PHYSICAL REVIEW B

VOLUME 30, NUMBER 10

Electronic structure of GaAs under strain

N. E. Christensen®
Max-Planck-Institut fiir Festkorperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
(Received 9 July 1984)

Results of self-consistent relativistic band calculations for GaAs under hydrostatic as well as uni-
axial strain are presented. Deformation potentials related to the splitting of the valence-band edge
(I'{s) are calculated with and without inclusion of spin-orbit coupling. The trigonal-shear deforma-
tion potentials that agree with experiments correspond to an internal-strain parameter {=0.6+0.1.
The calculated values, 16—19 eV, of the optical deformation potential d, are substantially smaller
than the published experimental results (~41 eV). The E, gap obtained in the local-density approxi-
mation is 0.25 eV. A method of correcting for this error and for calculating, self-consistently, the
lowest s-like conduction band is described, and used to derive pressure dependences of the gaps and
conduction-band masses. The parameters for this adjustment of the conduction band are deter-
mined for zero pressure, and can be kept pressure independent. We find (1/m})dm} /dP
=0.68 X 10~? kbar~!. The pressure at which conduction-band inversion occurs is 30.5 kbar. The
value calculated for shear deformation potential &% is 19 eV for £=0.6. The spin-orbit-induced

splitting of the lowest conduction band for f{| |[[110] and the additional strain-induced splitting are
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calculated and related to experimental results for spin relaxation of photoexcited electrons.

I. INTRODUCTION

The electronic energy bands of gallium arsenide have
been the subject of many theoretical and experimental
works over the last two decades. The results of calcula-
tions using empirical nonlocal pseudopotentials obtained
by Chelikowsky and Cohen' offer an interpretation of op-
tical spectroscopic data. For details of the band structure,
readers are referred to this paper! and the reviews, Refs. 2
and 3, and the references therein.

The majority of first-principles band calculations em-
ploy the local-density approximation for calculation of
exchange-correlation effects. It is well known that this
leads to gaps in insulators which are too small* when
compared to experiments. The magnitude of this error is,
however, in several cases, underestimated because relativ-
istic shifts are neglected. The direct (p to s) band gap in
GaAs is typically calculated (nonrelativistically) to be
1.1—1.2 eV, as opposed to the experimental value, 1.42 eV
(T=300 K). As demonstrated’ recently, relativistic
shifts are important even in the relatively low-Z materials
such as Ge and GaAs. The band gap in GaAs, which we
calculate® including the relativistic effects, and relaxing
the Ga 3d states, is 0.25 €V and Ge is, in the relativistic
model, almost a metal. The calculations have further
shown that this error does not simply appear as a uniform
downshift of the conduction bands. The dispersion is also
in error, and this error is enhanced by the relativistic ef-
fects since these are particularly large for the s-like con-
duction state at I'. This also means that the calculated
conduction-band masses,®’ particularly at T, are very
much in error, ms~0.012my, i.e., less than one-fifth of
the observed value,® 0.067m,. In the present work we
wish to calculate the strain dependence of the band gaps
and conduction-band masses in GaAs. Therefore a
method has been introduced that corrects for the too
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small band-gap values obtained by the local-density
scheme. This method is briefly discussed in Sec. II, where
we present the calculated band structure, unadjusted as
well as adjusted.

The equilibrium volume, bulk modulus, and hydrostatic
deformation potentials are discussed in Sec. III. Further-
more, a relation between the direct band gap E, and the
pressure P is given. Tetragonal- and trigonal-shear defor-
mation potentials calculated with and without spin-orbit
(SO) coupling are given in Sec. IV, together with shear
dependences of the conduction-band masses.

II. LOCAL-DENSITY BANDS
AND ADJUSTED BANDS

The band structure of gallium arsenide as calculated in
the local-density approximation, using the Ceperley-
Alder®® description with relativistic corrections,'® is
shown in Fig. 1. We use the linear-muffin-tin-orbital
(LMTO) method,!! and introduce!>~* “empty spheres.”
Used in this way, and including the so-called “combined
correction term,”!! the LMTO method yields very accu-
rate’ band structures, even for structures, like that of
zinc-blende, which are open. The local-density band
structure, Fig. 1, is discussed in detail elsewhere.” Here
we only need to compare it to a few experimental results
and to the empirical pseudopotential calculation by Cheli-
kowsky and Cohen in order to establish where and how
much it is in error. This comparison is made in Table 1.

The LMTO self-consistent calculation used three ener-
gy panels, i.e., three sets of E, values!' were chosen. The
lowest panel covers the Ga3d— and As4s—band regimes,
whereas the second panel contains the rest of the occupied
states. The conduction states were calculated using a
separate panel together with the self-consistent potential
generated from the two panels just mentioned. The Ga 3d
bands (Fig. 1) appear almost dispersionless, but it was
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FIG. 1. Relativistic self-consistent local-density band struc-
ture of GaAs. Spin-orbit coupling is included. The lattice pa-
rameter corresponds to the experimental equilibrium volume.
The range of the three energy panels (see text) are indicated. All
atomic-sphere radii (Ga, As, and two “empty spheres”) are
chosen equal (S =2.6303 a.u.).

nevertheless found necessary to include them as band
states. Treating the Ga 3d states as (renormalized)
frozen-core states leads to a larger local-density (LD) band
gap’ (E;=0.56 eV). A choice of atomic-sphere radii that
would make the renormalization effects of the Ga 3d
states negligible would require radii of the four spheres in
the primitive cell so different in magnitude that errors due
to spurious overlaps could not be excluded.

The valence bands obtained by the calculation (LD,
Table I) agree well with experiments (concerning the spec-
tral position of the Ga 3d bands, see Ref. 5). As men-
tioned earlier, the conduction bands, on the other hand,
differ substantially from the data obtained from optical
experiments. The present calculation shows’® that previ-
ous LD theories omitting relativistic effects largely un-
derestimate these errors. The gap which we find is only
0.25 eV, showing that the relativistic shifts of the s states
relative to the p states are not negligible, even for the rela-
tively low-Z materials such as Ga, As, and Ge. In fact, a
relativistic, local-density calculation for Ge yields a gap
which is less than 0.02 eV, i.e.,, Ge is almost metallic in
this approximation. The Darwin shifts of the s states are
positive, but they are smaller in magnitude than the (nega-
tive) mass-velocity shifts. This is the reason why the gaps
calculated in the LD scheme with inclusion of relativity
are so much smaller than those obtained from nonrela-
tivistic calculations. This suggests an obvious way for in-
troducing corrections to the band structure which yield s-

TABLE I. GaAs energy eigenvalues (eV).

LD LD+ V,
Empirical Present work Present work
nonlocal fully relativistic with extra /
Level pseudopotential® local density potentials Experiment
e , —12.55 —12.85
T3 (Ap) —0.35 —0.36 —0.343 —0.341
o 0.00 ‘ 0.00 0.00
I'§ (Eo) 1.51 0.25 1.46 1.49
] 4.55 3.61 3.87
g 4.71 3.81 4.08
H —9.83 —10.49
Xs —6.88 —17.06
X3 —2.99. —2.90
X5 —2.89 —2.83
X5 2.03 1.05 1.95 1.95
g 2.38 1.28 2.75
Lg —10.60 —11.20
Ly —6.83 —6.94
Ly —1.42 —1.39 —1.31
Lis —1.20 —1.18 —1.10
L§ 1.82 0.67 1.82 1.81

aReference 1.
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like conduction bands in better agreement with experi-
ment; we may try to introduce false “Darwin shifts.”
This is done in the present work by adding extra poten-
tials which are sharply peaked (almost §-function-like) on
the atomic sites. Such localized, positive potentials act
essentially only on s states, mainly on 1s, and therefore
produce upshifts of s states relative to the states of higher
angular momenta.

The extra potentials, added to the local-density poten-
tial at all stages of the self-consistency iteration, were tak-
en to be of the form

o — 2
V,(r)= VOTOe (r/ro)” (1)

A given shift can be produced by several different choices
of ¥, and ry, and the effect on the band structure is not
critically dependent on which combination of the parame-
ters has been chosen, as long as the range parameter r, is
taken to be small. For Si, Ge, and GaAs we choose rg
typically of the order of 0.015 a.u., and we adjust, by trial
and error, V,. For small values of 7, the shift of the
outer s states in an atom may be considered as propaga-
tion from the lowest-lying 1s states to the outer states as a
consequence of orthogonality of the wave functions. This
explains why details of ¥V, (r) are not important; a given
artificial 1s Darwin shift leads to a certain shift in, for ex-
ample, the 4s-4p separation in Ge. This is illustrated in
Fig. 2, where Aeg,, the shift in the 4s-4p separation for
Ge, Ga, and As, is plotted as a function of the 1s energy
shift. In the case of Ge, preliminary estimates of ¥, and
7o can be made from the atomic calculation alone. The
direct gap at I" (p to s) is 0.89 eV, i.e., we need to produce
a 4s-4p energy shift of this order of magnitude. The
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FIG. 2. Atomic calculations including extra potentials of the
type given by Eq. (1). The figure shows the shift in the 4s-4p,
separation as a function of the upshift (“artificial Darwin shift”)
of the 1s level as calculated self-consistently for various choices
of ro and ¥V, in V,(r) [Eq. (1)]. The values between the dashed
lines correspond to parameters optimizing the conduction bands
of Ge and GaAs. 4
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atomic calculations show that this can be done by choos-
ing r9~0.015 a.u. and V(=320 Ry. Fixing rq to 0.005
a.u. in the atomic as well as in the self-consistent LMTO
calculation, we find that the conduction-band edges at X,
L, and T vary with ¥ as shown in Fig. 3. It follows that
the gap is indirect (I'—L), in agreement with experiment,
but a value of ¥V, that produces the correct gap at I" leads
to an L, energy which is still far too low, ~0.4 eV, as op-
posed to the observed 0.76 V. Thus, we cannot, using the
procedure outlined above, obtain an s-like conduction
band which has the correct energy at I" and simultaneous-
ly the correct dispersion. In particular, as also follows
from Fig. 3, the X, level is far too little affected by the
adjusting potentials ¥, (r) centered on the Ge sites. The
reason for this is obvious when the probability-amplitude
distributions® are calculated for the three states r., X,
and L.. The X, state has almost no density on the Ge
site—it is mainly located in the “interstitial” regime, that
is, in our language, in the empty spheres. T, on the other
hand, has almost no density in the empty spheres, whereas
L, represents an intermediate case. Similar observations
were made by Rompa et al.!> This means that, in order
to also adjust the conduction bands at X and L, we must
also add extra potentials in the empty spheres. The pro-
cedure for obtaining a suitable set of parameters for GaAs
was then to make an estimate of parameters for the Ga
and As extra potentials (they were chosen to be equal and
identical to the Ge parameters referred to above), and then
make the fine tuning of the conduction band by trial-and-
error adjustment of the empty-sphere parameters. The
bands of GaAs in the gap region are shown in Fig. 4, and
eigenvalues for this adjusted band structure are listed in
Table I. The density-of-states functions are shown in Fig.
5. It follows (Table I) that the adjusted bands, regarding
L, T, and X,, agree well with experiments. Further-
more, the calculated conduction-band mass at the I
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FIG. 3. Energies of conduction-band edges, measured from
the valence-band top at T, in- Ge, derived from self-consistent
band calculations with extra potential [Eq. (1)] on the Ge site as
a function of ¥, (r, fixed). No adjusting potentials are added in
the “empty spheres.” The figure illustrates that parameters that
produce a good adjustment at I, in this case, do not simultane-
ously shift the X, and L, levels sufficiently. The gaps obtained
in Ref. 1 are listed in the figure.
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FIG. 4. Adjusted equilibrium band structure of GaAs in the
gap regime. This represents our best conduction-band calcula-
tion and includes adjusting potentials. The parameters ¥, and
ro used here are for Ga and As, ¥V, and r,=320 Ry and 0.015
a.u., respectively; E;, 100 Ry and 0.4 a.u.; E;, 250 Ry and 0.54
a.u. Furthermore, the calculation producing the self-consistent
potential used here differs from that of Fig. 1 by applying only
one valence-band panel. The Ga 3d states are treated as renor-
malized frozen-core states. The Ga and As spheres are larger
than the “empty spheres” Sg,=S4s=3.0000 a.u., and
SE1 =SE~2=2 110106 a.u.

minimum is 0.068m,, in good agreement with experi-
ment. The unadjusted band model gives 0.012m,, a value
which is far too low.

The zinc-blende structure does not have the inversion
symmetry of, for example, the diamond lattice. This
means that Kramers degeneracy, in general, is lifted by
spin-orbit coupling. This splitting of the lowest conduc-
tion band (in the [110] direction) was studied in some de-
tail in a recent work,'® and it was shown that, for k close
to I, only the adjusted band structure yielded a splitting
in agreement with experimental data.

1t is concluded that it is possible, by adding extra poten-
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FIG. 5. GaAs conduction-band density-of-states (DOS) and
number-of-states (NOS) functions for the unadjusted and adjust-
ed band structures.
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tials of the type of Eq. (1) at the atomic sites, and also at
the empty-sphere sites, to adjust globally the conduction
bands of predominantly s-like character. The parameters
have been selected such that the bands agree well with ex-
periments at the equilibrium volume. In the following we
shall discuss volume and pressure variations of the lowest
conduction band in GaAs. Such quantities derived from
adjusted bands are always calculated with the same set of
parameters as used to provide adjustment of the gaps at
the equilibrium volume, i.e., no further (volume-
dependent) adjustment is made. It is a major advantage of
the corrections in terms of the very-short-range potentials
[Eq. (1)] that such pressure-dependent readjustments can
be avoided. Furthermore, the simple » dependence of the
potentials makes their inclusion in the self-consistent
local-density band calculations straightforward.

III. HYDROSTATIC DEFORMATION

Pressure coefficients of the band gaps in semiconduct-
ors have recently been calculated by Chang et al.!” from
first-principles pseudopotential theory. They!” found
good agreement with experiment, although the band gaps
themselves are too small. Simultaneously, the ground-
state properties, equilibrium volume, and bulk modulus
are accurately!” described. The calculations of Ref. 17,
however, excluded (for GaAs) the relativistic effects. As
mentioned before, the local-density errors in the gaps are
considerably larger when these are considered, and we
have therefore calculated pressure coefficients in our
scheme.

The relativistic corrections do not influence the
ground-state properties significantly.’ The pressure-
volume relation calculated in the present relativistic
scheme (band calculations as shown in Fig. 1) is shown in
Fig. 6. The calculated equilibrium volume (which corre-
sponds to the average atomic-sphere radius Sypeor =2.629
a.u.) differs by only 0.15% from the experimental volume,
which corresponds to S =S, =2.6303 a.u. The bulk
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FIG. 6. Pressure P as a function of atomic-sphere radius S,
calculated by means of the relativistic LMTO method including
“empty spheres” and with two panels in the occupied-band re-
gime (as in Fig. 1). No “extra potentials” added.
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modulus is calculated to be 728 kbar, which is 1.5%
smaller than the room-temperature value (739 kbar) and
6.5% smaller than the low-temperature value (~770
kbar). The calculated pressure dependence of the bulk
modulus is shown in Fig. 7. B varies almost linearly with
pressure in the range considered here, and the slope
dB /dP =4.4 agrees well with experiments.

The band gap in GaAs at normal pressure is the direct
band gap E, at I'. E, increases with pressure, whereas
the conduction-band edge at X (X§) decreases, and for
sufficiently large pressures X§ is below E,, and the gap
becomes indirect. Experimental values for the pressure
P, at which this conduction-band inversion occurs are 35
kbar (Ref. 18) and 30 kbar (Ref. 19). The nonrelativistic
calculation of Ref. 17 yielded Py=31 kbar, in agreement
with these results. From our calculations, however, where
E, is particularly small in the LD model, we find Py=73
kbar. Only when the adjustment of the conduction band

- as described in Sec. II is introduced can a reasonable value
be obtained. Figure 8 shows E; and X§g versus (theoreti-
cal) pressure for the adjusted bands. The inversion pres-
sure calculated here is 30.5 kbar, i.e., in good agreement
with Refs. 17—19. The calculated curve showing (Fig. 8)
the variation of E, with pressure deviates markedly from
linearity. This reflects mainly the equation of state. For
volume changes up to ~16%, E, varies essentially
linearly with ¥V (Fig. 9). We find (Fig. 9)
dEy/dInV =—8.75 eV, and from the calculated pres-
sures we have, for the coefficient for first-order pressure
dependence, dE,/dP =12.02 eV/Mbar. If we use the
unadjusted bands, we obtain dE,/dP =8.5 eV/Mbar,
which is too low when compared to experiments'®2° (12.6
and 11.3 eV/Mbar). To second order in pressure, we write

Ey=E}+aP +BP?, )

where E is the gap E at normal pressure. Assuming the
linear variation of E; with volume, we have

08

& —By=728kbar
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FIG. 7. Bulk modulus B versus pressure P calculated from
the unadjusted bands (as in Figs. 1 and 6).
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FIG. 8. Conduction-band edges at X and I'" as functions of
(theoretical) pressure. The gaps are calculated from the adjusted
band structure [parameters ¥, and r, determined at the experi-

- mental equilibrium volume (Fig. 4)] for varying volume (self-

consistent at each volume).
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and with the presently calculated values of the bulk
modulus at P =0 and dB /dP we have a=12.02 eV/Mbar
and B=—36.3 eV/Mbar’. The room-temperature value
deduced from experiments by Welber et al.,'® B=—37.7
€V/Mbar?, is in agreement with the present calculation.
The B value found by Syassen® is somewhat smaller in
magnitude, — 18 eV/Mbar?. We cannot, in our model, ex-
plain the observation made by Wolford et al.?! that B~0
at low temperatures (7 =5 K).

The spin-orbit splitting at the top of the valence band
(Ay) varies only slowly with volume (Fig. 10). The defor-
mation potential dAy/dInV is calculated to be approxi-
mately equal to —0.051 eV. In Fig. 10 the spin-orbit
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FIG. 9. Volume dependence of the E, gap in GaAs as calcu-
lated self-consistently with inclusion of the adjusting potentials.
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FIG. 10. Spin-orbit splitting A¢ at the valence-band top at I'
versus (average) atomic-sphere radius S. The triangle indicates
the splitting obtained without extra potentials, and the plus
denotes the experimental value of A at normal volume.

splitting as calculated in the unadjusted band structure for
S =S expt is indicated by a triangle (0.353 eV). The adjust-
ed band model gives a lower value, 0.343 eV, only 0.002
eV from the observed splitting. A part of the reduction of
Ay when the extra potentials are added is a simple atomic
effect—it is due to the change of dV /dr when V,(r) [Eq.
(D] is included. The reduction can be estimated from
atomic calculations and scaling the SO splitting to the
larger value at the GaAs valence-band top by means of re-
normalization arguments.'#?? This yields an atomic
reduction of Ay of 4 meV, slightly less than half of the
full band-structure shift.

“Absolute” hydrostatic deformation potentials, a (T'(s),
a(T%), or when SO is included a(I'§) and a (Tg), for lev-
els at the band edges at T, have been derived from the
self-consistent LMTO calculations in the same way as was
done for Si and Ge by Verges et al.?* For the band model
without adjusting potentials, we obtain a (I'j5)=—9.1 eV
and a(I'{)=—17.0 eV. The corresponding values ob-
tained in Ref. 23 for Si and Ge are, for '3, —7.9 eV (Si)
and —8.2 eV (Ge), and for I';, —20.3 eV (Si) and —18.6
eV (Ge). Thus for GaAs we obtain very similar results.
Using the adjusted band structure, and including spin-

J

1 dm! | 2(Eg+Ag) dE E, d(Ep+Ap)
m¥ P E, dP ' Eo+Ao dpP
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FIG. 11. Pressure-induced relative change in conduction-
band mass m. calculated from the adjusted self-consistent-band
model.

orbit coupling, we find a(I'3)=-—8.4 eV and
a(T§)=17.1 eV. It was argued in Ref. 23 that, although
the local-density approximation yields gaps that -are too
small, the “absolute hydrostatic deformation potentials”
should be predicted correctly. Since our adjusted and
unadjusted models give essentially the same a values, we
have to some extent provided a confirmation of this as-
sumption.

The warping of the conduction band near I" has been
studied recently by Rossler.?* The mass, however, is iso-
tropic. Actual numerical calculation of the conduction-
band masses in the (111), (100), and (110) directions
differ by less than 0.7%.

A (positive) pressure increases the E, gap, and the con-
duction band near I" becomes less steep, i.e., the mass is
increased. The pressure-induced mass change as calculat-
ed (modified band model) follows from Fig. 11. At zero
pressure we find (m})~'dm}/dP =(6.8+0.3) Mbar~l.
This pressure coefficient agrees very well with the values
7.0 and 6.5 Mbar~! derived from magnetophonon-effect?’
and Faraday-rotation experiments,?® respectively. In a
ﬁ-f)’ perturbation scheme the pressure coefficient for m}
is

/ [2(Eo+Ag)+Eo] - @

Inserting here our calculated gaps and pressure coefficients (Eq=1.46 eV, A;=0.34 eV, dE,/dP=12.02, and
dAy/dP =0.07 eV/Mbar), Eq. (4) gives the mass-pressure coefficient of 7.9 Mbar~!, i.e., slightly too large when com-
pared to the value computed directly [(6.8+0.3) Mbar~!]. The unadjusted band model fails completely in predicting
(m2)~'dm? /dP; it gives 35 Mbar~! [from K-P expression (4) with unadjusted band parameters.]. It is noted that the ra-
tio between the unadjusted and adjusted pressure coefficients (35/6.8=35.15) is close to the ratio

m>(adjusted) /m (unadjusted) =0.068 /0.012=5.6 .

Thus, the absolute pressure coefficient dm; /dP ~0.46m Mbar~! is well predicted by the unadjusted band model. This
is in agreement with the observation that the two band models give essentially the same hydrostatic deformation poten-

tials.
The splitting induced by spin-orbit coupling of the conduction band in GaAs can, to lowest order in k, be expressed?’

as
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AE =y kX (k2 k2 +k2k2+k2k}]) — 9k 2k k1% . (5)

For Kk along [110] it follows that this lowest-order term of AE is proportional to k3. The coefficient y, was calculated
earlier'® from LMTO calculations as well as by treating the kP Hamiltonian in third order. Within the latter scheme,
we have!® (e =fi=my=1)

Ao 2 i 1 +‘ Ags
Eo(Eg+Ag) | 3(Ey —Eo+Ass)  3(Eg—Eq) (Ey—Eo)NEo—Eg+As)

Yo=1PP'Q

2 1
3E, T 3(Eo+4y) ]
(6)

[
Here, Eq=T¢—T%, Eq=T%—T%, Aj;s=T$—T$, Pand P’

are the matrix elements of P between the I'; state and
I'{5,I'{s, respectively, and Q represents matrix elements
between I'{s and I'{s (for details of notation, see Ref. 28).

The volume (and pressure) dependence of ¥, is strongly
nonlinear. This is seen in Fig. 12, where y,/y versus
average atomic-sphere radius S is shown. The solid curve
is calculated directly from the LMTO bands, whereas the

TABLE II. Pressure coefficients.

Present Present Other
“adjusted” “unadjusted” calculated Experiments
S 2.713 2.629 2.6303 a.u.
B 810? 728 739 kbar®
' 770 kbar®
dB/dP 4.4 4.45¢
dEo/dP 12.02 10.65f 12.6 eV/Mbar®
18.5hf 11.1 eV/Mbar?
10.6 eV/Mbar'
8.5 eV/Mbar!
11.3 eV/Mbar!
dE} /dP 0.98 eV/Mbar
dAo/dP 0.07 eV/Mbar
dAs/dP 0.11 eV/Mbar
(1/m¥)dm* /dP) 6.8+0.3 35 7.9% 7.0 Mbar—"!
6.5 Mbar—'™
a(T}) —8.4 —9.1f —17.3evhf
a(T¢) —17.1 —17.0f —18.3nf (—)17.5 ev®
(1/7o)dyo/dP) 7.640.7 10.0 Mbar—*
P, 30.5 73 31¢ 35 kbar®
30 kbar®
dE(X§ —T%)/dP —2.25 —2.2¢ —2.7 eV/Mbar®
—1.8 eV/Mbar’
dE(L$—T%)/dP 4.49 4.3¢ 5.5 eV/Mbar!

i Reference 20.
JReference 3.

# At observed equilibrium volume.
bReference 3, T =300 K.
¢Reference 3, T =0 K.
dReference 21.

¢Reference 17.

fWithout spin-orbit coupling.

8 Reference 18.

hReference 32.

kX Present work, E’p’ calculation.
'Reference 25.

™ Reference 26.

" Experiment gives magnitude, Ref. 33.
°Reference 19.
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FIG. 12. Volume dependence of the spin-orbit-induced split-
ting of the [110] conduction band near I'. The figure shows the
coefficient o [Eq. (5)] as a function of the (average) atomic-
sphere radius S. The value ¥ is the equilibrium-volume value
(Sa2y=2.6303 a.u.). The solid line represents the results calculat-
ed directly from the splitting in the LMTO bands, whereas the
dashed curve is obtained from Eq. (6).

dashed curve is obtained from the E*f)’ expression (6),
keeping the matrix elements fixed and using the calculat-
ed band gaps. The value of y, increases whén the lattice
is compressed as well as when the volume is increased, the
minimum value being attained for S~2.6 a.u., i.e., for
P =26 kbar. The increase of y, upon compression is due
to the reduction of the difference between the Ej gap and
E, when the volume is reduced [d(Eyj—E,)/dInV
= —8.75 eV]. The coefficient for first-order volume vari-
ations at the observed equilibrium volume is, calculated
from the LMTO bands,

1 dvo
yg dlnV

5.5+0.5 .

Differentiation of the Ef)’ expression [Eq. (6)], assuming
constant matrix elements, gives, with the LMTO gaps,
7.3. ‘

The majority of the calculated pressure coefficients dis-
cussed in this section are summarized in Table II. Note
that all conversions from volume derivatives to pressure
coefficients. are made by using our theoretical bulk
modulus By=728 kbar. In Ref. 17 the 300-K value of
739 kbar obtained experimentally was used.

IV. UNIAXIAL STRAIN

Self-consistent LMTO calculations have been made for
GaAs crystals under uniaxial strain. The purpose is to
derive, from first principles, the deformation potentials
for splitting of the valence-band top, and the strain depen-
dence of the conduction-band masses. These quantities

N. E. CHRISTENSEN 30

have been studied extensively experimentally,?>*° but
theoretical®®323* calculations have so far mainly been
made by means of empirically adjusted pseudopotential
and tight-binding schemes. The strains are chosen to be
strictly volume conserving for all deformations. A
Bravais-lattice point, which in the undeformed lattice is at

f{, is, under strain, moved to R ', given by
R'=ER, (7
where

e 0 0
E= 0 e 7?0 (8a)
0 0 e ‘

for a tetragonal shear (axis, [001]). The trigonal-strain de-
formation matrix is given by

(e?+2e~7"?) fori=j,

1
P 3
Ey= +(e¥—e~772) for iz£j . @0
The atomic positions in the case of a trigonal deformation
are dependent on the internal-strain parameter’> ¢.
Choosing a coordinate system, where an As atom is at
(0,0,0) and a Ga atom is at R,=(a/4)(1,1,1) in the un-
strained crystal, § is related to the relative sublattice dis-
placement through

R;=[E—¢E-DIR,. , 9)

If spin-orbit coupling is omitted, the top of the valence
band TI'{s is triply degenerate, not counting Kramers de- .
generacy. The uniaxial strains, Egs. (8) and (9), split this
into a singly (E;) and a doubly (E,) degenerate level.
The deformation potentials b, and d; are, in the limit
r—0, defined® through

Swo=E,—+(E;+2E;)=3b,y , (10a)

Swo=E,—5(E;+2E,)=V3d,y , (10b)

and (10a) is for the tetragonal case, and (10b) is for the
trigonal case, respectively. The spin-orbit coupling splits
I'ls into I'} and I'§. A uniaxial strain splits the upper
state (I'g) into two states, separated by Sw. The deforma-
tion potentials (with spin-orbit coupling) b and d are de-
fined as in Egs. (10), but with 8w, replaced by éw. The
effect of the spin-orbit coupling is characterized>® by the
deformation parameters b, and d,:

b =b1+2b2 Iy d:d1+2d2 . (11)

As in the case of the copper halides (Ref. 36) and Si
(Ref. 37) the deformation potentials derived from band
calculations that are fully self-consistent for each value of
7-(and §) are found to be identical to those calculated by
the “frozen-potential” approach.’® The trigonal-shear de-
formation potentials d (and d, and d,) depend linear-
1y**~4° on the internal-strain parameter ¢:

d=d'—+dy . (12)
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Equation (12) defines the optical deformation potential
do. A quantity d, is defined analogously for the spin-
orbit part d, of the trigonal deformation potential. The
calculated d-versus-¢ relations, Fig. 13, clearly illustrates
the linear relation, Eq. (12). The results obtained with the
adjusted and unadjusted band models are very similar.
* Three sets of experimental data are indicated, and it fol-
lows that the value of the internal-strain parameter, which
in our model would give d values in agreement with the
data of Ref. 29, is £~0.53. This is the same result as ob-
tained for Si (Ref. 37) and is close to the value 0.600 ob-
tained by Martin*' from a model expressing ¢ in terms of
elastic constants. The values of the optical-phonon defor-
mation potential d(, which are obtained from the slopes
[see Eq. (12)] of the straight lines in Fig. 13, lie between
~16.5 and 18.5 eV. These are considerably below the
published value, 41 eV, derived by fitting to absolute Ra-
man scattering intensities. The reason for this very large
discrepancy is not known. Our values for d, are also
much lower than those calculated from the empirically
adjusted pseudopotentials®®3* (36 eV).

The value which we obtain for d, is numerically small,
d,~—0.05 eV, as in the case’” of Si. Figure 13 shows
that dz,on eVv.

The tetragonal-shear deformation potentials b and b,
are both calculated to be —1.43 eV, i.e, b,=0.00 eV.
The value measured?”’ by Chandrasekhar and Pollak,
b=(—-1.710.1) eV, is in reasonable agreement with the
present calculation.

Deformation potentials ‘similar to those discussed for
the T'Ys valence state can be introduced for the
conduction-band state I'{s (I'§). The trigonal-shear defor-
mation potentials d§ and d° are shown in Fig. 14 as func-

GaAs g (RY).
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FIG. 13. Calculated trigonal-shear deformation potential d,

versus internal-strain parameter {. The solid line is for band

calculations including the extra potentials [Eq. (1)], and with
spin-orbit coupling. The dashed line is calculated in the same
band model, except for the omission of spin-orbit coupling. The
dashed-dotted line corresponds to the unadjusted band model,
with SO coupling. Experimental values of d are indicated. CP,
Ref. 29; B, Ref. 40; B2, Refs. 50 and 51.
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FIG. 14. Trigonal-shear deformation potential d° for the
conduction-band state I's (I'{s in single group notation). Solid
line, adjusted band structure, with SO coupling; dashed line,
without SO coupling; dashed-dotted line, unadjusted, with SO
coupling.

tions of the internal-strain parameter. It follows that also
in this case almost the same results are obtained with and
without adjusting potentials. The optical deformation po-
tentials [Eq. (12)] calculated (Fig. 14) are all dj~—14
eV, and in view of the discrepancies found for d this is
remarkably close to result of the pseudopotential calcula-
tion,* giving d§=—12.0 eV. As for the I'} state, the in-
fluence of the spin-orbit coupling is small, and d$ is small
in magnitude and changes sign for §{~0.4.

The piezoresistance investigations by Aspnes and Car-
dona* allowed an experimental determination of the shear
deformation potential &% for the conduction-band
minimum at the symmetry point L. They found®
&%=(19.6+3) eV. In order to check the validity of our
shear calculations, particularly in view of the discrepan-
cies for dy, we have calculated & % as a function of .
The results are shown in Fig. 15. Again, the calculations
were made with and without adjusting [Eq. (1)] potentials.
The results cannot be distinguished on the scale of Fig.
15. The value calculated for {=0.53—the internal-strain
parameter for which our deformation potential d agrees
with the experiment of Ref. 29 (see Fig. 14)—is & £=18.5
eV, i.e., in good agreement with the experimental result.
In evaluating this comparison, note, however, the rather
large error range, 13 eV, on the experimental value.

The kP perturbation-theory expression for the
conduction-band mass which was used to derive Eq. (4)
fails completely when applied to calculations of the
shear-induced changes in the masses. It was shown’! by
Aspnes and Cardona that third-order terms had to be in-
cluded in order to explain that the value of m,) increases
for a compression along (111).

The conduction-band mass is anisotropic for the crys-
tals under uniaxial strain. This anisotropy is described in
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FIG. 15. Trigonal-shear deformation & potential for the
conduction-band minimum at L, versus internal-strain parame-
ter. Adjusted and unadjusted band models (same results).

terms of the ratio (mg)/m.| ), where mg) is the mass cor-
responding to the conduction-band dispersion for K in the
direction of the shear axis, whereas m_, is the mass for k
perpendicular to the shear axis. For a (111) trigonal
shear, here we calculate m}, from the average of the “up”
and “down” bands for K||[170]. The anisotropy ratio has
been calculated for a series of deformations, y ranging
from —0.01 to 0.01, and for different choices of internal-
strain parameter, {=0.05 and 1.0. It appears that the
mass ratio is almost independent of &; in all cases we find
the trigonal-strain coefficient

a
dy

*
el ~—8.0.
(111)

The value which we deduce from the calculations by
Aspnes and Cardona®! (shear only) is ~—7.1. Thus their
perturbation calculation gives essentially the same value
as the present calculation.

The trigonal-strain dependence of the mass m; which
we calculate corresponds to a strain coefficient
1 d

———(m})
mzy dy “l

*
me,

~—9+3.
(111)

The relatively large error on this value reflects numerical
inaccuracies in our calculations which also implies that a
clear dependence on internal-strain parameter cannot be
found. Again, the result which we derive from the calcu-
lations in Ref. 31, —12, agrees reasonably well with our
value.

The splitting of the “up” and “down” conduction bands
for k||[110] is, for small k, proportional to k> in the un-
strained crystal. When a shear is added—as is done here
in the [111] direction—additional splitting of these bands
is introduced. This splitting is linear in k near I', as can
be seen from Fig. 16. We write the strain-induced split-
ting as

AE =(V,))(#k)yV2 . (13)
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FIG. 16. Splitting of the conduction band for k along [110]
for three different trigonal deformations, ¥ = —0.005, —0.007,
and —0.010, where y is the deformation parameter [see Eq.
(8b)]. The internal-strain parameter is chosen to be {=0.5 in
three of the cases shown and 0.0 in one case (the lowest-lying
curve). Linear contributions are shown as dashed-dotted lines.

For the trigonal shear considered here, V', varies linear-

ly with the internal strain parameter ¢,
av.
V,=V3+ —d—gig : (14)
and the results of the LMTO calculations give
V9=6.23x107 cm/sec and dV,/dE=4.2x107 cm/sec.
Thus, for {=0.53 we find V,=8.46x 107 cm/sec. Re-
cent pseudopotential calculations by Cardona et al.*? for
a (110) strain gave 3.5X 107 cm/sec, whereas Cardona
and co-workers,*? using a tight-binding scheme, found
8.7X 107 cm/sec. Experimentally, the magnitude of ¥,
has been obtained*>** by measuring the spin relaxation of
photoexcited electrons, yielding ¥, =6 107 cm/sec.

The changes of the conduction-band mass following a
tetragonal shear (shear axis, [001]), according to the
present calculations, are small compared to those found in
the trigonal case. We find that a tetragonal compression
only slightly affects the mass anisotropy,

d
dy

From Table IV of Ref. 31 we deduced the value 4.7, i.e., a
value numerically larger and of the opposite sign. The
tetragonal-strain coefficient for the parallel mass m.), is
here found to be

*
m
—l ~—0.9.

*
Mei J<oo1)

1 dmg,

=-3.5,
m:” dy

(001)

i.e., a value having the same sign as the trigonal-shear
coefficient, but only one-third of it in magnitude. The
pseudopotential calculation of Ref. 31 gives a strain coef-
ficient of 3.1, i.e., a value of the same magnitude but of
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TABLE III. Uniaxial-strain parameters. (Deformation potentials are in eV.)

Present calculation Unadjusted Other
adjusted bands bands calculations Experiments
d’ —22 2.7°
do '16.5 18.7 36.4° 41°
d(£=0.53) —4.54 —4.40 —2.12% —4.55+0.25f
d(£=0.48) —4.18 —4.36° —5.340.48
d,(£=0.53) —0.05
dyo ~0.00
b —1.43 —2.2° —1.7+0.1f
b, 0.0
dc —-9.2 —9.4 —7.8°
d(£=0.53) —8.0
ds —13.4 —14.1 —12.0°
& £(£=0.53) 18.5 18.5 19.6+3"
(d/d}/)(m:h/mc*l)(m) —8.0 ——7.1d
(d/dy)(ml /m ) oo —0.9 4.7¢
(1/md)dm /dy | uny —9+3 —12¢
(1/m)dm, /dy | oo —-35 3.1¢
V, (1077) 8.5 3.5 6 cm/sec
8.7

v, (1077) 0.2

2 We have chosen the value of £ which reproduces the experimental value of d (Ref. 29).

b Reference 32.

¢Reference 46.

dReference 31.

¢ Reference 3.

fReference 29.

& References 50 and 51.

h Reference 30.

i Reference 42 (pseudopotential).
iReference 42 (LCAO).

opposite sign.

The tetragonal shear also influences the splitting of the
“up” and “down” bands for X along [110]. To the k>
term of the unstrained crystal is added a term linear in k,
as can be seen from Fig. 16. This (for small k) linear
term is written as

AE =—(2V2) V) #k)y . (15)

We find that ¥, is much smaller in magnitude than V,,
V;1=0.2X 10" cm/sec, and it is therefore expected that a
measurement of this quantity will be very difficult.

The calculated strain parameters obtained for the uni-
axially deformed GaAs crystal are summarized in Table
III.

V. CONCLUSIONS

The present self-consistent local-density calculations
show that the gap in GaAs is predicted to be far too small
in comparison with experiments. Since a main purpose of
this examination is to calculate strain dependencies of
conduction-band properties, the gaps at symmetry points
have been adjusted by adding at the atomic positions, as
well as in the “empty spheres,” extra, sharply peaked po-

tentials. These introduce “artificial Darwin shifts.” The
parameters of the adjusting potentials have been chosen at
the equilibrium volume. No readjustment is made when
the volume is varied.

The hydrostatic deformation potentials calculated
agree, in general, with the experimental observations.
This is also the case for the relative pressure-induced
change in the conduction-band mass, but only for the cal-
culation using the adjusted band model. “Absolute” de-
formation potentials for the valence and conduction states
at I', X, and L are equally well described in the adjusted
and the unadjusted models. The pressure-induced
conduction-band inversion is predicted correctly in the ad-
justed band model only. The spin-orbit-induced splitting
of the conduction band for k||{110) exhibits a strongly
nonlinear volume dependence. It increases rapidly with
expansion, and it is therefore suggested that the coeffi-
cient to the k* term, 7y, at a surface can be quite different

"from the bulk value. The value of the coefficient v, can,

as shown earlier,'® be calculated sufficiently accurately
within third-order E-ﬁ perturbation theory. Using the
gaps calculated for varying volume in the LMTO scheme
(for the adjusted band model) in the K-P expression, we
find almost the same volume dependence as calculated
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directly, although the matrix elements (P,Q) are assumed
to be volume independent. As follows from the KB ex-
pression [Eq. (6)] and from direct calculations (also see
Ref. 16), v, depends sensitively on the gaps, and therefore
very different values are obtained with the adjusted and
unadjusted band models. The unadjusted band model
used in Ref. 16 had a gap E;=0.65 eV, i.e., a value larger
than the calculation presented here in Fig. 1, the differ-
ence being that the earlier LMTO calculation only applied
one valence-state panel and used frozen (renormalized) Ga
3d states, and, in addition, SO coupling was not included.
With this gap16 we found 7/0=87 eVA3 whereas the
adjusted model gives yo=17 eV A3 which is considerably
more in agreement with experiment, 22 eV A3 (value cited
in Refs. 16 and 45). The splitting of the “up” and
“down” states is only'® strongly affected by the
conduction-band adjustrnent for k near 0. Thus, for the
calculation of precession angle*® of the spins of photoex-
cited electrons, the splitting of the unadjusted'® model can
be used.

The uniaxial-shear deformation potentials for the
valence-band top (I'(s), conduction-band minimum at L,
and the conduction-band state I'{s agree reasonably well
with experiments apart from the optical deformation po-
tential d,. Our calculated value is much lower
(dy=17—19 eV) than the cited experimental result (41
eV). Our LMTO calculations include “empty spheres”
and the so-called combined correction term.!! The state
Y5 is particularly sensitive to this correction. If we, for a
given potential, omit this term, then the T'js level is
changed (reduced) by ~1 eV. It could be argued that this
reflects that this state is particularly sensitive to non-
spherical terms in the potential, and therefore it may not
be properly described even when we include the correction
term.. However, the comparison in Ref. 5 between self-
consistent pseudopotential calculations, which, of course,
includes the effects of the nonspherical charge distribu-
tion, and the LMTO calculations using an identical
prescription for construction of the potentials, showed
that the two methods give the same energy eigenvalues in
the case of GaAs. Furthermore, the calculation of d in Si
performed by Nxelsen (see Ref. 37) for the same value of
as used in our® calculatlon yielded almost the same result.
Very recently,*® Nielsen and Martin calculated, using
first-principles pseudopotentials, dy for Si, and found
dy=29.83 eV. This is in reasonable agreement with our
result’’ (22 V), and the consistency concerning the values
of & obtained in Refs. 47 and 37 for Si, and the above-
mentioned agreement with pseudopotential calculations,’
suggest in our opinion that nonspherical terms are suffi-
ciently accounted for by inclusion of the empty spheres
and the combined correction term.

It was found,”” in the case of Si, that although our
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LMTO band-structure calculation gives quite accurate
eigenvalues, the total-energy calculations are not, with the
present approximations, sufficiently accurate to allow a
direct, first-principles calculation of the internal-strain pa-
rameter.*® This is in agreement with the observations of
the importance of the inclusion of nonspherical charge
distributions for the calculation of elastic shear modu-
1i.*%0 The value of £, which, in our calculation, produces
agreement with the observed2 deformation potential d
= —4.55 eV), is £{=0.53. This is the same as found for
Si.*”47 Other experiments give values of d which are
larger than that of Ref. 29. For example, Balslev’! found
d =(—5.310.4) eV, a value which is (cautiously) recom-
mended by Lawaetz.”?> This value would, according to
Fig. 13 correspond to {=0.7. The L deformation poten-
tial &7 which we calculate for this value of £ is 20 eV,
and that agrees as well as the £=0.53 value (18.5 eV) with
experiment [(19+3) eV]. Thus, our comparison of calcu-
lated trigonal-shear deformation potentials to experiments
does not allow us to determine £ in GaAs more accurately
than {~0.6+0.1. An independent determination by com-
parison of the calculated variation with £ of the coeffi-
cient V, f_cgr strain-induced splitting of the conduction
band for k along [110] to spin-relaxation experiments
does not improve this situation. With the present compu-
tational accuracy and accuracy of the experiment, the
finding that theory and experiment agree within ~2 X 107
cm/sec is quite satisfactory.

The value £=0.48 obtained recently from first-
principles pseudopotentials*®*® differs significantly from
the result obtained by Cardona et al.,>3 £=0.72. Experi-
mental determinations of the internal-strain parameter are
also somewhat contradictory®>>* for Si, in which much
data exist (they range from 0.65 to 0.75, all larger than the
theoretlcal47 value). In view of the difficulties in deter-
mining> the intensity in the “forbidden” x-ray intensities,
such scatter in the experimental results is not surprising
For GaAs there exists, to our knowledge, only one experi-
mental determination’® of ¢, £€=0.764. This value ap-
pears large compared to the calculations Refs. 51 and 52
and the present results, but is in agreement with the calcu-
lation in Ref. 53. In order to determine the value of £ for
GaAs more accurately, more detailed experimental and
theoretical investigations will be needed.
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