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The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the
electronic energy levels are temperature dependent. The temperature dependences of the electronic
energy levels, generally observed optically, arise from their dependences on the vibrational energy of
the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature
dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a
given energy level is a thermodynamic quantity; it is the product of the temperature and the change
of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot
be treated as explicitly temperature dependent. The electron-lattice interaction causing the tempera-
ture dependence must be expressly considered. It is found that the carrier’s interaction with the
atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the
atomic vibrations also causes an infinitesimal lowering (~1/N) of each of the N vibrational fre-
quencies. As a result, there is a finite carrier-induced increase in the average vibrational energy.
Above the Debye temperature, this cancels the lowering of the carrier’s electronic energy. Thus, the
standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the
electronic energy levels, is regained. This explains the apparent success of the standard formula in
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numerous analyses of electronic transport experiments.

I. INTRODUCTION

The Peltier heat of a charge carrier is a basic electronic
transport quantity. It is the heat transported with a
charge carrier in isothermal current flow. However, in
practice the Peltier heat is usually obtained indirectly by
measuring the Seebeck coefficient, S. Here, one measures
the emf developed across a material, AV, in response to an
imposed temperature differential AT: S=AV/AT. The
Seebeck coefficient is then related to the Peltier heat II by
the Kelvin relation S=I1/9T, where g is the charge of
the carrier and T is the temperature.

Since the Peltier heat is an isothermal quantity, it is
somewhat easier to understand than its companion trans-
port coefficient, the Seebeck coefficient. In particular, for
a quasifree carrier in the kth electronic state the Peltier
heat is simply E; —u, where Ej is the energy of the kth
electronic state and y is the chemical potential. The mea-
sured Peltier heat is the average of this quantity weighted
by the contribution of the kth electronic state to the elec-
trical conductivity M= (o, Il;) /(o). Physically, the
Peltier heat associated with a carrier in the kth state is

simply the product of the temperature T" and the change

of the entropy of the electronic system when a charge car-
rier is added in state k, ASy =(E; —u)/T.

These results are both well known and well established.
They are the subjects of discussion in texts on irreversible
thermodynamics! and solid-state physics.> However, in
deriving these results it is always assumed that the elec-
tronic energy levels are constants independent of tempera-
ture. It is, nonetheless, well known that the electronic en-
ergy levels of an electronic charge carrier in a semicon-
ductor shift with temperature.> These shifts are the result
of the electron-lattice interaction and thermal expansion.
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Specifically, the kth electronic energy level moves from
its value at absolute zero, E;(0), as the average phonon
occupation numbers increase. Namely,

Ep=E(0)—[y(k) /kgN13 #iwgN, . (1
q

Here, o, and N, are, respectively, the eigenfrequency and
population of the gth of N vibrational modes, and y(k) is
the coefficient which characterizes the shift of the kth
electronic energy levels; kp is the Boltzmann constant.

It has been suggested* that one can take account of
these temperature-dependent shifts of the electronic ener-
gy levels by simply replacing E; in the expression for the
Peltier heat by its temperature-dependent value. Then, for
example, at high temperatures (above the phonon tem-
perature) where

E, =E (0)—y(K)T, 2
the Peltier heat associated with the kth state becomes
My =E(0)—u—y(k)T . (3)

This is a major effect. Namely, upon performing the
average over the partial conductivities associated with
each state, k, one finds that

H:Ee—#+(A—’)’/kB)kBT . 4)

Here, E, is the edge of the band of the semiconductor as-
sociated with the transport (conduction band for electrons
and valence band for holes). A is a constant which indi-
cates the range of energies, in units of k37, beyond the
edge of the band of conducting states in which conduction
takes place. For a wide-band semiconductor A4 is general-
ly between 1 and 2 and y /kp is larger than 4. Thus, the
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presence of the y-dependent term of this equation shifts
its final term from being an increasing function of tem-
perature to being a decreasing function of temperature.
With a “pinned” (temperature-independent) chemical po-
tential, as in many amorphous semiconductors,? it is this
term which provides the total temperature dependence of
the Peltier heat. Thus, the direction of this temperature
dependence is of considerable significance.

In a prior work,’ this author has addressed the problem
of calculating the Seebeck coefficient when the electron
energy levels of the system are temperature dependent,
i.e., dependent on the phonon occupation numbers. It is
found that the previously mentioned conjecture is in-
correct. Rather, for example, in the high-temperature re-
gime, in which the electronic energy levels depend linearly
on temperature, the y-dependent term disappears from the
expression for the Peltier heat. This finding reflects the
nature of the interaction which provides the temperature
dependence of the electronic energy levels. Specifically,
while the electronic energy is affected by the phonon oc-
cupation, the vibrational frequencies are altered by the
presence of the charge carrier. As a result, the interaction
not only lowers the energy of the electron, it also raises
the thermally averaged energy of the vibrational system.
These two effects exactly cancel one another in the Peltier
heat. Thus, the y-dependent term should not appear in
Eq. (4).

A similar situation occurs in the case of the Peltier heat
of the small polaron. There, the energy which enters into
the Peltier heat is also not the electronic energy of the po-
laron but rather the net change of the energy of the sys-
tem when a self-trapped electron is added to it.° In par-
ticular, while the electronic energy of the charge carrier is
reduced as a result of it being self-trapped, the strain ener-
gy of the system is increased in forming the self-trapping
potential well. However, for the form of electron-lattice
interaction which enters into the small-polaron problem
these two effects only partially cancel one another.

These findings have been challenged in a paper by
Butcher and Friedman.” T hey, as well as the present au-
thor,’ attempt to calculate the Seebeck coefficient directly.
As such, they must also contend with the effect of a tem-
perature gradient. In particular, they assume that the spa-
tially varying shifts of the electronic energy levels induced
by the externally imposed temperature gradient are
equivalent to spatially varying energy levels that are inter-
nal to the system. In the latter case, the spatial depen-
dence of the electronic energy levels is due to structural
variations in the material. Then the explicit dependence
of the electronic energy on position gives rise to a so-
called “internal force.” This internal force is absent in
this author’s calculation of the Seebeck coefficient. Physi-
cally, its absence indicates that an externally maintained
gradient of the carrier density generates an emf but an
internally sustained space charge does not. Thus, the
difference between this author’s initial work and that of
Butcher and Friedman resides simply in the latter au-
thors’ presumption that the energy-level shifts produced
by the imposition of a temperature gradient are identical
to those arising from structural inhomogeneities.

Since the Peltier heat is an isothermal quantity that is
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directly related to the Seebeck coefficient, a way to resolve
the issue is to directly calculate the Peltier heat. This is
the task of this paper. In Sec. II a general method of
computing the Peltier heat is presented. Then, in Sec. ITI
it is applied to the case at hand. Namely, the general pro-
cedure is administered with the electron-lattice interaction
being given by Eq. (1). The resulting Peltier heat is found
to be consistent with that previously obtained by this au-
thor from an analysis of the Seebeck coefficient. Finally,
Sec. IV contains a summary of the essential physics of the
problem.

II. FORMALISM

The Peltier heat is the heat that must be supplied when
a charge carrier is isothermally injected into a material.!
Most generally, this heat is the sum of that associated
with placing the carrier in the material and the net energy
flow associated with moving the carrier. The first contri-
bution can be calculated from equilibrium thermodynam-
ics. The later contribution depends upon the specific
transport process. For example, for itinerant motion this
transported energy arises from phonon drag. However, in
most commonly studied situations the former contribu-
tion dominates. Then the Peltier heat is simply the prod-
uct of the temperature and the change of the entropy of
the material when a carrier is added to it, AS:

MM=TAS . (5)

It is this situation which is investigated here.

The change of the entropy of the system upon the addi-
tion of a carrier can be expressed in terms of the deriva-
tive with respect to the temperature of the change of the
Helmholtz free energy of the system. In particular, the
Peltier heat is then given by

N=TAS=—T§8(F,,,—F,)/8T, (6)

where F,, is the Helmholtz free energy of the system con-
taining n carriers. With a sufficiently low density, the
carriers may be treated as being independent particles.
Then, the free energy of a system of n carriers is simply
related to the change of the free energy when a solitary
carrier is added to an otherwise carrier-free system,
F 1 ——F 0

F,,=n(F1—F0)—kBTlng,, N (7)
where g, is the degeneracy factor associated with n
equivalent carriers being in the system. Furthermore, the

chemical potential u is just the change of the free energy
of the system when a carrier is added to it:

p=F, 1 —F,=F1—Fo—kpTn(g, ;1/g,) . (8)

Inserting Eq. (7) into Eq. (6) and using Eq. (8) yields an
expression for the Peltier heat:
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This expression is the basis of the subsequent discussion.
Note that it reduces to the standard expression when one
considers quasifree carriers. Then the Peltier heat associ-
ated with the kth electronic state is simply Ej —u, where
E, is a constant. The Peltier heat of carriers which ex-
perience energy levels that change with temperature as a
result of an electron-lattice interaction will now be con-
sidered.

III. EVALUATION OF PELTIER HEAT
To proceed further we must introduce a specific model
of the carrier interactions. Here, we adopt the model
presented in Eq. (1). Namely, the temperature dependence
of carrier energy levels arises from its interaction with the
lattice vibrations. In particular, the change of the
system’s free energy upon introducing a single electronic

carrier is
>z 2

k .. Ngs...

> exp(—E;/kyT)

cosNgse o

exp[ —(Ex +Ep)/kpT]

Fl —Foz—kETln

(10)

It is useful to define an effective electronic energy, Ej, by
suppressing the k summation in the above equation.
Then, the expression for the change of the free energy due
to the introduction of a carrier is of the same form as that
for a noninteracting carrier. Specifically,

FI—F0=——kBT1n Zexp(——E;'c/kBT) ’ (11)
k
where
> expl—(Ey+EL)/kpT]
E,’c=—kBT1n

> exp(—E/kgT)
N

(12)

The Peltier heat of a carrier in the kth electronic state is
‘then
IT; =E; TaE’;
k=L ar M-

The first two terms on the right-hand side of this equation
should collectively be viewed as the quasiparticle energy
associated with a carrier in the kth state of the coupled
electron-lattice system. This is explicitly shown in the
following section. Thus, the second term is the difference
between the quasiparticle energy and the effective elec-
tronic energy. As will be shown subsequently, this differ-
ence is the change of the system’s vibrational energy re-
sulting from the addition of a charge carrier. In the ab-
sence of the electron-lattice interaction the effective elec-
tronic energy, Ej, is simply the energy of the bare carrier,
E,, a constant. Then, the second term of Eq. (13) van-
ishes and the textbook expression is reobtained.

For the model of Eq. (1) we can explicitly calculate the
effective electronic energy which is defined in Eq. (12). In
particular, we have

(13)

Ei=E¢(0) |
>  exp|— X Nfiwg/kgT
..,Nq,,.. v q
—ksTln > exp [Ethwq/kBT} ’
. N q

.
(14)

where wg=w,[1—v(k)/kgN]. Thus, the presence of a
charge carrier causes a shift of each of the N vibrational
modes by an infinitesimal amount, proportional to 1/N.
Separating the contribution of each of the vibrational
modes, and then carrying out the summation over each of
the N,’s, yields

1— —tw, /kgT

B} =Ey(0)—kyTn | J] | =R =70y /s T) (15)
q | l—exp(—fiw, /kpT)
1—exp(—#iw, /kpT)

=E(0)—ksT 3 In expl o8 . (16)
q 1—exp(—fiwg /kpT)

The smallness of the frequency shifts of the vibrational
modes is now exploited in rewriting the argument of the
logarithm as

14+[y(k)/kgN)#iwg /kpT)/[explfiw, /kpT)—1] .
Incorporating this result in Eq. (16) yields

Ei=E;(0)—[y(k)/kgN] 3, Aoy (17)
k =Lk Y B ; [exp(ﬁcoq/kBT)—l] .

At temperatures well in excess of the phonon frequencies
the effective electronic energy becomes

Ej,=E (0)—y(k)T . (18)

The average electronic energy of the carrier can also be
calculated. This is not generally the same as the effective

- electronic energy computed above. Nonetheless, as will be

evident shortly, in the high-temperature limit these ener-
gies are identical to one another. The average electronic
energy of a carrier in state k is

> Exexp |— 2 fiwg /kpT
ceoN . q
(Ey)= , (19)
S exp |— fwy/kpT
A.,Nq,... q

where Ej is given by Eq. (1). This is readily evaluatable
in exactly the manner that the average energy of a har-
monic oscillator is computed in texts. The result is

, #io'
E =FE; (0)— k k N . ’
(B =Byt /kaN 2 o 1]

(20)
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where it is noted that terms of order 1/N vanish in the
usual infinite-N limit. In the high-temperature limit,
kpT >>%iw, for all g, Eq. (20) becomes

Inserting the expression for the effective electronic en-
ergy at high temperature, Eq. (18), into the formula for
the Peltier heat of a carrier of wave vector k, Eq. (12), a
simple expression is obtained:

M =E(0)—p . (22)

The high-temperature Peltier heat is independent of y(k).
This might appear to be a surprising result. In the next
section its physical origins will be further elucidated.

IV. DISCUSSION

A major task of this section is to present the physical
interpretation of the quasiparticle energy
, - .3E;
ER=E,-T 3T , (23)
In addition, the physical reason why the quasiparticle en-
ergy is temperature independent at high temperatures,
despite the linear temperature dependence of the average
electronic energy, { Ey ), is explained.

To understand the meaning of the quasiparticle energy,
EP, it is first written in a more transparent form than
that of Eq. (23). This is readily accomplished by inserting
the definition of the effective electronic energy, Ej, from
Eq. (12) into Eq. (23). The differentiations with respect to
temperature are readily carried out to yield

ER=(E; +E;)—{EL),. (24)

Here, the first term is the average energy of the system in
the presence of a charge carrier; the energy is the sum of
the energy of the charge carrier and that of the lattice vi-
brations E;. The second term is simply the average vi-
brational energy in a system devoid of a carrier. Explicit-
ly,

z (Ek+EL)CXp[—(Ek+EL)/kBT]

oNgse oo

EoaE
( k+ L> 2 exp[—(Ek+EL)/kBT]
N
(25)
and ‘
>, (Ep)exp(—Eg/kpT)
(Ey Yom q (26)

> exp(—E/kpT)
Ny,...

.y

Thus, what has been designated as the quasiparticle ener-
gy is the change of the energy of the system when a
charge carrier is added to it. That is, Eg, is, in fact, the

quasiparticle energy.

To understand why the quasiparticle energy is tempera-
ture independent in the high-temperature regime, the
averages defined above are evaluated. The energies that
enter into these averages are

Ey+E[ =E(0)+ 3 #iwo,N, @7
q

and
Ep =2 fiwgN, . - (28)
q

With Egs. (24)—(27) these averages are readily carried out.
The results are

#iw,
By () [y(k)/kgN ” ’
(Ep)=Er(0)—[v(k)/kp ]Eq"[exp(hw;/kBT)—l]
(29)
fiw
E Y 7 q , 30
(Er) ?[exp(ﬁw;/kBT)—I] oo
and
#iw,
(Ey Yom q (31)

? [exp(fiw, /kpT)—1] °

It is important to note the distinctions between the vibra-
tional frequencies with and without the presence of the
charge carrier, w, and w,, respectively.

In the high-temperature regime the average electronic
energy depends linearly on temperature:

(Ep)=E(0)—y(K)T . (32)

The average vibrational energy in the system containing
the charge carrier is increased relative to that of the
carrier-free system. Namely,

(E_L)=NkgT+y(kK)T, (33)
while
(E; )o=NkpT . (34)

The increase of the average vibrational energy of the sys-
tem upon the addition of a charge carrier results from the
carrier-induced reduction of the vibrational frequencies.
Each vibrational frequency is reduced by an infinitesimal
amount of order 1/N. This produces an infinitesimal in-
crease in the thermally averaged energy of each vibration-
al mode. However, the net increase of the average vibra-
tional energy of the totality of the N vibrational modes is
finite, equal to y(k)T. Thus, although the energy of the
carrier falls with temperature, the change in the vibration-
al energy of the system increases. In the high-temperature
regime these effects cancel one another. At lower tem-
peratures the temperature-dependent contributions to both
the electronic energy and the shift of the vibrational ener-
gy are both much smaller. However, their cancellation is
not complete.

The results of this direct calculation of the Peltier heat
agree with the prior Seebeck coefficient calculation.’
That is, both results satisfy the Kelvin relation
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IT;, =qTS;, where S is the Seebeck coefficient associated
with a charge carrier in the kth state. However, the cal-
culation of the Peltier heat is, perhaps, easier to under-
stand. The essential point is that the temperature depen-
dence of the electronic energy levels arises from the elec-
tronic charge interaction with the lattice vibrations.> In-
cluding this effect generally requires one to study the cou-
pled electron-lattice system. Then, not only is the charge
carrier affected by the lattice vibrations but the lattice vi-
brations are affected by the charge carrier. In texts,? the
temperature dependences of the electronic energy levels
are generally ignored. Mott and Davis* appreciated the
fact that this temperature dependence might significantly
affect the Seebeck coefficient. They suggested that it is
sufficient to replace the electronic energy which arises in
the textbook (constant-energy-level) formula with its
temperature-dependent value. However, it is shown here
that at the temperatures of interest, the additional tem-
perature dependence associated with the carrier-induced
shift of the vibrational frequencies cancels the electronic
energy-level temperature dependence. Thus, the textbook
expression is regained. It is presumably this cancellation
which accounts for the apparent success of numerous
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transport analyses based on the standard textbook expres-
sions.

Finally, it is noted that the present formalism may also
be used in calculating the Peltier heat for other interacting
systems. For example, the Peltier heat of a small polaron
in a magnetic semiconductor has been calculated by this
method.® There, instead of the interaction between an
itinerant charge carrier and the atomic vibrations, one is
concerned with the interaction between a localized carrier
and the local magnetic moments of the material.

Note Added in Proof. In a recent article [P. N. Butcher,
Philos. Mag. B 50, L5 (1984)], the calculation of Ref. 7
has been repeated. In Butcher’s work the electron-lattice
interaction is not explicitly considered. Rather, the elec-
tronic energy levels are treated as being explicitly tem-
perature dependent. As a result, the contribution to the
system’s Peltier heat from the carrier-induced change of
the vibrational frequencies is missing.
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