference fluid for the liquid, Stroud and Ashcroft
were able to obtain a reasonable quantitative description
of the melting curve in Na to 40 kbar. Good results for
the zero-pressure melting properties of Li, Na, K, and Al
were subsequently obtained by Jones with a similar
method. This success, while encouraging, appears in re-
trospect to be somewhat fortuitous, however. Recent
work on the alkali metals Li, Na, and K by Young and
Ross, for example, shows that the melting curve depends
significantly on the details of the calculation and in par-
ticular on the choice of reference system in the fluid vari-
ational theory. These authors found the hard-sphere
reference fiuid to be qualitatively inadequate once the
simple X)ebye model was replaced by a full lattice-
dynamical calculation of the phonon spectrum. Thus
even for simple metals, an unambiguous universal pro-
cedure for calculation of the melting curve is not yet at
hand.

The present paper contains an in-depth analysis of the

melting properties of another prototype simple metal,
aluminum, both near normal density and also under high
pressure. Previous related theoretical work on melting in
this metal consists only of the early calculations of the la-
tent heat of fusion by Hartinann and of the zero-pressure
melting properties by Jones. The present work goes
beyond these treatments in several important ways:

(i) We investigate for the first time the importance of
the choice of the pseudopotential itself to the result by
considering parallel calculations of the melting curve with
both a parametrized local pseudopotential and a rigorous
nonlocal pseudopotential obtained from first principles.
For the former we adopt the two-parameter Harrison lo-
cal pseudopotential model used by Jones (herein denoted
as the HLP model), and for the latter that given by the
generalized pseudopotential theory (GPT) of the present
first author. Our GPT result, we believe, represents the
only entirely first-principles calculation of a melting curve
yet obtained. Moreover, extensive comparisons with re-
cent nonperturbative band-theory calculations in the solid
demonstrates that the GPT is capable of giving accurate
structural energy differences in Al on the scale required in
the melting problem.

(ii) As done by Young and Ross on the alkali metals,
our treatment of the phonon free energy is based on a full
lattice-dynamical calculation of the vibrational spectrum
in the solid using the specified pseudopotentials within the
harmonic approximation. The neglect of anharmonic
contributions to the free energy is partially justified by the
work of Stroud and Ashcroft, ' who found only a weak
temperature dependence in their calculated Debye tern-
perature, especially under compression, and also by recent
molecular-dynamics studies on Na, ' where it was found
that the anharrnonic free energy was indeed small (less
than 10% of the heat of fusion at melting). Moreover, al-
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though model studies of anharmonicity" using various
approximation methods (perturbation theory, self-
consistent phonons, cell models) suggest significant
corrections to high-temperature thermodynamics proper-
ties in general, the molecular-dynamics results show expli-
citly that near melting the anharmonic free energy can be
overestimated by as much as an order of magnitude with
the use of such methods. Anharmonic contributions to
the melting properties of Al may not be completely negli-
gible, but, on the other hand, their effect is probably
small, particularly at high pressure, relative to other un-
certainties in the calculation.

(iii) We make a full investigation of the choice of fiuid
reference system using the rigorous GPT pseudopoten-
tials. For calculating the thermodynamic properties of
simple-metal liquids, hard-sphere, soft-sphere, ' ' and
one-component-plasma' ' reference systems have now
been developed. In the case of Al, we find that the soft-
sphere model of Ross' is optimum in the sense of pro-
ducing the lowest overall Hemholtz free energy at all
volumes and temperatures of interest in melting. Use of
the soft-sphere reference system is also found necessary to
obtain a quantitatively reasonable description of the melt-
ing curve in both the GPT and HLP treatments.

(iv) The final significant new feature of our work is that
the melting curves have been extended into the very-high-
pressure regime (up to 2 Mbar). This is of considerable
current interest in Al, because this metal is being used as a
high-pressure equation-of-state (EOS) standard. In addi-
tion, it is now possible to detect melting on the shock
Hugoniot of metals through the measured sound speed, '

and there has been a very recent experimental study of
this effect in Al. ' We present here a prediction of where
this melting should occur based on our HLP model. The
same model has also been used to investigate a number of
other thermodynamic properties of Al, as will be reported
separately.

In Sec. II we summarize the elements of pseudopoten-
tial theory which are relevant to the melting problem and
also discuss our two choices of pseudopotential. In Sec.
III we review the statistical-mechanical models used in
the present analysis to obtain the free energies in both the
solid and liquid phases of the metal. Then in Sec. IV our
melting results on Al are presented and discussed. %'e
conclude in Sec. V.

II. PSEUDOPOTENTIAL THEORY

A. General expressions

The elements of pseudpotential theory that we require
are discussed at length in Refs. 2, 3, and 8. In brief, the
electron-ion interaction in a simple metal may be
rigorously represented by a nonlocal pseudopotential
(operator) of the form

w(r, r )= — +v„,(r)+v,h(r)
Zc

where Z is the valence of the metal (Z=3 for Al), v,«
and u, i, are the potentials arising from the electron screen-
ing and orthogonalization-hole densities, n„, and n,h,
respectively, and w«„ is the (repulsive) core pseudopoten-
tial. The corresponding form-factor coupling plane waves

( k+ q ~

and
~

k ) on the constant-energy surface e-
k

=R k /2m is then

(k, q)—= &k+q
~

w

4mZe +u...(q)+u.h(q)+w. ...(k, q),
q 0 (2)

where Q is the atomic volume of the metal. For a weak
simple-metal pseudopotential, the screening potential
u„,(q) may be obtained self-consistently by using first-
order perturbation theory together with the exchange-
correlation modified Poisson equation

+bind vol ++struc ~

with

(4)

9 (Ze)
+vol 5 ~F + ~xc 10 RQ

, f w„„(k,o)dk+
(2~)3 k &kF

where the ellipsis includes all second-order terms, and

9 Z'&„,=E„(Z*e)+ + g' ~S(q) ~'F(q) .
10 R,

q

(6)

In Eq. (5), the first two terms are, respectively, the kinetic
energy and exchange-correlation energy of the uniform
electron gas with Fermi energy e~ fi kF/2m, while i——n
the third term R, is the atomic-sphere radius
(Q =4~R, /3). Explicit expressions for the second-order
terms in that equation can be found in Ref. 8. In Eq. (6),
Z is the effective valence

Z'=Z —f n,h(r)dr,

E„ is the electrostatic (or Madelung) energy of point
charges Z*e embedded in a uniform compensating back-
ground, S(q) is the structure factor

N .~ RS(q)= —g e

u„,(q) = [I—G(q)]n„,(q),
q

where the exchange-correlation function G (q) is that for
the corresponding uniform electron gas.

The central theoretical quantity of interest to us is the
total binding energy per atom of the valence electrons in
the metal, Eb;„d, for an arbitrary static configuration of
the ions. This may be obtained in second-order perturba-
tion theory as a sum of a large volume term, E„„,in-

dependent of the individual positions of the ions R;, and a
much smaller structural energy, E„~„both of which are
functionals of the pseudopotential. Specifically, one can
write
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and E(q) is the energy-wave-number characteristic,

2Q Iw(k q)i dk
k k(2~) &F ~

k k+q

[ [1—G (q)][n„,(q) ]

C. Harrison local pseudopotential (HLP)

The alternative to a rigorous calculation of w«„ is to
introduce a parametrized model potential for this quanti-
ty. If a fixed local potential is chosen, one has the im-
mediate simplification

core( ~ q ) ~Wcore(q) ~ (12)

+«q)[n.h(q)]'] . (9)

The quantities Z" and E(q) are characteristic functions
of volume and all of the structure dependence in Eb;„d is
contained in E„and S(q). Generally speaking, Z'&Z
because n,h represents a negative electron density, with
Z* increasing with decreasing volume. For Al in the
GPT, Z*/Z varies between about 1.05 and 1.15 over the
volume range from 30% expansion to twofold compres-
sion.

n,h~O and Z*~Z, (13)

as do all of the second-order terms in E ]. The total-
binding-energy expression (4) then collapses to the simpli-
fied form

Eb;„d——, ZeF —+Ze„,+Zw„„(0)+E„(Ze)

so that all k-space integrals, such as those in Eqs. (5) and
(9), can be done analytically. In addition, the orthogonali-
zation hole exactly vanishes,

B. GPT first-principles pseudopotential

In optimized form, the GPT nonlocal core pseudopo-
tential for a simple metal can be written as

w....(k, q)=...,.(q)+g(.-—E."")«+q iy. &(y. l
k),

+ g i
s(q)

l
F(q),

with

+(q) = — — +w„„(q)q 2Q 4~Zg 2

See q 0
2

(14)

(10)
where v«„ is the full (one-site) core potential and Pc and
E,"are the corresponding core states and core energies in
the metal at volume Q. All of the ingredients in w„„
may be calculated from first-principles considerations
within the general theoretical framework of the Kohn-
Sham density-functional formalism. '

In the case of Al, one may additionally account for the
small perturbing effects of unoccupied d states above the
Fermi level by adding appropriate hybridization terms to
n, h and w„„, with Eqs. (1)—(9) above otherwise un-
changed. This is the empty-d-band limit of the GPT. In
the present context, these hybridization terms are of negli-
gible importance near normal density, but they do grow
slowly in magnitude under compression. In all of the
GPT calculations described below, these terms have been
retained for completeness.

One further variable aspect of the above formalism is
the choice of exchange-correlation functions e„, and G(q).
The latter has the rigorous limits

&&, (15)q —1

e (q) —G(q)[e (q) —1]

where P(q) is the familiar Hartree or Lindhard dielectric
function.

In the present work, we use a simple real-space core
pseudopotential originally suggested by Harrison,

p rtr, —
core(&) =

Smr,

which yields

1w„„(q)=—
[1 ( )2]2

(17)

G(q) =a(
aq +gkF

where P and rc are free Parmeters. In order to maximize
our latitude in choosing these latter quantities, we have
further parametrized the exchange-correlation function
G (q) in the form

kF d [ne„,(n)]
G( )

(q/kF) as q~O
dye

2

g(n) as q~ oo,
a(qlkF) as q~O,
g' as q~co,

(18)

for electron density n =Z/0, with g(n) a density-
dependent constant. The q~O limit of Eq. (11) insures
that the compressibility sum rule is exactly satisfied.
Both G(q) at intermediate q and g(n), however, still
remain to be firmly established. ' In the GPT we use the
G(q) calculated by Geldart and Taylor' from electron-
gas theory as an interpolation between the limits of Eq.
(11) for any given form of e„,. For e„, we employ the
exchange-correlation functional determined by Hedin and
Lundqvist.

treating a and g' as additional free parameters. The four
quantities p, r„a, and g are then established by fitting to
independent EOS data, as described in Sec. III C.

For calculating thermodynamic properties of metals,
the two principal virtues of a parametrized local pseudo-
potential approach are (i) the volume dependence of Eb;„d
remains analytic so that derivative quantities such as the
pressure can be easily and accurately calculated, and (ii)
one can incorporate desired experimental or theoretical
data into the theory. With regard to the latter, one of our
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primary motives in developing the HLP model has been to
permit an accurate fit to nonperturbative first-principles
energy-band calculations of the pressure at high compres-
sion. This compensates for the fact that the higher-order
terms in Eb;„d have been explicitly dropped in the pseudo-
potential perturbation theory. At the same time, the
neglect of nonlocality in the pseudopotential can be ex-
pected to significantly restrict its transferability from one
physical property to another. In the present context, the
central question in this regard is whether or not a local
pseudopotential fit to largely volume-dependent properties
(i.e., EOS data) can be reliably applied to calculate a large-
ly structure-dependent property (i.e., the melting curve).

Ai q(Q, T) =Eb;„d(Q, T)+Eg„(T)

—T [S,„,(Q, T)+Sg„(Q,T)], (22)

where Eg„and Sg» are the kinetic energy and entropy of
an ideal gas of atoms at temperature T:

Eg»( T) 2 kii T

and

B. Liquid phase

The corresponding Helmholtz free energy of the liquid
is taken as

III. STATISTICAL MECHANICS

A. Solid phase

S „(Q,T) = —,k2i+kii[ln(Q/A )+1],
with

A= h

(2nMkg T)'.i

(24)

(25)

The Helmholtz free energy of the solid can be written
as a sum of the static-lattice binding energy (i.e.,
Eb';„'d=Eb;„q evaluated for a particular crystal structure)
and the phonon free energy of the ions:

A,o&(Q, T) =Eb';„'d(Q)+ Aug(Q, T)

=Eb';„d(Q)+Eph(Q, T)—Tsph(Q, T), (19)

and I is the atomic mass. The quantities Eb;„d and S,„,
are the total, configurationally averaged binding energy
and excess entropy of the liquid, respectively. The struc-
ture component of Eb;„d can be written

);q 1 (Z*e)
2 R,

where E~h and S~h are the phonon total energy and entro-
py, respectively. For a perfectly periodic solid, the struc-
ture component of Eb';„'d reduces to the simple form

2

E'„'~,(Q) =— (1.8 —a„i)+ g F(q), (20)
2 R, q=K

+ f So(q)F(q)q dq,
2+2

where So(q) is the liquid structure factor,

s, (q) =N(
~
s(q)

~

2), (27)

and, in the harmonic-phonon approximation,
and the effective electrostatic constant of the liquid is
given by

A ~h( Q, T)= (kz T/N) g in{2 sinh[h vi( q ) /2k' T)] J .
a~;q ———(2R, /m. ) f [So(q) —1]dq . (28)

(21)

In Eq. (20), a„i is the geometric electrostatic constant for
the crystal lattice in question and the sum over F(q) in-

cludes only nonzero reciprocal-lattice vectors K. For the
fcc crystal structure of Al, a„i——1.79175. The sum in
Eq. (21) is over all phonon branches A, and wave vectors q
in the first Brillouin zone of the reciprocal lattice. The
phonon frequencies vi ( q ) themselves are calculated
directly in terms of the characteristic functions Z' and
F(q) by standard techniques ' and the Brillouin-zone
sum then done numerically as a function of volume and
temperature. ' '

Structural phase stability in solid Al has recently been
studied in great detail with the GPT. At zero tempera-
ture it is found that the observed fcc structure is stable
from normal density until beyond twofold compression
corresponding to a pressure range of -3.6 Mbar. In addi-
tion, the bcc structure is found to be mechanically un-
stable in this regime, so that no temperature-induced tran-
sition to bcc prior to melt (as occurs, for example, in the
alkali and alkaline-earth metals) is expected. We have as-
sumed in our calculations, therefore, that Al melts out of
the fcc structure everywhere along the melting curve.

In Eq. (27) the angular brackets denote a statistical aver-
age over all possible configurations of the ions. Note that
the liquid structure factor is implicitly a function of both
volume and temperature and therein derives the tempera-
ture dependence of E,", , and Eb;„d.

Calculation of A„q requires specific forms for both
So(q) and S,„,. These are, in general, unknown function-
als of the true interatomic pair potential between ions,

(Z*e) Q f F( )
sin(qr) 2d

pair

In practice, however, it is only the short-range repulsive
part of u„„,which significantly affects these quantities, so
that an approximate treatment is possible. A very effec-
tive procedure is to apply so-called fluid variational
theory, in which one calculates So(q) and S,„, for a close-
ly related reference fluid where the relationship to u~„, is
known. The reference system normally contains a single
variational parameter which is chosen to minimize A]iq
when the resulting So(q) and S,„, are used in Eq. (22) for
the real system. According to the rigorous Gibbs-
Bogolyubov inequality, this produces the closest upper-
bound estimate of A];q possible for this reference system.
Furthermore, it follows that the "best" reference system
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Hs 2/3 1 rl/5+—'ri /10
a);q ——6g +

(31)

and

at a given volume and temperature is that which produces
the lowest overall value of Abq.

There are currently three reference systems which are
available for implementing fluid variational theory. The
first and most widely used is the hard-sphere (HS) fluid,
in which the pair potential is assumed to be infinitely
repulsive between r=O and r =cr and zero beyond. The
variational parameter is the hard-sphere diameter o, or,
equivalently, the packing fraction

ri = —,
' 7r(o'/0) .

The HS fluid has the desirable property that So(q), ahq,
and S,„, can all be obtained as analytic functions of g.
The latter two quantities are given by

r
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exc = s (32) 10

In addition, the measured liquid structure factor in most
metals is well represented by So (q) for reasonable values
of ri. Near the zero-pressure melting point of Al, for ex-

ample, ri=0.44 gives an excellent fit to the experimental
structure factor for q &5k+. '

At the opposite extreme is the one-component-plasma
(OCP) reference system, in which vp„, is the relatively
soft Coulomb-type potential between point ions of charge
Zoe in a compensating uniform background. The varia-

tional quantity is Zo or equivalently the plasma parame-
ter

0-
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Relative separation r/R

FIG. 1. Short-range repulsive portion of the GPT interatom-
ic pair potential in Al, as calculated from Eq. (29) at 0=128.0
a.u. Shown for comparison is the corresponding hard-sphere di-

ameter o obtained from fluid variational theory and a fitted
r ' potential.

I 0——(Zoe) /R, ks T . (33)
-4.190

I I I I I I

The OCP fluid has been extensively studied by Monte
Carlo simulation and very accurate results now exist
for both the total internal energy and the Helmholtz free
energy of this system over a wide range of I o. These re-

sults, in turn, have been carefully fitted to analytic forms.
From the most recent results of Slattery et al. , one has

T= 933 K

and

a = — (aI +bI"' +cI ' +d)r,

S,„, = —kg I3bl"0 —5cl'0 ' +d(lnI 0—1)

—[a +4(b —c)]—0.436I,

(34)

(35)

K -4.200

I -4.205
LL

where a = —0.897 744, b =0.95043, c =0.18956, and
d = —0.814 87. The corresponding structure factor
So (q) does not have an analytic representation, but very
recently a useful table of this function has been construct-
ed from solutions of the hypernetted-chain integral
equation with a bridge-graph correction. These results
are in excellent agreement with Monte Carlo calculations
and have the added advantage of smoothness as a function
of both I o and q.

The short-range repulsive nature of real interatomic po-
tentials in simple metals is usually intermediate between
the HS and OCP limits. Figure 1 shows, for example, our

-4.210

Soft sphere

)q(at

melt�)

4 215 l l l l I ~~l l I

104 108 112 116 120 124 128 132 136 140

Atomic volume Q (a.u. )

FIG. 2. GPT liquid free energy Ah„(Q, T) versus volume

near normal melting conditions in Al, as calculated for the one-

component-plasma (OCP), hard-sphere, and soft-sphere refer-

ence systems. The observed liquid volume Qi;q at melt is indi-

cated.
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—4.20 (

-4.25

et al. ' ' for Al using a parametrized local pseudopoten-
tial. At higher densities and temperatures, on the other
hand, the relative spread of free energies decreases, with
the OCP free energy dropping below that of the HS sys-
tem and closely approaching (although never crossing
below) the SS value, as shown in Fig. 3.

-4.30
K

I —4.35
LL

C. HLP parameters and application

The four free parameters of our HLP model have been
determined by fitting to solid-phase thermodynamic data.
The parameters r, and P in the core pseudopotential were
established by first requiring that the total internal pres-
sure

-4.40

BA„i(Q,T)
P„i(Q,T)=— 0 (37)

445) I I ~I I

64 68 72 76 80 84 88 92 96 100

Atomic volume Q (a.u. )

FIG. 3. GPT liquid free energy A&;q(A, T) versus volume

near representative high-pressure melting conditions in Al, as
calculated for the one-component-plasma (OCP), hard-sphere,
and soft-sphere reference systems. The calculated liquid volume

Q~;q at melt is indicated.

first-principles GPT pair potential for Al near the normal
liquid density. In the critical region around r =o., this
potential varies roughly as r ' . A reference system
which better accommodates this behavior is the so-called
soft-sphere (SS) model of Ross. ' In the SS fluid, the HS
packing fraction i1 is retained as the variational parameter
and the form of the structure factor So (q) is taken over
directly. The entropy function, however, is modified to
simulate the free energy of the softer r ' potential, as
determined by Monte Carlo calculations. This leads to

S,ss, = ks, —(q4/2+q'+q—/2)ss 4g —3g' 4

1 —g

Thus the SS reference system retains all of the desirable
features of the HS system, while at the same time produc-
ing a lower and hence more accurate free energy in a met-
al like Al.

We have performed GPT calculations of Ai;q as a func-
tion of volume and temperature in Al using all three
liquid reference systems, and we indeed find that the SS
model always produces the lowest free energy. Represen-
tative results in the vicinity of melting are illustrated in
Figs. 2 and 3. As shown in Fig. 2, the spread in free ener-
gies among the three reference systems around normal
melting conditions is on the order of ks T, where
T =933 K is the experimental melting temperature, with
the OCP system producing the highest free energy. At
the zero-pressure liquid density (Q = 127.0 a.u.), our result
for the OCP —HS energy difference is also in qualitative
agreement with that previously obtained by Mon

both vanish at the observed room-temperature equilibrium
density (Q=QO ——112.0 a.u. ) and match an accurate first-
principles augmented-plane-wave (APW) energy-band cal-
culation of the T=O isotherm at high compression. The
remaining exchange-correlation parameters a and g were
then chosen to simultaneously reproduce the observed
normal-density Gruneisen parameter [yG(QO) -2.I ],
calculated here as

Bing(q)
3X 8 lnQ

q, k

(38)

as well as experimental isotherms to 100 kbar at 300 (Ref.
29) and 673 K (Ref. 30). This fitting procedure gave
values of P= 50 Ry a.u. , r, =0.3015 a.u. , and a =g
=0.625.

In applying the HLP model, an additional volume-
dependent term,

(ks T)
A,i(Q, T)= —Z

2 Ep
(39)

for the thermal free energy of the valence electrons, has
also been added to both A»i and Ai;q. This correction
has a negligible effect on both the low-temperature ther-
modynamic properties and the melting-curve calculation
in Al, but it does significantly affect the calculated
Hugoniot temperature at high pressure and has, therefore,
been retained. All of the GPT calculations reported here,
on the other hand, have been performed with this term
omitted.

Before finally turning to the melting calculation in Al,
it is of interest to briefly discuss GPT predictions of those
physical quantities which have been fitted in our HLP
model. The GPT gives a room-temperature equilibrium
atomic volume of Q=116.2 a.u. , which is about 4%
above the experimental value. The calculated pressure in
the solid, P„~, is consequently overestimated somewhat at
any given volume. This is illustrated in Fig. 4, where
HLP and GPT T=300 K isotherms are compared. At
Q=68 a.u. (Q/Qo ——0.607), approximately the smallest
solid volume considered in our GPT melting calculation,
we estimate that P„~ at T=O is too large by about 150
kbar relative to the theoretical APW result. This amounts
to about 10% of the total GPT-calculated pressure at
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2.5

2.0

all of the basic solid-phase thermodynamic properties of
Al of relevance here, the HLP and GPT results agree with
each other and with experiment to 10% or better.

IV. MELTING CURVE

In general, the melting curve P (T ) is established by
equating solid and liquid Gibbs free energies as a function
of pressure and temperature:

G„i(P,T ) =Gi; (P, T~ ) . (40)

0.5

0'-
0.5 0.6 0.7 0.8 0.9 1.0

melting. Finally, the computed GPT value of yG(Qo) is
1.9, approximately 10% below the experimental value.
Under compression, the HLP and GPT yG(Q) curves
move closer together with the former just crossing below
the latter near Q/Qo ——0.6, as shown in Fig. 5. Thus for

Relative atomic volume iQ/Qp

FIG. 4. Comparison of the calculated HLP and GPT T= 300
K isotherms over the volume range from normal solid density
(0=Qo ——112.0 a.u. j to twofold compression. Q„)(Q„(Q);q .

If the change in volume,

AQ=Qhq —Q„),
is small, little error is incurred by assuming

P = —,
' [P„,(Q,„,T )+Pi;q(Q, „,T )j,

(42)

(43)

In practice, however, it is often a difficult task to apply
Eq. (40) directly because it necessitates finding the inter-
section of two nearly parallel curves. Fortunately, there
are simple alternate procedures available. At low pres-
sure, one may use the equivalent common tangent con-
struction on the respective Helmholtz-free-ener-

gy —versus —volume curves at fixed temperature T =T
to find the corresponding melting pressure P . At higher
pressure, one can proceed by first finding the volume of
intersection Q,„of A„i(Q, T ) and Ai;q(Q, T~). This
will always be intermediate between the true solid and
liquid volumes at melting:

2.00—

1.?5

E

O.

1.50

(3

1.25

1.00—

]
I

/
/

/

with P„i calculated from Eq. (37) and Pi;q from the cor-
responding expression in the liquid. The same pressure-
volume relations may be further used to obtain Q„i and

Qi;q from a knowledge of P . In the case of Al, b,Q is al-
ways less than 5% of Q,„, so that this procedure works
quite well. We have confirmed this for our GPT results
by using both Eqs. (40) and (43) to determine points on
the high-pressure melting curve. In this regard, the latter
approximate procedure is even to be preferred, since the
former introduces some amount of unphysical curvature
into the melting curve because of the difficulty in locating
the precise intersection of the solid and liquid Gibbs free
energies. Equation (43) has been used in both the GPT
and HLP results presented below for P )80 kbar.

Utilizing the SS liquid reference system, GPT and HLP
melting curves have been calculated in the pressure range
I' (2 Mbar. Our low-pressure GPT result is illustrated
and compared with experiment ' in Fig. 6 over the limited
range where present data exists (to -60 kbar). Corre-
sponding zero-pressure melting properties are listed in
Table I. The calculated properties include the latent heat
of fusion, given at I' =0 by

0.5 0.6 0.7
l

0.8 1.0
Relative atomic volume Q/Qp

FIG. 5. Comparison of the calculated HLP and GPT
Gruneisen parameters [yG(Q)] as a function of volume in the
solid over the same range as in Fig. 4.

I, =Ebqd(Qi;q, T )+Es„(T )

—Eb';„'d (Q„i)—Epb (Q„i,T )

Ebind(Qliq~ Tm ) Ebind(Qsol) 2 kB Tm 9 (44)

where E~h -3k&T, the increase in entropy upon melting,
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FIG. 6. Theoretical GPT melting curve versus experiment

(Ref. 31) in Al over the limited pressure range where the latter
data is available for comparison.

&&=&,„,(Q);q, T )+S„,(Q„,T ) —S „(Q„„T)

=L/T (45)

dI'

dT T EQ (46)

The overall agreement with experiment displayed in Fig. 6
and Table I seems quite satisfactory, especially consider-
ing our neglect of anharmonic effects in the solid. The

and the Clausius-Clapeyron value of the initial slope of
the melting curve,

importance of the liquid reference system to this general
success is most pronounced in the melting temperature it-
self. If the SS system is replaced by the HS one, for in-
stance, the computed value of T at zero pressure rises
from 1050 to 1800 K. With the SS reference system, the
largest independent error is the 35% underestimate of
AQ, although, by the same token, this quantity is percen-
tagewise more uncertainly determined than Q~;q Osage or
T . The reason is that at I' =0, bQ depends rather sen-
sitively on the precise location of the minima in the
Helmholtz free energies Ah~(Q, T~) and A„~(Q, & ).
rors on the order of only 1% in determining Q~;z and/or
Q„~, for example, could account for the entire 35% un-
derestimate, while at the same time having little effect on
T . In any case, the corresponding low values obtained
for L and b.S in Table I directly reflect the underestimate
in hQ. This is clear from the excellent calculated value of
dI'~/dT~ using Eq. (46), where the dependence of L on
b,Q approximately cancels out on the right-hand side of
that equation. Our dI'~/dT result is also in good agree-
ment with the theoretical melting-curve slope obtained in
Fig. 6.

We were unfortunately not able to obtain corresponding
HLP results near zero pressure because some of the calcu-
lated phonon frequencies were found to be imaginary at
expanded volumes. Since the GPT-calculated phonons
showed no such tendency, even at 30%%uo expansion, we ex-
pect that this is an artifact of the HLP model, possibly re-
lated to the choice of parameters. In this regard, we note
that the fitted value of a in Eq. (18) for G(q) is too large
by about a factor of 2 relative to that given by electron-
gas theory [i.e., Eq. (11)], tending to overly depress the
calculated phonon frequencies at small q. Moreover,
Jones, ' using the same model with a theoretical G(q)
closer to Eq. (11) at small q, found no such anomaly. Our
primary motivation for introducing the semiempirical
form (18) for G(q) in the HLP model was to obtain a
more realistic Gruneisen parameter yG(Q) (Fig. 5) than
could be otherwise achieved. While this may have result-
ed in some adverse effects on the low-q phonons, the
higher-q phonons, which are those which dominate ther-
modynamic properties, are not so affected. This is
demonstrated in Fig. 7, where the HLP and GPT values

TABLE I. Calculated GPT melting properties in Al at zero pressure compared with experiment. In-
cluded are the melting temperature T, atomic volumes Q,„~, L2~;q, and AQ, latent heat of fusion L, en-
tropies KS and —S„„and initial slope of the melting curve dP /dT obtained from the Clausius-
Clapeyron equation (46).

Theory
Experiment

T
(K)

1050
933

Q„)
(a.u. )

122.2
120.5'

0&;q

(a.u. )

126.4
127 0'b

AQ
(a.u. )

4.2
6.5'

L
(mRy/atom)

6.11
8.25'
8.0

AS
(kg)

0.92
1 39'

—S,„,

4.0
3 6e

dI' /dT
(kb /K)

0.20
0.20'
0.19g

'Reference 32.
Reference 33.

'Reference 7.
~Reference 34, p. 381.
'Reference 35, p. 80.
With L=8.25, AQ =6.5, and T =933.

~With L=8.0, 60=6.5, and T =933.
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of the zero-point vibrational energy, E~h(Q) —=E~h(Q, O),

given by

E„h(Q)= g hvar(q),2X
(47)

I I I I l

0.5 0.6 0.7 0.8 0.9 1.0
Relative atomic volume 0/Qo

FIG. 7. Comparison of the calculated HLP and GPT zero-
point vibrational energies [E~h(Q)] as a function of volume in
the solid.
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FIG. 8. Comparison of the theoretical HLP and GPT melt-

ing curves (solid lines) in A1 over the full temperature and pres-
sure ranges considered in this work. Also shown is the predict-
ed melting on the shock Hugoniot of Al, as obtained from HLP
calculations of the solid and liquid Hugoniots (dashed lines).

are compared as a function of volume. The agreement is

seen to be uniformly excellent.
At smaller melting volumes, our HLP model is entirely

well behaved and we were able to obtain a meaningful

melting curve in the pressure range P &96 kbar, corre-

sponding to T & 1500 K. This result is illustrated in

Fig. 8 and compared there with the corresponding GPT
melting curve. The two theories agree remarkably well

considering the nontrivial difference in the details of the

approaches. Nonetheless, at the higher pressures the HLP
and GPT melting curves do begin to diverge significantly.
At T =6000 K, this amounts to a difference in calculat-

ed I' of 430 kbar. The origin of this divergence is possi-

bly related to the effects of pseudopotential nonlocality on

the structural energies. In this regard, neither the direct

differences between the HLP and GPT pressure-volume
relations (e.g, Fig. 4) nor the d-state hybridization includ-
ed in the GPT account for this behavior. At T~ =6000
K, the latter two effects respectively raise the GPT melt-

ing pressure by 150 kbar and lower it by 40 kbar, so that
their combined impact is actually to improve the agree-
ment with the HLP result. Gn the other hand, it is also
quite possible that the divergence would be lessened if the
GPT pseudopotentials were adjusted to reproduce all of
the same EOS data fitted in the HLP model.

Calculated properties along the GPT and HLP melting
curves are given in Tables II and III, respectively. In both
treatments, the packing fraction il is found to remain ap-
proximately constant, and at similar values, decreasing

TABLE II. Calculated properties along the GPT melting curve in Al. Included are the melting tem-
perature T, pressure P, atomic volumes Q„, Q„~, and Q~;q, fractional volume increase upon melting
hQ/Q„&, liquid packing fraction g, and Lindemann ratio xz;„d.

1050
1500
2000
3000
4000
5000
6000

Pm

(Mba r)

0.0
0.080
0.187
0.443
0.752
1.12
1.51

Q,„
(a.u. )

124.5
114.4
105.4
91.9
82.0
74.5
68.4

Q„)
(a.u. )

122.2
111.9
103.4
90.1

80.7
73.2
67.4

Q);q
{a.u. )

126.4
116.8
107.3
93.5
83.3
75.7
69.6

b Q/Q„l

0.034
0.044
0.038
0.039
0.032
0.033
0.033

0.48
0.47
0.46
0,46
0.46
0.45
0.45

XLind

0.23
0.24
0.24
0.25
0.25
0.26
0.26
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TABLE III. Calculated properties along the HLP melting curve in Al. Notation and units are the
same as in Table II.

1500
2000
3000
4000
5000
6000

ye ar)

0.096
0.211
0.506
0.876
1.35
1.94

Q,„
(a.u. )

109.3
99.7
85.5
75.6
67.7
61.3

n...
(a.u. )

106.8
97.7
84.0
74.5
66.8
60.5

Q&;q

(a.u.)

111.8
101.8
87.0
76.8
68.6
62.1

AA/0„)

0.047
0.042
0.036
0.031
0.027
0.026

0.47
0.47
0.47
0.47
0.46
0.46

XLind

0.23
0.23
0.23
0.24
0.24
0.24

only slightly with compression. The Lindernann ratio in
the solid,

3g Tm

ODR kBM

' 1/2

also remains fairly constant, increasing slowly with
compression. Note, however, that both the GPT and
HLP results predict a more rapid rise of T with increas-
ing pressure than does a Lindemann law with constant
xL;„d. In obtaining xL;„d here, the Debye temperature OD
in Eq. (48) has been inferred from the calculated zero-
point vibrational energy by the Debye formula Eph(Q)
=—', k~OD. At normal solid density, the GPT and HLP
values of OD so obtained are 420 and 397 K, respectively,
in good agreement with the experimental value of 394 K.

Another slowly varying quantity along the melting
curve is the fractional volume change upon melting,
AQ/Q„~, as also listed in Tables II and III. This quantity
initially tends to decrease slightly with increasing pres-
sure, before leveling off at very high pressure. The same
general magnitudes of b.Q/Q„~ are obtained in the GPT
and HLP treatments, although the former values show
some slight, probably unphysical, fluctuations, in addition
to the low value at P =0 already noted above. These
fluctuations are likely an artifact of small quantitative er-
rors in the determination of b.Q, possibly arising from the
numerical differentiation used to obtain pressures in the
GPT. Also in this regard, the low GPT value of AQ/Q„~
at P =0 is clearly out of sequence with the higher-
pressure values. It is interesting to note that, in contrast,
the experimental value of b,Q/Qso~ ——0.054 at P =0 fits
both the GPT and HLP high-pressure sequences very
well.

Finally, our HLP model has been used to determine
solid and liquid Hugoniots in Al. These have been calcu-
lated from an assumed starting state of P=O, Q=112.0
a.u. , and T=300 K, reflecting the normal experimental
conditions. The intersection of the Hugoniots with the
HLP melting curve is illustrated in Fig. 8. From this re-
sult we infer that melting on the actual shock Hugoniot
should begin at about P =1.2 Mbar and end at about
P =1.55 Mbar, in agreement with McQueen's recent pre-
liminary experimental measurements of 1.25 and 1.5
Mbar, respectively. ' We have not attempted a compar-

able GPT calculation, partly because the corresponding
theoretical Hugoniots will not, of course, match the pre-
cise experimental starting conditions without adjustment.
If, however, one simply extrapolates the HLP solid
Hugoniot to the GPT melting curve, as is done in Fig. 8,
an initial melting pressure of approximately 1.4 Mbar is
inferred, so that no large difference in the theoretical pre-
diction is expected in any case.

V. CONCLUSIONS

The general overall agreement obtained for the melting
properties of Al both between theory and experiment and
between the distinct HLP and GPT theoretical treatments
themselves is very encouraging. Apart from uncertainties
about anharmonicity in the solid at low pressure, the com-
bination of pseudopotential perturbation theory, lattice
dynamics in the harmonic approximation for the solid,
and fluid variational theory with suitable reference system
for the liquid indeed seems capable of giving accurate re-
sults over a wide range of pressure in this metal. In par-
ticular, we have clearly identified the soft-sphere reference
system in fluid variational theory as not only being the
best such system available for the case of Al, but also as
quite essential to the quantitative success we have
achieved. There is also considerable support for the gen-
eral premise of our HLP study, namely, that a local pseu-
dopotential accurately fit to EOS data can be successfully
transferred to the calculation of the melting curve. On
the other hand, the differences between the HLP and GPT
melting curves at high pressure should not be regarded as
negligible either, so that pseudopotential nonlocality is ap-
parently significant. This latter aspect of the problem
needs further clarification, however. One interesting pos-
sibility for the future in this regard is to fine tune the non-
local GPT pseudopotentials to the same EOS data and
then reexamine the melting curve.
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