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Using the weighted density approximation for the exchange-correlation energy, the band-structure
and bulk structural properties of the prototypical semiconductors Si and Ge have been systematical-

ly studied. The weighted density approximation is based on an improved description of the
exchange-correlation hole that explicitly accounts for the inhomogeneous charge density found in
real materials. We find that the approximation as proposed is inadequate for the case of semicon-
ductors where charge inhomogeneity is intimately connected to a gap in the excitation spectrum
with consequent qualitative changes in screening. We use a simple extension of the weighted density
approximation which takes account of semiconductor screening. With this functional, we find sub-

stantial improvement in the calculated minimum gap over the results of the usual local-density ap-
proximation as compared to experiment. However, the direct gaps are not significantly improved.
Calculated structural properties are, moreover, found to be in excellent agreement with experiment.
By way of contrast, the weighted density approximation implemented with metallic screening gives a
smaller change in the band structure and more importantly, substantially poorer calculated structur-
al properties. A discussion of the qualitative differences between the weighted density approxima-
tion and the usual local-density approximation for covalently bonded semiconductors is presented.

I. INTRODUCTION

E„, = f dr n(r)e"„,' (n(r)), (3)

One major difficulty in ab initio calculations of the
properties of electronic systems is adequate treatment of
the electron-electron interaction. The most commonly
used approach is that of the density-functional formal-
ism. ' Hohenberg and Kohn established that the total en-
ergy of a system of interacting electrons in an external po-
tential is a functional of the electron density. Further-
more, the total energy is minimized for the correct
ground-state density. This is usually written in the form

E[n]= To[n]+ I dr n(r}v,„,(r)+EII[n]+E„,[n) . (1)

The first term is the kinetic energy of noninteracting elec-
trons of the same density, the second term gives the ener-

gy of interaction with the external potential, the third
term is the electrostatic or Hartree energy, and the last
term contains the rest, the exchange-correlation (XC) en-

ergy. Given the energy functional, the problem of finding
the ground-state energy is reduced to solving a set of ef-
fective one-electron equations with a local potential, the
Kohn-Sham equations (we use Rydberg units
throughout):

[—&'+ &...(r)+ &H(r)+ &..(r)]g; =e;1b; .

The XC part of the effective potential is given by
V„,=5E„,/5n, and the density n is obtained from the
one-particle wave functions in the usual way.

The central difficulty is specification of E„,. The most
widely used approach is the local-density approximation
(LDA):

where e"„(',n} is the XC energy density of the homogene-
ous electron gas of density n. Several parametrizations of
electron-gas data are in common use. The LDA has
proven very successful for calculation of ground-state
properties. ' Generally, the lattice constants are predict-
ed within —1% and the bulk moduli within —10% of ex-
periment. The cohesive energy is quite generally overes-
timated, a result usually attributed to the predicted under-
binding of atoms within the LDA. On the other hand,
when the e; from the Kohn-Sham equations are interpret-
ed as quasiparticle energies, agreement with experiment is
far less satisfactory. The relative positions of valence-
band energies for bulk materials agree well with photo-
emission experiments. However, the Kohn-Sham gap
given by the difference in eigenvalues for the valence-band
maximum and conduction-band minimum (e& =6'ciiM
—evBM) does not agree with the minimum gap Eg for
semiconductors and insulators, although the topology of
the conduction bands agree well. The minimum gaps for
semiconductors and insulators are usually underestimated
by 30—50%.

There are several distinct approaches to this problem.
First, the quasiparticle energies should be obtained from
the one-particle Green's function. There have been several
recent approaches to this, including the work of Strinati,
Mattausch, and Hanke, ' and Wang and Pickett. " Hanke
and co-workers have developed a tight-binding approach
which includes both local-field effects and electron-hole
interactions in the dynamically screened Coulomb interac-
tion which enters the calculation of the Dyson self-energy
operator. Their results for the diamond band gaps and
bandwidth agree well with experiment. The approach of
Wang and Pickett employed a simplified density-
functional scheme with a LDA for the Dyson self-energy
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operator. ' To calculate the self-energy operator, they use
the GW approximation of Hedin' with the screened in-
teraction given by the model dielectric function of Levine
and Louie' that reproduces the screening characteristic of
a semiconductor. For the case of Si, they find a predom-
inantly energy-dependent correction to the eigenvalues
that greatly improves the direct gaps. Agreement with ex-
periment for Eg is also improved.

Levine and Louie' recognized that because the screen-
ing of the electron-electron interaction in a semiconductor
is qualitatively different from the screening in a metal, the
XC energy is consequently different. To include this ef-
fect, they calculated the XC energy of a model insulating
homogeneous electron gas using their model dielectric
function in the scheme of Singwi et al. ' The resulting
LDA gave systematic (but small) improvement for the
gaps in Si.

Perdew et al. ' observed that, in the LDA, a single
electron has a spurious interaction with itself. For a den-

sity corresponding to one electron (one orbital), n;,

&; =Eat:& 1+E-I:«1

should be identically zero. Within the LDA this is not
true. Perdew et al. have developed a self-interaction-
correction (SIC) approximation wherein the spurious self-
interaction 5; is subtracted from E[n] for each occupied
orbital. This orbital-dependent functional gives e; values
for atoms that are in much better agreement with experi-
mental removal energies. However, for bulk materials,
the correction depends on the basis used to calculate 6;,
e.g. , extended versus localized basis, vanishing in the limit
of large volume for the former. Heaton et al. ' have done
calculations for LiCl where the SIC is evaluated with a lo-
calized basis. The resulting band gap agrees much better
with experiment than the LDA result. Perdew and Nor-
man' have proposed a scale-independent approximation
to the SIC which is essentially an energy-dependent poten-
tial. It appears to give good results for the Eg of wide-

gap insulators.
Sham and Schluter' (and independently, Perdew and

Levy ) have investigated formally whether, in fact, the
Kohn-Sham gap can give the true minimum gap in a
semiconductor or insulator. Sham and Schluter have
shown formally that there should be a correction to the
Kohn-Sham gap,

Eg ——eg+ 6,
where 6 is the discontinuity in the functional derivative
of the XC functional for a system with a gap. Their
prescription for calculating 5 via many-body perturbation
theory has yet to be implemented for real materials. Their
results for a simple model indicate that 6 is of the same
order of magnitude as eg, but whether this will still be
true for real materials is unclear. Alternatively, it is not
clear whether the discrepancy between Eg and the Kohn-
Sham gap eg for the LDA noted above is due largely to
inadequacies in the LDA. This must be addressed by do-
ing calculations for bulk materials with improved XC
fUI1ct ionals.

The LDA is formally valid in the limit of slowly vary-
ing electron density. However, in a semiconductor the
charge is localized in bonds. Several approaches have
been proposed for overcoming this problem, including
gradient corrections ' ' and the weighted density approxi-
mation (WDA). ' The WDA is based on an improved
description of the XC hole. Unlike the LDA, the XC-
hole charge is not constrained to be spherica11y symmetric
or centered on the electron. This clearly gives a physically
more sensible description in the asymptotic regions far
from an isolated atom or from a surface. As we will see
in detail, this is also important for semiconductors where
charge is accumulated in bonds. With the exception of
the calculations of Manghi et al. for the energy bands
of GaAs, there have been no complete calculations with
the WDA. In particular, no studies of structural proper-
ties have been done.

In this paper we discuss implementation of the WDA
proposed by Gunnarsson et al. As we will discuss in
detail, this explicitly takes account of the inhomogeneity
of the charge density as it affects the shape of the XC
hole. In addition, inhomogeneity leads to a gap in the ex-
citation spectrum for semiconductors and insulators with
a corresponding change in the screening of the Coulomb
interaction. This also affects the size or extent of the XC
hole. One would expect that these physical effects should
be treated together. The latter can be included by making
use of the Levine-Louie (LL) model calculation for an in-

sulating electron gas discussed above. In order to sort out
these two effects to the degree possible, we have done two
different WDA calculations: one implemented with me-
tallic screening from the usual electron gas and the other
implemented with semiconductor screening using the LL
model. We have done fully-self-consistent calculations for
the prototypical semiconductors Si and Ge. Our results
indicate that both aspects of the inhomogeneous density
of a semiconductor should be treated together. For the
case where the semiconductor screening is included, we
find substantial improvement for the minimum gap. In
addition, in contrast to the results for the WDA with me-
tallic screening, the structural properties for Si and Ge
calculated with that functional are in excellent agreement
with experiment. For the case of metallic screening, we
obtain a cohesive energy which is substantially too small
in contrast to the LDA. A brief report of this work has
been given elsewhere.

The remainder of the paper is organized as follows. In
Sec. II we discuss the WDA and the resulting functional
which incorporates the Levine-Louie scheme. In Sec. III
the implementation of this functional for bulk calcula-
tions is described in detail. We show our results for the
band structure and structural properties of Si and Ge in
Sec. IV. In Sec. V we present some discussion and con-
clusions.

II. THE WEIGHTED DENSITY APPROXIMATION
AND SEMICONDUCTOR SCREENING

We start with the following picture of the XC energy of
an interacting electron system. The exchange and dynam-
ical Coulomb interactions between electrons lead to a local
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depletion of electrons around a given electron, the XC
hole. The XC energy can be written exactly in terms of
the charge associated with the XC hole:

free: 5; in Eq. (4) is zero.
Simple formulations of 6"' are not available. There-

fore we use the analytic ansatz proposed by Gunnarsson
and Jones:

E„,[yg]= f f dr dr 'n(r) 6(x;n)=C(n)(1 —expI —[A(n)/x] I ) . (12)

The XC hole is related to the conditional pair-correlation
function g(„)..

1

n„,(r, r ')=n(r ') f d a[g(„)( rr '; a) 1]—

—1= f dr 'n„(r, r ') . (8)

Although these relations are exact, it is generally not pos-
sible to calculate g(„) for an inhomogeneous system. A
reasonable approximation is required.

Within the LDA, the exact functional G of the density
is replaced by the corresponding homogeneous-electron-
gas result evaluated for the local density, and the argu-
ment of the density prefactor is changed to the local point

n„, (r, r ')=n(r)6"' (
I

r —r ' I;n(r)) .

The r ' integration in Eq. (6) can be done straightforward-
ly, leading to the usual form of the XC functional in the
LDA shown in Eq. (3). The XC-hole sum rule, Eq (8), is
satisfied by the LDA. It is evident that the LDA XC hole
is spherically symmetric and centered on the electron by
construction. The usual explanation for the success of the
LDA for ground-state properties despite these limitations
is that E„, depends only on the spherical average of the
XC-hole charge. Satisfaction of the XC-hole sum rule
leads to systematic cancellation of errors.

In the WDA, a better description of the XC-hole
charge is attempted. The proper density prefactor is re-
tained and 6 is evaluated for a density averaged essential-
ly over the size of the XC hole:

(10)

The parameter n is determined at each point by requiring
the XC sum rule (8) be satisfied:

—1= f dr n(r )6"-(
I

-. —-'I;~(-r)) .

The XC hole needs no longer to remain centered on the
electron, and depends nonlocally on the charge density.
This represents a more physically correct description of
the XC hole in many situations. This approximation is
exact in the homogeneous limit. It is also exact in the
limit of a one-electron system, e.g., the hydrogen atom.
The latter follows because the integral of n(r) must be
unity for this case leading to 6 = —1 as the consistent
solution of Eq. (11) (i.e., n=0 identically). In the sense of
Zunger and Perdew, ' the formalism is self-interaction-

=n(r ')G„(r, r ') .

The pair-correlation function is evaluated for the physical
density. The necessity of a coupling-constant integral can
be traced to the use of To in Eq. (1). Charge conservation
requires that the XC hole must contain precisely one elec-
tron:

The parameters C (n ) and A(n ,) are determined by
demanding that G in Eq. (12) reproduce the homogeneous
limit. In particular, we require that the sum rule (8) be sa-
tisfied in that limit and that the energy density be given
properly:

—I=n f dr'6(Ir —r'I;n), (13a)

(13b)

With the ansatz (12), these yield

(n ) =, I, /[I z e„",'—( n )],
C ( n ) = —1/[I2n A, (n )],

(14a)

(14b)

(15b)
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FIG. 1. Plot of the parameters C(n) vs A.(n) that determine

the function G(x;n) in Eq. {12). For this plot, the Ceperley-
Alder XC data for the electron gas was used.

where the constants I~ and I2 are given by

I& ——4mF&(0) =4m f y dy(1 —e ' ~ ), (15a)

I2 4m.F2(0)=4m——. f y dy(1 —e '~"
) .

The functions F& and F2 are defined below. These in-
tegrals can easily be evaluated in terms of I" functions.
One should note that although 6 is specified in terms of
the energy density of a homogeneous electron gas, we are
really constructing the ansatz (12) such that it has the
same I/r moment as 6"' . The XC-hole sum rule re-
quires that they have the same zero moment.

Because we replace the exact G" with this simple an-
alytic form, the one-electron system is no longer exact.
The reason for this is illustrated in Fig. 1, where C(n)
versus A(n ) is sh, own for the case of the Ceperley and Ald-
er (CA) form of e„",' . Because lim~

I
C

I
&1, there

will be a consistent nonzero n in Eq. (11), even for the
case of a one-electron system. The XC-hole charge is no
longer just —n ( r ) as it must be for a one-electron system.
This result is not an artifact of the particular form chosen
for 6"', but rather due to its scale invariance. Only the
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length scale (k) and overall scale ( C) depend on the densi-

ty, not the shape. This is too silDple to represent the de-
tailed structure of G, even for the homogeneous electron
gas. The degree of residual self-interaction in this approx-
imation cannot be evaluated a priori. However, Fig. 1

suggests that for any orbital with characteristic extent less
than about 4 a.u. , it will be small. We have done self-
consistent calculations for the hydrogen atom. The WDA
with the ansatz (12) gives the total energy differing from
the exact result by less than 0.1% as compared to —10%
within the LDA. This confirms that there is essentially
no self-interaction for an electron localized on the scale of
an atom for this model.

The screening built into the usual LDA is intrinsically
metallic. However, screening in a semiconductor is quali-
tatively different due to the gap in the excitation spec-
trum. In the method of Singwi et al. ' for treating the
XC energy of the homogeneous electron gas, the spectrum
enters through the irreducible polarizability, e.g., the
Lindhard result, which has a metallic spectrum. Levine
and Louie' proposed a model dielectric function ap-
propriate for semiconductors:

tL 2(q, ro ), ro )ycoy
e2 (q, ro)=

where e is the Lindhard dielectric function, coF is the
Fermi energy, and co =co —(yro~) . e& is obtained
from the Kramers-Kronig relations. The additional pa-

- rameter y=Zz/co+ is a dimensionless measure of the
average gap in the optical spectrum. As such it gives a
measure of the effect of the gap on screening. As dis-
cussed by Callaway, this is an appropriate parameter for
a perturbation expansion of the effects of the gap in a
nearly-free-electron model. There, it is essentially the ra-
tio of the gap to the bandwidth. Here the parameter y is
determined by requiring e""(q =0, co=0) reproduce the
known dielectric constant. y=0.4 is appropriate for Si
and y=0.35 for Ge. As discussed in Ref. 14, e repro-
duces well the numerically calculated semiconductor
dielectric function for Si. It satisfies the important dielec-
tric function sum rules.

Using this for the polariqability, Levine and Louie ob-
tain a two-parameter- (»„y) model XC energy density
and chemical potential for an insulating homogeneous
electron gas via the method of Singwi et al. In this ap-
proach, the details of the model are subsumed in the
dielectric function. Alternatively, one could start with a
model spectrum for a homogeneous electron gas with a
gap (such as the Callaway model) and proceed directly to
calculation of e„,. However, the advantage of the LL ap-
proach is the use of an analytically tractable dielectric
function which satisfies the f-sum rules. Then one has all
the information required to obtain XC data using the
method of Singwi er al. for a model with the effect of the
qualitatively different screening in a semiconductor.
Physically, the effect of including a gap in the spectrum is
to tighten the XC hole by folding in contributions with
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eau —Q.Q2

&I
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—0.06

—0.08
0
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2

Flax. 2. Difference between the q»»~[1 —g (r)) with
without the presence of a gap (y =0.4 vs y =0.0) for r, =2.0 ap-
propriate for Si.

wave vector larger than k~. This is illustrated in Fig. 2.
The pair-correlation function computed using the usual
metallic spectrum is compared to the pair-correlation
function for a spectrum with a gap appropriate for Si.
The quantity plotted is actually

q,'»'{[1—g(», y=0.4)1—[1—g(», y =O)]I

for», =2.0. The XC hole thus is given more weight in
the region of small » at the expense of the region farther
out (the XC sum rule must be satisfied).

In the formulation of the WDA with the ansatz given

by Eq. (12) for G"', the nature of the screening is built
in through the homogeneous limit in Eqs. (13) for deter-
mining the parameters C(»T) and A, (n ). Metallic screening
is implicit if we demand that the WDA reduce to the usu-

al homogeneous electron gas, e.g., the Ceperley-Alder
data. The effect of semiconductor screening on the size of
the XC hole is accounted for by constraining the ansatz to
reproduce the results of the LL model. This is done in

Eqs. (14) by using the e„, from the LL model. We have
used the interpolation formulation provided in Ref. 14 for

p„, integrating to obtain e„,.
At this point we would like to note that we have not

given a formal derivation of this approach to including
the effects of semiconductor screening. We do feel that
this is a physically plausible approach. Although we refer
above to a "model insulating electron gas, " one should
really think in terms of a description of a semiconductor
where off-diagonal elements of' the polarizability have
been neglected. In the Levine-Louie approach the diago-
nal part of the dielectric matrix is calculated for a model
semiconductor with the approach of Singwi et al. used to
include the exchange-correlation effects. Then a pair-
correlation function more appropriate for a semiconduct-
or is obtained from the diagonal components. We feel
that justification for this procedure is to be found a pos-
teriori in the present situation, where we seek a consistent,
computationally viable approximation for the XC func-
tional in a semiconductor.

In the WDA the calculation of the XC energy is
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G(
~

r —r ' ~;n(r)}
/r —r'f

(17)

equivalent to obtaining the XC energy density at each
point. From Eqs. (6}and (7), 'this is given by

where the ansatz (12) is used for G. In order to obtain the
density, total energy, and Kohn-Sham spectrum, we need
the XC potential V„,. Calculation of the functional
derivative from (6} gives three contributions, V„,
= V~+ V2+ V3. These are given by

V&(r) =e„,(r }, (18a)

(18b)

„n(r '}n(r ") BG(
~

r ' —r" ~;n) 5n(r ')
dl dr

/

r' —r"
[

Bn „-=„-(-, ) 5n(r)

The functional derivative of the average density n ( r ) can be obtained from the sum rule (11):

(18c)

= —G(
/

r —r ' /;n(r ')}
5n(r)

„,
)
BG(

~

r ' —r "',n)
Bn n=n( r ')

The first term is just the energy density, while the other
two terms come from the variation of the XC hole with

density. In the limit of homogeneous density, the first
two terms reduce to e„",' (n), while the third term reduces
to p„",' (n) —Ze„"™(n).In the limit of large distance from
a localized charge distribution, such as an atom, the ener-

gy density varies asymptotically as —1/r (Ry units),
which is the correct semiclassical behavior. The other
two terms in the potential drop off faster in the large-r
limit so that we also have lim„V„,——1/r. The
correct semiclassical limit would be 2/r. Note, in —dis-
tinction, that the LDA gives an exponential dropoff at
large r. For illustrative purposes, the three terms in V„,
are displayed in Fig. 3 for the case of the Si pseudoatom
(solid lines). These are calculated for a self-consistent
charge density within the WDA with the CA correlation
used in the homogeneous limit. For comparison, the cor-

responding LDA terms are shown for the same charge
density (dashed lines). We also remark that Gunnarsson
and Jones chose the ansatz in Eq. (12) to reproduce within
the WDA the proper image behavior of an electron far
from a metal surface.

The previous WDA calculation of the Si band structure
by Kerker was done with a drastic approximation for
V„,. He assumed that V2 =—V~ and that V3=0. With

this approximation, the homogeneous limit of V„, is in-
correct. In fact, from that limit we see that his approxi-
mation is analogous to a = 1 in the Xa approximation, as
pointed out by Wang and Pickett. " In the calculations
for Rh of Borstel et al. , similar approximations were
employed. For calculations on Cu, Przybylski and
Borstel ' continue to force V2 = V~, but include V3 with a
local-type approximation. Here we correctly incorporate
all the terms of V„, in the calculation without simplifying
approximation.

O

C
4)

0
CL

1.0

0.5

0. 0

Si
III. DETAILS OF THE CALCULATION

A. Calculation of the exchange-correlation
energy and potential

5

C
—].0

R
E

—1.5S

Q. Q 2. 0 4.0 G. Q

R (a.u. )

FIG. 3. Comparison of the three terms in the WDA XC po-
tential to the corresponding LDA terms for the case of the Si
pseudoatom. V&, Vq, and V3 are calculated from the charge
density of the pseudoatom done self-consistently within the
WDA (CA XC data used to obtain the parameters C and A, ).
The terms from the LDA cases are calculated for the same
charge density and are for the CA XC data.

We restrict the discussion to the case of crystalline
solids (or, more generally, systems with periodicity). For
other cases, such as atoms with spherical symmetry, other
numerical approaches to calculating the XC energy and
potential may be more appropriate. We will take up the
case of atoms in particular in a future publication.

For the periodic case, we expand the charge density in a
Fourier series in reciprocal space:

n ( r) = g n(G}e'
G

Then, to obtain the XC energy, we need to calculate the
XC energy density at each point in the real-space cell.
Kerker has discussed this calculation. 9 Using (20) in ex-
pression (17) for e„,yields
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e„,(r)=4m. C(rQ, (r) g n(G)e' 'F&(q)

q=A( r )G

(21)

A compressed notation for C and A, has been adopted, in
which it is understood that the spatial dependence of these
parameters comes from their dependence on n(r). The
function F~ (q) is defined by

F&(q)= —f dy(1 —e ' ~ ) sin(qy) .
q 0

(22)

—1=4mC(r)A, (r) g n(G)e' 'E2(q)

q =A( r )6

(23)

In our calculation we start with an initial value for n and
augment it iteratively until (23) is satisfied to 1 part in
10 . The function F2(q) is defined by

F2(q) =—f y dy(1 —e '~~ ) sin(qy) .
q 0

(24)

The average density n(r) is determined at each point by
the requirement that the sum rule (11) be satisfied. Using
(20) yields, for the sum rule,

Xe ' ' Fz(q) (2&)

BG(x;n ) =a(n)G(x;n)+P(n)e '"~"' /x',
Bn

where the parameters a and 13 are

( )
1 BC

C(n) Bn

(29)

(30a)

P(n)=5C(n)A, (n)
Bn

(30b)

From the form of (29), the first terms of h& and h2 are
proportional to e„and the sum rule, respectively. The
second terms can be computed in an analogous fashion as
they are of convolution form. The result is

q=A( r ')G

Calculation of V3 is reduced to obtaining the auxiliary
functions h ~ ( r ) and h z( r ). Note that with the ansatz
(12), the required derivative of G is given by

The functions E~ and F2 are calculated once on a uniform
grid and stored. Required values are obtained by interpo-
lation.

In the calculation of the potential V„„the first term is
given by (21) above. For the second and third terms, an
alternative approach is required. If the Fourier com-
ponents of V2 are examined directly and use is made of
(20), the result is

h&(r)=2a(r)V&(r)

A, (r)
q=i( r )G

(31a)

V2(G)= f dr 'n(r')C(r ')e ' ' F&(q)

(25)

h, (r)= —a(r)+ g n(G)e'o'E, (q)
A, (r)

q=k( r )G

(31b)

where 0 is the volume of the unit cell. The third term is
somewhat more involved. Note first that, upon rearrange-
ment, one has

Compressed notation is used for a and P as before. The
auxiliary functions E3(q) and E4(q) are defined by

F3(q)= —f, e ~~ sin(qy),
I dy

(32a)
0 y5

V3(r)= —f dr'n(r') G(
~

r —r'~;n(r')), (26), hi(r')
h2(r ')

F4(q) = —f 4 e '~~ sin(qy) .4 4 (32b)

where the functions h ~ and h2 are defined by

h (-~) f d-ii n(r")
fr' —r"

/

BG(
/

' — "f;r)
Bn n=n( r ')

(27a)

h (,) f d „,
(

„,
)

BG(
~

r' —r'"~n)
Bn n=n( r ')

(27b)

Then, V3 can be calculated in the same way as Vz.

As for F& and F2, these are computed once for a uniform
grid, and needed values are obtained by interpolation.

Since we use a pseudopotential formalism, the charge
density is smooth and can be obtained in real space by fast
Fourier transform from reciprocal space. Functions de-
fined on the uniform grid in real space then contain
equivalent information to those in reciprocal space. Re-
quired real-space integrations are replaced by summations.
Since e„„C,A, , etc. are required for all points in the real-

space cell, the crystal symmetry is used to effectively con-
fine the need to calculate these to the irreducible wedge of
the real-space cell. We have found that the added cost of
calculating V„, within this WDA is marginal compared
to the cost of matrix diagonalization for the case of the
diamond structure.
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TABLE I. Comparison of pseudoatom calculations where the ionic pseudopotential is screeried with
the WDA to all-electron atom calculations where the screening is done with the WDA in a shell-

partitioned model. Results for two configurations of Si are shown. Energies are reported in Ry.

Configuration

i s2p2

State

Es

Pseudoatom

—0,8494
—0.3551

Shell
partition

—0.8371
—0.3480

0.0123
0.0071

Si s'p —0.9023
—0.3946

—0.8915
—0.3878

0.0108
0.0068

~Etotal ,—0.5012 —0.4966 0.0046

B. Implementation of the pseudopotential formalism

In the present calculations, the ab initio ionic pseudopo-
tential is generated from the all-electron atom by the
method of Kerker. For generation of the pseudopoten-
tial, the singly ionized configuration s p

' d is used to
obtain the s, p, and d potentials. The r, parameter
entering the generation of the potentials is chosen to be
r, ,= 1.58, r, z ——1.93, and r, d= 1.93 for Si, and
r„=1.57, r, z

——2.02, and r, d
——2.38 for Ge. We found

the potentials to have excellent transferability to the
ground-state and nearby excited configurations (e.g. , s ~p )

with eigenvalues reproduced to within —1 mRy and
total-energy differences better.

The atomic all-electron calculation is done using the
LDA with the CA form. Thus, the intershell XC interac-
tion frozen into the ionic pseudopotential is within the
LDA. Then when the ionic pseudopotential is used in the

bulk calculation or in a pseudoatom, it is screened with
the WDA. This approximation is similar to the shell-
partitioning ansatz proposed by Gunnarsson et al. in con-
junction with their introduction of the WDA. The orig-
inal idea was that the WDA would adequately represent
the intrashell XC effects but overestimate the intershell
XC interaction. They argue that the LDA better
represents intershell effects and suggest dividing the
atomic charge density into the usual shells for purposes of
calculating E„,. The intrashell part is done within the
WDA and the intershell part is calculated using the LDA.

We have quantitatively compared our use of an ionic
pseudopotential generated from an atom calculated using
the LDA with the shell-partitioning ansatz for the case of
Si. We first do self-consistent pseudoatom calculations
where the screening is done with the WDA using CA XC
data in the homogeneous limit as described in Sec. II
above. For comparison, we next do self-consistent all-

TABLE II. Comparisori of calculated band energies at high-symmetry points to experiment for Si.
The four different calculations displayed are discussed in the text. The energies are reported in eV and
are referred to the valence-band maximum.

CA
LDA

LL

Silicon
Present work

WDA(CA) WDA(LL) Expt. '

0.56 0.70 0.71 0.90 1.17

I 2s,.
I rs, c
I'2, c

—11.92
0.00
2.57
3.29

—11.87
0.00
2.6S
3.33

—11.85
0.00
2.69
3.27

—11.78
0.00
2.81
3.34

—12.5+0.6
0.0
3.37
4.2

X)„
X4„
X)„

—7.77
—2.86

0.71

—7.74
—2.82

0.8S

—7.74
—2.80

0.87

—7.69
—2.74

1.06
2.9"
1.30'

L)„
L3', v

Li,c

L3,c

—9.58
—6.97
—1.21

1.55
3.40

—9.55
—6.90
—1.19

1;63
3.50

—9.55
—6.89
—1.18

1.62
3.54

—9.50
—6.80
—1.16

1.73
3.68

—9.3+0.4
—6.7+0.2
—1.2+0.2

2.1

3 9+0 1"

'Reference
bReference
'Estimated
Reference

35 except where noted.
36.
from conduction-band minimum and longitudinal effective mass.
37.



MARK S. HYBERTSEN AND STEVEN G. LOUIE 30

TABLE III. Comparison of calculated band energies at high-symmetry points to experiment for Ge.
The four different calculations displayed are discussed in the text. Energies are reported in eV and are
referred to the valence-band maximum.

CA
LDA

LL

Germanium
Present work

WDA(CA) WDA|,'LL) Expt. '

0.52 0.60 0.69 0.74

I („
I 2s,.
I2,
I 1s,c

—12.50
0.00
0.74
2.58

—12.47
0.00
0.75
2.63

—12.45
0.00
0.74
2.71

—12.40
0.00
0.78
2.79

—12.6
0.0
0.89
3.21

—8.57
—3.03

0.80

—8.56
—3.00

0.91

—8.55
—2.97

0.95

—8.52
—2.92

1.11
—3.15+0.2

1.3 +0.2

L2

L3 „

L3,c

'Reference 35.

—10.38
—7.40
—1.38

0.52
3.74

—10.36
—7.36
—1.37

0.58
3.82

—10.35
—7.34
—1.35

0.60
3.88

—10.32
—7.28
—1.33

0.69
3.99

—10.6 +0.5
—7.7 +0.2
—1.4 +0.3

0.74
4.3 +0.2

electron atom calculations with the shell-partitioning an-
satz implemented as follows. The atomic charge density
is partitioned into only core and valence shells. The intra-
shell XC is calculated using the WDA with CA XC in the
homogeneous limit. The intershell XC is treated in the
LDA with the CA form. The details of these atomic cal-
culations will be described elsewhere. Table I shows the
results of these calculations for two configurations of Si.
The Kohn-Sham eigenvalues for the valence electrons are
shown for the pseudoatom and the shell-partitioned all-
electron atom in Rydbergs. In addition, the difference in
total energy for the two configurations is shown. The
comparison shows small differences. In particular, the
difference in total energy is well reproduced. Thus, our
approach is quantitatively similar to the shell-partitioning
approach.

The band structure and total energy are calculated with
the usual pseudopotential approach. We use a plane-
wave basis to expand the Hamiltonian. For the calcula-
tion of the band structure, plane waves with kinetic ener-

gy up to 14 Ry are included in the basis, and the calcula-
tion is done for the experimental lattice constant. This as-
sures convergence of the eigenvalues to within better than
0.05 eV in general, and about 0.1 eV for the I 2, state in
Si, which converges more slowly. For the calculation of
structural properties, a cutoff of 11.5 Ry was used. Ten
special k points in the irreducible Brillouin zone are
used for computing the charge density and other quanti-
ties requiring a sum over the Brillouin zone.

IV. RESULTS FOR SILICON AND GERMANIUM

A. Band structure

Our results for the band energies of Si and Ge at high-
symmetry points are displayed in Tables II and III,

respectively. Results of four different calculations are
compared to experimental values largely obtained from
optical and photoemission experiments. The first
two columns show the results of LDA calculations with
CA and LL correlation for reference. These results agree
well with previous calculations. ' The second two
columns show our WDA calculations. We have done cal-
culations with both the case of CA correlation in the
homogeneous limit and the LL XC data in the homogene-
ous limit. This allows some evaluation of the relative con-
tributions from nonlocality and semiconductor screening
(LL scheme) as discussed in Sec. II.

The minimum gap is indirect in both Si and Ge. For Si
the conduction-band minimum is evaluated at 85% of the
distance to the zone edge along A. In Ge it is at the sym-
metry point L. For both Si and Ge the discrepancy with
experiment for Eg is significantly reduced when both non-
locality (WDA) and the gap in the spectrum (LL) are ac-
counted for in the XC. (Note that relativistic effects, in-
cluding spin-orbit couplings, are neglected in this calcula-
tion, and would reduce the calculated minimum gap in
Ge.) The effects of nonlocality and semiconductor screen-
ing are comparable in magnitude for the rninimurn gap.
A similar effect is seen for the conduction-band energies
at X and i. which are consistently improved. However,
the direct gaps are not substantially improved. In particu-
lar, the I 2, state in Si is very insensitive to these changes
in the XC potential. For the valence-band states, the
dispersion in the upper valence band is somewhat weaker
than that in the LDA. The bandwidths are consistently
narrowed.

To obtain some insight into these changes, we examine
the XC potentials. Contour plots of the XC potential in
the (110)plane of Si for the four cases considered here are
given in Fig. 4. In each case the self-consistent potential
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FIG. 4. Contour plots in the (110)plane of the self-consistent
XC potential for the four different calculations reported in the
text of Si: (a) is the LDA with the CA XC data, (b) is the LDA
with the LL XC data, (c) is the WDA(CA), and (d) is the
WDA(LL). The bond chain is indicated for each case. Dashed
lines denote negative contours. The contour interval is 0.1 Ry.
Refer to Table IV for values of the potentials at symmetry sites.

is shown. To aid in detailed comparison, the value of the
XC potentials at several symmetry sites in the unit cell are
given in Table IV. The implementation of the semicon-
ductor screening in a LDA as done by Levine and Louie
[Fig. 4(b)] leads to an XC potential that is qualitatively
the same as in the usual LDA [Fig. 4(a)]. However, it is
deeper at every point in the unit cell because the XC hole
is tighter, as discussed in Sec. II above and in Ref. 14.
The improvement in the gaps and decrease in the
valence-band dispersions is largely due to the relative
lowering in energy of the valence-band maximum (I'25 „
complex). As can be seen from Table IV, the XC poten-
tial in the bonding region is more negative with respect to
the atomic site and interstitial region than for the usual
LDA.

Implementation of the WDA(CA) [Fig. 4(c)] leads to a
qualitative change in the XC potential in the region near

the atomic sites. The XC potential is relatively smoother
going along the bond chain. The reason for this can be
seen as follows. The size of the XC hole is determined by
an average of the charge density over the XC hole. This
is typically of order 2 a.u. for an electron in the bond
chain of Si. (See the discussion of Fig. 5 below. ) That
this does not change much from the bond region to the
atomic site is due, in the first case, to the fact that the XC
hole encompasses most of a bond, whereas in the second
case the XC hole samples part of each of the four
tetrahedral bonds. As a result, the parameter n varies by
only about 10%%uo from the bond region to the atomic site,
and the smoother potential results. Furthermore, the
deepest point in the bonding region is precisely at the
center of the bond, in contrast to the LDA case where the
charge density, and hence the XC potential, shows a slight
double-peak (-well) structure. This is attributable to the
nonlocal dependence of V„, on the charge.

Quantitatively, the WDA also gives an XC potential
that is relatively deeper in the bond region as compared to
the interstitial region. This gives the improvement in the
indirect gap, as the conduction-band states near X are
predominantly in the interstitial region. The null results
for the direct gaps at I come from a more subtle interplay
between the deeper XC potential on the atomic sites and
the steeper rise of the potential away from the bond chain.
This is particularly true for the I 2, state which is cen-
tered on the atomic sites but extends into the antibonding
direction.

The effect of coupling the semiconductor screening to
the WDA [Fig. 4(d)] is similar to the LDA case. The
tighter XC hole leads to an enhancement of the deeper
XC potential in the bond region relative to the interstitial
region. Consequently, the indirect gap is further im-
proved. We show a contour plot of the parameter A. in
Fig. 5 for both the WDA(CA) and the WDA(LL) cases in
Si. Table V gives values at symmetry sites. As noted
above, the size of the XC hole in Si is of order 2 a.u. It
varies very slightly along the bond chain, but by -30%
going into the interstitial region. In addition, as shown in
Fig. 2, the semiconductor screening results in a tighter
XC hole.

TABLE IV. Comparison of the XC potentials for Si at sym-

metry points for the four different calculation schemes dis-
cussed in the text. Potentials are reported in Ry. Refer to Fig.
4

Site CA LL WDA(CA) WDA(LL)

Atomic
Bonding
Antibonding
Hexagonal

—0.411
—0.984
—0.682
—0.371

—0.437
—1.063
—0.727
—0.388

0.807
—1.044
—0.666
—0.361

—0.832
—1.142
—0.707
—0.371

FIG. 5. Contour plots in the (110)plane of Si of the parame-
ter )II that enters the ansatz Eq. (12) for G(r) for the cases (a)
WDA(CA) and (b) WDA(LL). Both are calculated from self-
consistent charge densities. The contour interval is 0.05 a.u.
Refer to Table V for values at symmetry sites.
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TABLE V. Comparison of the parameter A, at symmetry sites
for the two cases WDA(CA) and WDA(LL) in Si based on self-
consistent charge densities in each case. A, is given in a.u. Refer
to Fig. 5.

Site

Atomic
Bonding
Antibonding
Hexagonal

A, (CA)

1.66
1.63
1.84
2.09

A, (LL)

1.52
1.51
1.73
1.99

To further illustrate the structure of the WDA, we
show a contour plot of each of the three terms in the XC
potential in Figs. 6 and 7 for the case of the WDA(CA) in
Si. Included for comparison is the corresponding LDA
term in each case calculated for the same charge density.
Table VI gives the values of the potentials at symmetry
points. Figure 6 shows V& (the energy density) and V2

for the WDA and e„", . The qualitative difference be-
tween V& and the LDA energy density is similar to that
discussed above for the full XC potential. Quantitatively,
the WDA energy density is significantly deeper on the
atomic site and in the interstitial region. However, the
LDA energy density is slightly deeper in the bonding re-
gion (for the same charge density), leading to only small
changes in total energy between the two schemes. In gen-
eral, the Wl3A energy density is smoother through the
unit cell. The WDA V2, which also reduces to e„, in the

homogeneous limit, shows stronger variation through the
unit cell. We can understand this with reference to Eq.
(18b). The density argument of the pair-correlation func-
tion is effectively averaged over the unit cell. Viewing the
function 6 as a cutoff function in the Coulomb integral,
the parameter n(r ') determines the cutoff radius A, dis-
cussed in Sec. IIIA and illustrated in Fig. 5. This is
smaller in the bond chain than in the interstitial region.
For a point in the bond chain, the effect of the integration
in Eq. (18b) is to include a A, larger, on average, than that
for the case of the energy density in Eq. (17). The result
is that Vz is deeper than V& along the bond chain. On the
other hand, for a point in the interstitial region, the situa-
tion is reversed leading to V& deeper than V2. Physically,
the differences between V~ and Vq arise from the lack of
symmetry of G under interchange of r and r' in the
WDA. The ramifications of this for asymptotic regimes
was discussed in Sec. II above.

In Fig. 7 we show a contour plot of V3 for the case of
the WDA(CA) in Si as well as the corresponding LDA
term in the XC potential. With the exception of the
atomic site, the qualitative and quantitative differences
are minimal. In fact, a local approximation for V3 would
probably not effect the total-energy results appreciably.
However, the direct gaps at I would probably be worse,
as the total potential would be deeper on the atomic sites.

B. Ciround-state properties

To investigate the structural properties predicted by the
WDA, we have calculated the total energy as a function

~ r'
/ r lr
/

Ll -i)I ii~ r /+S

FIG. 6. Contour plots in the (110) plane of Si comparing (a)
V& and (b) V& in the WDA XC potential to (c) the LDA energy

density calculated from the same charge density (self-consistent
calculation with WDA). Both cases use the CA XC data. The
conventions are the same as for Fig. 4 with contour interval
0.075 Ry. Refer to Table VI for values of the potentials at sym-
metry sites.

of the lattice constant. We use nine different lattice con-
stants, giving cell volumes ranging from 80% to 110% of
the equilibrium value. These results are then fitted to the
Murnaghan equation of state. The fit obtained typically
displays a rms variation of 0.1 mRy per atom or less.
From the fit parameters we obtain the equilibrium lattice
constant, bulk modulus, and pressure derivative of the
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FIG. 7. Contour plots in the (110) plane of Si comparing (a)
V3 in the WDA XC potential to (b) the LDA p„,—2e„, as in
Fig. 6. The conventions are the same as for Fig. 4 with contour
interval 0.075 Ry. Refer to Table VI for values of the potentials
at symmetry sites.

bulk modulus at zero pressure, as well as the equilibrium
energy per atom. The cohesive energy is obtained by com-
paring the equilibrium energy of the solid per atom extra-
polated to full convergence to the total energy of the pseu-
doatom calculated with the same XC scheme. The correc-
tion for zero-point motion is included in the cohesive en-

ergy using a Debye model (but is neglected for the
structural properties, not affecting those results within the
reliability of the calculations}. The total energy per atom
is found to be converged to within —1 mRy with a
plane-wave cutoff of 20 Ry. The equilibrium energy of
the solid obtained at a 11.5-Ry cutoff is corrected for con-
vergence. The correction is taken to be the total-energy

difference between 20- and 11.5-Ry cutoff calculations.
Our results, together with experimental results,

are displayed in Table VII. We have included calculations
with the LDA using CA XC data for reference. These re-
sults agree well with previous calculations for Si and Ge
within the established reliability of these types of calcula-
tions (1% for lattice constant and 10% for bulk
modulus). The cohesive energy is larger than in the pre-
vious calculation. This is largely attributable to the use of
different XC data in the present calculation. From Table
VII it is clear that the WDA(LL), which includes the
semiconductor screening, gives structural properties in
good agreement with experiment. The results are compar-
able to those obtained with the LDA. The cohesive ener-

gy requires calculation of the atomic total energy using an
XC scheme consistent with the WDA(LL). The Levine-
Louie model is not directly applicable to isolated atoms,
so we have not been able to calculate the cohesive energy
predicted by this XC functional. The solid-state results
are comparable to those obtained with the LDA.

The WDA(CA), on the other hand, gives results that do
not agree so well with experiment. In this case we are also
able to obtain the cohesive energy. The Si and Ge atomic
ground states are triplet configurations. We do the
WDA(CA) calculation for the singlet configuration and
take the small spin-polarization correction from LDA cal-
culations. The result is that the crystal is underbound by
-30%. This seems to be' consistent with a lattice con-
stant that is too large. The overestimation of cohesive en-
ergies found quite generally in LDA calculations is often
attributed to underbinding in the atomic calculation (con-
sistent with total energies found for light atoms}. In the
case of the WDA(CA), most of the change is due to over-
binding in the pseudoatom. In Sec. IV A we discussed the
energy density in the WDA(CA) as compared to the
LDA. As noted, the differences largely cancel, giving a
small net change in the total energy in the crystal, typical-
ly -20 mRy/atom. However, examination of the corre-
sponding pseudoatom results shown in Fig. 3 for Si re-
veals a different situation. The energy density for the
WDA is consistently deeper than the energy density for
the LDA for the same charge derisity. As a result, the
WDA(CA) pseudoatom is -0.2 Ry deeper than the LDA
pseudoatom. This is consistent with our results for light
atoms calculated self-consistently within WDA(CA) using
the shell-partitioned ansatz of Gunnarsson et al. and with
their first-order perturbation results.

In Table VIII we show the x-ray form factors calculat-
ed with the WDA(LL) as compared to LDA results and
experiment. The valence-charge form factors are

TABLE VI. Comparison of the terms in the WDA(CA) XC potential to the corresponding LDA
terms for the same charge density in Si [self-consistent calculation with WDA(CA)]. Potentials are re-
ported in Ry. Refer to Figs. 6 and 7.

Site

Atomic
Bonding
Antibonding
Hexagonal

—0.622
—0.735
—0.536
—0.346

V2

—0.720
—0.806
—0.483
—0.219

LDA
XC

—0.299
—0.759
—0.520
—0.281

V3

0.535
0.497
0.353
0.204

VLDA 2 LDA
XC XC

0.209
0.527
0.363
0.197
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TABLE VII. Comparison of the calculated equilibrium structural properties to experiment for Si and
Ge.

Lattice, constant
(A)

Bulk modulus
(kbar)

Cohesive energy
(eV)

5.40

Present work
WDA(CA)
WDA(LL)

5.48
5.39 .

850
940

Expt. 5 43' 990" 4.63'

LDA 5.60 730 4.67

Present work
WDA(CA)
WDA(LL)

5.68
5.61 .

620
700

2.64

Expt. 5.65' 770" 3.85'

'Reference 40, extrapolated to 0 K.
Reference 35, measured at 77 K.

'Reference 41.

TABLE VIII. Comparison of calculated x-ray form factors
to experiment for Si and Ge. Units are electrons per unit cell.
The calculations displayed are discussed in the text.

(111)
(220)
(311)
(222)
(400)
(331)

LDA

15.10
17.23
11.24
0.34

14.76
10.08

Present work

Silicon
15.16-
17.25
11.23
0.39

14.74
10.09

Expt. '

15.19
17.30
11.35
0.38

14.89
10.25

(111)
(220)
(311)
(222)
(400)
(331)

38.75
47.23
31.15
0.28

40.47
27.30

Germanium
38.81
47.26
31.14
0.32

40.46
27.31

39.42
47.44
31.37
0.27

40.50
27.72

'References 42—44.

taken from self-consistent calculations with the experi-
mental lattice constant and plane-wave cutoff of 14 Ry.
The core charge is taken from a self-consistent LDA
atomic calculation for the ground-state configuration.
The LDA results agree well with previous calculation.
The WDA(LL) results give only a small change. The
form factors are dominated by the core charge. However,
we do notice that the forbidden (222) component agrees
somewhat better with experiment for the case of Si, but
worse for the case of Ge.

V. DISCUSSION AND CONCLUSIONS

In the WDA(LL) approach for XC in a semiconductor,
two important improvements over the usual LDA are
brought together. We wish to discuss each in more detail.

Because the density prefactor in the XC hole in Eq. (10)
has the proper argument, the XC hole, in general, is dis-
placed from the electron at r and is anisotropic, reflecting
the actual electron density. We have illustrated this for
the case of Si in Figs. 8—10. Part (a) of each figure is a
contour plot of the XC hole in the LDA. In lieu of the
actual pair-correlation function for the homogeneous elec-
tron gas, we use the analytic form (12). The result repro-
duces the e„", , but may differ in detail from the actual
XC hole in LDA. In part (b) of each figure a contour plot
of the XC hole in the WDA(LL) is shown. In each case,
the contour plot is for the (110) plane, the electron loca-
tion r is shown by a plus, and appropriate bond chains
are drawn. Figure 8 is for the case of an electron in the
center of the bond. In the LDA the XC hole is spherical-
ly symmetric and centered on the electron, as for all loca-
tions. In the WDA the XC hol'e remains centered on the
bond because of the symmetry of the charge density, but
it has the shape of the charge density in the bond region.
Figure 9 is for the case of an electron at the antibonding
site. Now the XC hole in the WDA is shifted away from
the electron toward the bonds: the one in the plane of the
figure and the two that are in a plane perpendicular to the
page. Figure 10 is for the case of an electron at the center
of the fcc cubic cell. Once again, the XC hole in the
WDA is shifted toward the prominent features in the
charge density.

The anisotropy in the XC hole is not expected to have a
large effect on the total energy. As discussed in Sec. IV B,
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(a) (b) (a) (b)

FIG. 8. Contour plots in the (110) plane of Si comparing the
XC-hole charge for an electron at the bonding site (denoted by a

+ ) for (a) the LDA to (b) that for the WDA(LL). The contour
interval is 4.0, in units of electrons per cell.

FIG. 10. Same as in Fig. 8 for an electron at the hexagonal
site. The contour interval in (a) is 0.15, in units of electrons per
cell. The contour interval in (b) is 0.5, in units of electrons per
cell.

(a) (b)

this is true as regards the percentage change in total ener-

gy from LDA to WDA(CA). However, as a function of
volume, the results of the WDA(CA) are not so close to
the LDA, thus changing the structural properties. We do
expect the details of the XC hole to affect the XC poten-
tial and hence the spectrum. However, the net effect is
somewhat subtle, leading to relatively small changes in
most features of the band structure. In essence, the WDA
introduces a different relationship between the total ener-

gy and potential (charge density). The changes in density
are minor, but the smoother XC potential along the bond
chain is sufficient to'yield a softer bulk modulus.

The second feature we have incorporated is the effect of
semiconductor screening. This enters through the size or
extent of the XC hole via 6"' in Eq. (12). As illustrated
in Figs. 2 and 5, the resulting XC hole is tighter than in
the corresponding metallic case. Our results for structural
properties in Si and Ge seem to reinforce one's intuitive
belief that this aspect of the charge inhomogeneity must
be treated together with the nonlocality of the XC hole.

We feel that our results using the WDA(CA) show that
the success of the LDA cannot be completely explained by
the cancellation of errors'discussed in Sec. II. It seems to
also be related to the consistency of the approximation. It
is based on the Thomas-Fermi idea of a local electron gas,
that is, an intrinsically metallic system, and so the use of
the energy density of the metallic jellium model is con-
sistent. However, in the WDA, the XC energy samples
the charge. density over a length of the order of a bond
length. Thus it is somewhat sensitive to the very features

of the charge density which we associate with the opening
of a gap in the spectrum. In this way it is plausible that a
consistent approximation requires inclusion of the effects
of semiconductor screening. More generally, a nonlocal
XC functional must interpolate properly between the
screening required by the spectra of excitations from the
atomic to metallic limit. This requires a more general for-
mulation than given here.

The WDA(LL) functional gives both an improved
minimum gap and good structural properties. This is in
contrast to the situation found in Xa calculations for
rare-gas solids. If a is chosen to fit atomic properties
(e.g. , the virial theorem a), calculated structural proper-
ties are reasonable, but the minimum gap is similar to the
LDA result (i.e., -70% of experiment). On the other
hand, a larger value of a can be chosen to fix the gap, but
only at the expense of poorer calculated structural proper-
ties and bandwidths.

In summary, we have done band-structure and total-
energy calculations for the prototypical semiconductors Si
and Ge using XC functionals that go beyond the LDA.
The WDA is based on an improved description of the XC
hole for inhomogeneous electron systems. We find that
using the usual metallic screening in the WDA yields
small improvements in the band gaps, but predicts
structural properties in worse agreement with experiment
than the LDA results. This approximation also substan-
tially underestimates the cohesive energy, largely due to
overbinding in the atom. We have found that a consistent
and effective way of implementing the WDA is with
semiconductor screening. The resulting, calculated
Kohn-Sham minimum gap is in significantly better agree-
ment with experiment than that found using the LDA.
Furthermore, the calculated structural properties are in
excellent agreement with experiment.
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