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G. A. Saunders :
School of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

Y. K. Yogurtgu
Atatiirk Universitesi, Fen-Edebiyat Fakiiltesi, Fizik Boliimii, Erzurum, Turkey
(Received 13 March 1984)

Measurements of the effects of hydrostatic and uniaxial pressures on ultrasonic wave velocities
are used to obtain the 14 third-order elastic constants and also the hydrostatic pressure derivatives
of the second-order elastic constants of antimony. The experimental data are used to calculate the
zone-center acoustic-mode Griineisen parameters in the long-wavelength limit on the basis of gen-
eralized Griineisen theory in the quasiharmonic approximation. The results suggest that the nega-
tive value at low temperatures of the linear thermal expansion coefficient tensor component a;;
arises from the dominant contribution of long-wavelength shear modes having negative mode
Gruneisen parameters. In general elastic behavior, the vibrational anharmonicity and the thermal
expansion are consistent with the tendency of antimony to exhibit a layerlike character.

I. INTRODUCTION

The effects of hydrostatic and uniaxial pressure upon
ultrasonic wave velocities have been measured in the
rhombohedral A7 structure (point group 3m) semimetal
antimony. The results have been used to obtain sets of the
14 third-order elastic constants (TOEC) and the hydro-
static pressure derivatives of the 6 second-order elastic
constants (SOEC) for this element. The first information
of the effect of hydrostatic pressure on the lattice dynam-
ics of the group-V semimetals bismuth, antimony, and ar-
senic was obtained by Richter et al.,! who found that ul-
trasonic wave velocities increased while the zone-center
optical-mode frequencies decreased with applied pressure.
A complete set of the TOEC of bismuth? and the hydro-
static pressure derivatives of the elastic constants of
bismuth-antimony alloys® are also available. The TOEC
are of particular interest because they are related to the
anharmonic properties of crystals as the coefficients of
the first-order anharmonic terms in the interatomic poten-
tial. Thus they provide quantitative information of the
nonlinear behavior of the crystal under a finite strain and
hence of the vibrational anharmonicity of the acoustic
phonons at the long-wavelength limit. An interesting
characteristic of the group-V semimetals is that they show
a progressive tendency to behave as layerlike crystals. Al-
though to describe antimony (or even arsenic) as having a
layer structure is an oversimplification, its TOEC give an
indication of the nonlinear acoustic behavior which can be
expected of this type of crystal. To interrelate the influ-
ence of acoustic-mode vibrational anharmonicity with
thermal expansion, the TOEC data have been used to cal-
culate the mode Griineisen parameters at the long-
wavelength limit in the anisotropic continuum model.
These parameters clearly identify the particular acoustic
shear modes which are responsible for the negative
thermal expansion coefficient (¢;;) below 20 K in an-
timony.*

II. EXPERIMENTAL PROCEDURE AND RESULTS

The single-crystal boule of antimony, grown by zone re-
fining of 99.999%-purity starting material, was aligned to
within +1/2° by using Laue x-ray back-reflection photog-
raphy. To determine the signs of certain elastic constants
for a material belonging to the 3m point group, it is neces-
sary to orientate the crystal unambiguously with respect
to the atomic arrangement in the crystal; this was
achieved using a standard Laue back-reflection pro-
cedure.>® Monocrystalline rectangular parallelepipeds (di-.
mensions approximately 1X1X1 cm?), suitable for the
propagation of ultrasonic waves and the application of
uniaxial pressure in the crystallographic directions speci-
fied in Table I of Ref. 2, were then cut by spark erosion.
Sample faces were then spark planed to a parallelicity of
approximately 10~* rad. To obtain a set of TOEC, the
hydrostatic and uniaxial pressure dependences of ultrason-
ic wave velocities were measured using apparatus and
techniques described elsewhere.” To bypass calculation of
the changes in crystal dimensions induced by hydrostatic
pressure, the experimental data were transformed to corre-
spond to the “natural velocity” W.} Experimental results
obtained for the dependence of the natural velocity of ul-
trasonic waves upon hydrostatic and uniaxial pressure are
given in Figs. 1 and 2.

Equations relating the second-order elastic stiffness ten-
sor components Cy; with the ultrasonic wave velocity
have been developed for rhombohedral RI (3m Laue
group) crystals from the Christoffel equations by several
authors.”~!! The adiabatic second-order elastic stiffness
components of antimony have been computed, using a
least-mean-squares fit procedure of the measured ul-
trasonic wave velocities to these equations. The previous
data for the elastic constants are rather widespread; the
comparison, given in Table I, shows that the present re-
sults are close to those of Epstein and de Bretteville!?
which were also measured by a pulse-echo ultrasonic tech-
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FIG. 1. Relative change induced in the natural wave velocity in antimony through the application of a hydrostatic pressure. The
modes are (a) 4, N||[01/V21/V2], U||[01/V21/V2]; B, N||[0 —1/V21/V2], U||[0 —1/V21/V2]; C, N||[01/V21/V2],
U||[0 —1/v21/V2); D, N||[010], U[100]; E, N||[100], U||[100]; F, N||[01/V21/V2], U||[100], b) G, N||[001], T||[001];

H, N[001], U in (001) plane; I, N||[0 —1/V'21/V"2], U]||[100].

nique. The early results of Bridgman!? were obtained us-

ing a static pressure method and so correspond to iso-
thermal stiffnesses; however, the isothermal-to-adiabatic
correction is negligible. The results of Leventhal* were
obtained by a pulse technique but lie well outside the error
range in either the present work or that of Epstein and de
Bretteville;'? that is particularly true of C;; and Cis,
which are the easiest elastic stiffnesses to. obtain with the
highest accuracy. The elastic compliances (Table I) also
show close agreement with the results obtained by Epstein
and de Bretteville.!?

Knowledge of the directions in a crystal along which
pure elastic modes can propagate is particularly useful,
especially in experimental ultrasonic studies. The propa-
gation and polarization vectors for modes propagated in
pure directions, obtained by solution of the Christoffel
equations!® for antimony using the set of elastic constants

measured here (Table I), are listed in Table II. For crys- .

tals belonging to the RI Laue group, both the x and z
directions are pure-mode axes. The particle displacement
vectors for the two pure x-axis shear modes can only be
found from prior knowledge of the elastic moduli. The
angle ¢ which the polarization vector makes with the xy
plane is given by

tan¢=U3/U1=—C14/(C44—pv2) . (1)

Here U; and U, are the direction cosines of the polariza-

tion vectors obtained by substituting the measured veloci-
ties v of the modes into this equation. The polarization
vectors differ by 7/2. In addition to the z axis for one
particular direction in the yz plane, there is an accidental
pure-mode axis whose direction, denoted A4 in Table II,
can be found from!©

N; N3Cyy +N3C4—2N,N;3Cry—pvf
N2 N3Ci4s—NyN3(Cy+Cys)

where v; is the velocity of the longitudinal wave, and N;
and N, are direction cosines of this propagation direction.

Explicit expressions for the hydrostatic and uniaxial
pressure derivatives —[d(poW?)/dp]p_o at zero pressure
in terms of the SOEC and TOEC for RI Laue-group
rhombohedral crystals have been given by Thurston,
McSkimin, and Andreatch.!> The TOEC, computed for
antimony using a least-mean-squares fit to the experimen-
tal data (Figs. 1 and 2), are compared with those of
bismuth in Table III. The hydrostatic pressure derivatives
of the SOEC are listed in Table IV.

) (2)

III. DISCUSSION

The A7 crystal structure may be regarded as being de-
rived from the simple cubic structure by two consecutive
distortions. (i) small extension along a body diagonal,
reducing the rhombohedral angle a from 60°, and (ii) a
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FIG. 2. Relative change in the natural wave velocity in an-
timony by the application of a uniaxial stress. The modes are
(1) [oo01], [010], [100]; (2) [001], [100], [100]; (3) [001], [010],
[010]; 4 [100], [0—1V21/V2], [01/V21/V2]); (5)
[01/V21/V2], [0 —1/V21/V2], [100]; (6) [01/V21/V2],
[0—1/V21/V2], [01/V21/V2]; @) [100],
[0 —1/v21/v2], [100]; (8) [0 —1/v/21/V/2], [100], [100]; (9)
[0 1/vV2 1/1/5], [100], [100], where in each case the first direc-
tion refers to that of the applied stress (M), the second to that
for wave propagation (N), and the third to that for wave polari-
zation (U).

small movement of one face-centered rhombohedral sub-
lattice along this body diagonal. The effects of these
small distortions upon the physical properties of the
group-V rhombohedral elements are considerable. Arsen-
ic is the most distorted of the three semimetals
(a=54°10', 57°14’, and 57°19’ for arsenic, antimony, and
bismuth, respectively). In fact, arsenic crystals have a
surprising degree of layerlike character,® cleaving readily
to expose (111) faces. In the A7 structure the planes
occur in pairs in which atoms are comparatively close, the
double layers being more widely separated. Although not
strictly layerlike crystals, antimony and bismuth are

markedly anisotropic. The thermal expansion, the elastic
properties, the lattice dynamics, and the influence of pres-
sure on lattice properties of the rhombohedral group-V
elements can be more easily understood when this tenden-
cy towards layerlike behavior is kept in mind. For an-
timony the phonon dispersion curves determined from in-
elastic neutron scattering measurements'é (including a
substantial gap at the Brillouin-zone boundary between
the acoustic and optic branches) are consistent with there
being strong p-dominated bonds between each atom and
its three nearest neighbors in a double-layer plane, while
its bonds with the next nearest neighbors in the adjacent
double layer are substantially weaker. The dynamics of
phonon modes propagating in the trigonal direction are
governed by the interplanar force constants because the
double-layer planes move essentially as rigid bodies. The
elastic stiffness constants of antimony (Table I) reflect the
weaker interplanar forces in that C;; > C33 and S1; <S33.
When hydrostatic pressure is applied, the 47 structure
crystals progress towards the simple cubic structure;'’>!®
then the layers tend to close up, changes in the interatom-
ic spacings within the layers being much smaller. The
linear compressibilities along the z direction (5;) and in
the z plane (B,,) are markedly different:® for antimony
B, (=833+28y3) is 17.7%x10712 N~!m? while B,
(=811 +S812+S;3) is much smaller at 3.6x1072
N~ !m?

The higher-order elastic constants characterize the vi-
brational anharmonicity—the nonlinearity of interatomic
forces with respect to displacements. In particular the
adiabatic TOEC define the coefficients [33U(S,n)/
37458740 es 15;n=0 Of the cubic term in the expansion of
the strain energy density U (S,7n) with respect to Lagrang-
ian strain:

PoU (S,m)= 3 CabeaMabNea

+%Ca§)cdef"lab770d"lef o (3)
At high temperatures especially, anharmonicity strongly
influences physical properties, such as thermal expansion,
which depend upon the thermal motion of the atoms.
The marked anisotropy of the lattice properties of an-
timony extends to the TOEC: Clll >C222 >C333 (Table
.
It is normal practice to discuss vibrational anharmoni-
city in terms of generalized Griineisen parameters which
measure the strain dependences of the lattice vibrational

TABLE 1. Second-order adiabatic elastic stiffness constants and isothermal compliance constants of antimony at room tempera-
ture (293 K). Units of stiffness 10° N m~2, compliance 10~'2 N~ !m?,

C]] CIZ C13 C14 C33 C44 C66 Reference
101.3£1.0 34.5+2.5 29.2+2.7 20.9+2.1 45.0£0.5 39.3+0.6 33.4+0.6 This work
99.4 30.9 26.4 21.6 44.5 39.5 342 12
79.2 24.7 26.1 11.0 42.7 28.5 27.3 13
81.0 11.0 18.0 43.6 33.6 350 14
Sll Slz S]3 / S14 S33 S44 S66 Reference
16.3 —6.1 —6.6 —11.9 30.9 38.1 44.7 This work
61.2 —6.1 —5.9 —12.2 29.5 38.6 44.6 12
17.7 —3.8 —8.5 —8.0 33.8 41 43 13




30 THIRD-ORDER ELASTIC CONSTANTS AND ACOUSTIC-MODE. ..

5737

TABLE II. Character of acoustic modes propagated along the crystallographic and accidental pure-mode axes in antimony. A
denotes the accidental pure-mode direction in the yz plane (orientation at 95° to the z axis).

Direction of Angular orientation Mode
Propagation Mode polarization of polarization velocity Mode Griineisen
direction type vector vector (10°* ms™1) parameter
x Pure shear in yz plane 49° to +y 2.93 —-1.17
(fast) 41° to +z
x Pure shear in yz plane 41° to +y 1.51 —-2.99
’ (slow) 49° to —z
x Pure longitudinal X 3.89 —0.20
y Pure shear x 2.23 —1.67
y Quasishear in yz plane 73° to +y 2.22 —1.46
17° to +z
y Quasilongitudinal in yz plane 17° to +y 4.01 —0.27
73° to —z
z Pure shear in xy plane 2.42 —0.89
(degenerate)
z Pure longitudinal z 2.59 +2.32
A Pure shear x 2.11 —1.83
A Pure shear in yz plane A+1/2 2.11 —1.23
A Pure longitudinal in yz plane A 4.13 —0.36
frequencies w(p,q) accruing frqm the effect of hydrostatic y= 2 v(p,d)e(p,q) / > cp,q), (5)
pressure upon the lattice potential: nd 21
1 30(p.d) where
- a) b
red==1""2 | o, TL=0 @ e (p,q)=kxZexp(x) /[exp(x) — 11, [x =fio(p,d) /KT]

For acoustic modes at the long-wavelength limit, the vi-
brational anharmonicity can be described in the elastic
continuum model.!® In the case of a uniaxial crystal there
are two independent components y; (=7¥5,) and ¥33 of
the Griineisen tensor. The scalar parameter ¥y (=,
+2y33) is the weighted average of the individual mode
gammas y(p,q):

TABLE III. Third-order elastic constants of antimony in
comparison with those of bismuth (Ref. 2). Units are 10!
Nm~2

Antimony Bismuth
Cin —21.1 +0.5 —7.14
Ciz 9.8 +0.4 1.16
Cus —1.87 £0.3 —1.78
Cus 8.44 +0.3 —3.77
Cizs —4.18 0.9 —1.27
Ci —8.08 +0.8 —0.70
Ci3; 3.81 +0.4 —1.62
(SFEN —0.018+0.004 0.43
Ciaa 2.94 +0.5 —0.50
Ciss —15.1 +0.8 —4.06
Ci —11.5 0.6 —5.77
Ci33 —5.96 +0.75 —4.03
Cia4 2.72 +0.56 —0.95

6.45 +0.7 1.77

Caag

is the contribution of a mode in branch p and wave vector
q to the specific heat of the crystal. In general the scalar
v includes contributions from all the lattice modes includ-
ing those on both the optic and acoustic branches at all
wave vectors in the Brillouin zone. For a uniaxial crystal
the Griineisen parameter contributions from the acoustic
modes alone can be obtained using?

=3 $aareNceN /3 faaceN,
p P

Y= $ daT,p,Rcp,N) / SfaaceN, ©
P p

=3 $ada r“(p,ﬁ)c<p,§)/§ FaacpN,
V4

TABLE IV. Hydrostatic pressure derivatives of the second-
order elastic stiffness tensor components of antimony at room
temperature compared with those of bismuth (Ref. 2).

‘ Antimony Bismuth
aCy, /0P 10.8 +0.2 6.38
aCy, /3P 2.9 +0.2 . 2.38
9Cy3/aP 6.7 £0.4 4.69
dCy4 /3P 2.7 £0.2 1.70
dC;3 /0P 8.0 +0.2 6.62
9Cyy /3P 5.71+0.14 3.37
9Ces /0P 3.90+0.14 2.00
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where the superscript Br denotes the Griineisen parameter
introduced by Brugger, || refers to the z axis, and 1 refers
to the z plane. In the high-temperature limit (T >®p)
the heat capacity C (p,ﬁ) per mode becomes equal to
|
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Boltzmann’s constant k. This condition applies to an-
timony [®p =210 K (Ref. 21)] at room temperature. For
a rhombohedral crystal belonging to the 3m (RI) Laue
group, it can be shown that

T (p,N)=—(B/2w){ N3 +2w[(U} + U3)S13+S33U3]1+[S13(C111 +Ci12) +S353C113 (N1 Uy + N, U,
+5[813(Caz — Cr12) +833(C113— C123) N Uy — N, U P +(2813C 133+ 533C333 )N U3

+[S13(C1as+Cis5) +S833C344 Il (N2 U3 + N3 U >+ (N3 Uy +N U3 )]

+2[S13(Cy13+C123) +833C 133 (N N3U U3 +N,N, U, Us)

+2[S13(C114+C124) +533C 134 INTU, U3 +2N N, U, U

+2NN3U U, —N3U,U3+N, N3 U} —N,N3U3)} (7)

IP(p,N)= —(B/4w){ N2+ N3 +2w[ (S}, +S 2 (U2 + U3)+25,3U3]
+[(S11+812(Cl11 +C112)+2813C113IN Uy + N, Uy
+[5(S11+812)(Cp —C112) +513(C113 — C123) N U — N, Uy P
+[2(811+812)C133+251,C333 IN3U3

+[(S11+812)(Cr4s+Cis5)+28513C344 I (N, U3 + N3 Uy )+ (N3 Uy + N U3 )?]
+2[(S114+S12X(Ci13+C123)+2813C 133 (N N3U U3 +-N,N; U, Us)

+2[(S1; +S12)XCr14+C124)+28513C134 (INTU, U3 +2N N, U, U

+2NN3U U, —N3U,Us+N,N;U? —N,N;U3)} , (8)

where

w=Cy (N Uy +NyU, >+ Cge(N,Uy—N,U;)*+C33N2U?
+Cu[(NyU;+N3U, )2 +(N3U; +N,U3)*+2C13(NyN;U U3 +N,N;U,U;)
+2C4(N2U, U3+ 2N N3U, U3 +2N N3U U, —N3U, U3 +N,N; U2 —N,N;U3) .

Here N; and U, are direction cosines for the wave propa-
gation and polarization directions; for any chosen propa-
gation direction the polarization vector can be obtained as
the eigenvector of the Christoffel equations; the eigen-
value corresponds to the mode velocity. The long-
wavelength ¥?(p,N) [=yﬁr(p,ﬁ)+27?r(p,ﬁ)] for modes
propagated in the xz, yz, and xy planes of antimony, com-
puted using Egs. (7) and (8), are plotted in Fig. 3.

The high-temperature limit (7 >®p) of the mean
Griineisen parameter can be obtained by a summation
over all the zone-center modes y(p,q) on the acoustic
phonon branch using

Br____i Br(, =
YH 3N2" (4q) . 9)

The summation has been carried out over 26 811 modes
by dividing the Debye sphere into nearly equal areas with
the mode propagation direction centered on each element.
For antimony y&f is —0.24, the two components being
(¥P")g = —0.56 and (y[")5 = —0.08.

A number of interesting features of the acoustic pho-

nons of antimony are revealed by these Griineisen param-
eters. In general, in the absence of mode softening the
elastic constants and the lattice vibrational frequencies in-
crease under hydrostatic pressure, which raises the strain
free energy, so that normally the mode Griineisen y’s are
positive. However, for antimony the mode Griineisen y’s
are negative for propagation directions of elastic waves
with wave vector § over large ranges of solid angles. The
high anisotropy of y(p,q) and the tendency for many
pure and quasishear modes to have negative y(p,q) can be
accounted for in terms of the tendency for antimony to
show layerlike characteristics. As the main effect of ap-
plication of hydrostatic pressure is to squeeze the layers
together (B; > B,y ), the influence of the repulsive forces
which act between the pairs of layers must be especially
important. The work done against these forces requires
that the energy and frequency of the longitudinal mode
propagated down the z axis should increase substantially
when pressure is applied. Hence the mode Griineisen pa-
rameter for this mode should be quite large and positive,
while those for the x-axis longitudinal mode and y-axis
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FIG. 3. Zone-center acoustic-mode Griineisen parameter components as a function of mode propagation direction in the (a) yz, (b)

xz, and (c) xy planes in antimony.

quasilongitudinal mode should be smaller—as they are

(Table II). The relative contributions from SOEC and
TOEC to the Griineisen parameters for the longitudinal
modes in the z and x directions can be seen by inserting
the measured quantities into the particular expressions for
these y;:

'YL(Z)= —(B/C33)[ 1+2C33(S33 +2813)
+2C133(S11 +S12+S13)

+(8334+2513)Ca3] (10)

yr(x)=—(B/2C)[ 14+2C11(S11 +S12+S13)
+C113(S33+2813)] - (11

Expressions similar to these have been given previously?
but approximations made for bismuth have not been in-
cluded here. Substitution of the measured SOEC (Table I)
and TOEC (Table III) into the expression for ¥ (z) shows
that the terms including TOEC are substantially greater
than those including SOEC only—the repulsive forces be-
tween the pairs of double layers do dominate the mode
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Griineisen parameter ¥ (z) and hence the pressure depen-
dence of this mode. The influence of the TOEC on ¥ (x)
is much less. The Griineisen parameters of elastic modes
propagated in directions in the xy plane are particularly
interesting in that all have anomalously negative values,
those of modes which have longitudinal character being
small but those of the shear-type modes being quite large.
Qualitatively it can be seen that for those modes in which
the double-layer planes of vibration act as almost rigid
units in the xy plane, the changing bond lengths tend to
increase so that the corresponding Griineisen parameters
are negative. There is a marked shift towards more nega-
tive y(p,l—\?), in antimony as compared with bismuth, espe-
cially for modes propagated in the xy plane, a finding
which conforms with the tendency of antimony to show
more layerlike character.

This aspect of the lattice-dynamical behavior of an-
timony is reflected in the anisotropy of its thermal expan-
sion. The component a3; along the z direction is substan-
tially larger than that (a;;=ay,;) in the xy plane because
lower-energy lattice vibrations are more easily excited in
the softer direction normal to the double-layer
planes.#?»2* As the temperature is increased from a low
value, the thermal expansion in the soft z direction in-
creases much more rapidly than in the hard directions in
the xy plane; in fact, a;; (=a,,) is negative up to 20 K:
Directions in the xy plane actually contract as the tem-
perature rises.* For a rhombohedral crystal of the RI
Laue group, the principal thermal Griineisen parameters
are given by

Y*=[(C11+Cpay+CraznlV/Cp, (12)
y®=(2C3a11+Cy3a33)V/Cp> (13)

in directions in the xy plane and along the z axis, respec-
tively. The temperature dependences of these parameters
for antimon show that at low temperatures
yP(4+0.5)<yf{{(+1.2) while at high temperatures
7P(+1.1)> 7{{(+0.9).* The crossover occurs at about 50
K. For uniaxial crystals at high temperatures, the
Griineisen parameter component tends to be larger along
the directions associated with the stronger forces;** hence
for antimony the weaker interlayer binding force results in
yﬂ’< yih. Modes which depend chiefly upon strain in the

G. A. SAUNDERS AND Y. K. YOGURT(;U 30

weak-force direction tend to have smaller individual mode
Grlineisen parameters y; for this direction. However, the
relative magnitudes of 'yih and yﬁ' cross over as the tem-
perature is reduced because the highest-frequency modes
(those in the directions of stronger bonding) are progres-
sively frozen out. As the thermal expansion and the
thermal Griineisen parameter accrue from summation
over all the lattice modes, relative contributions to each
property from individual modes are difficult to assess.
However, the acoustic-mode Griineisen parameters (Fig.
3) provide the information necessary to determine the con-
tributions from the zone-center acoustic phonons; at low
temperatures the acoustic phonons dominate the phonon
density and the thermal expansion. The elastic constants
and acoustic-mode Griineisen parameters should not be
strongly dependent upon the temperature so that the
room-temperature values of the latter should be reason-
ably similar to those at low temperatures. Bearing this in
mind, the observation of a negative a;; at low tempera-
tures can be directly associated with the fact that all the
long-wavelength acoustic modes propagated in the xy
plane have negative Griineisen parameters. Since these
parameters are much larger for modes with shear than for
those with longitudinal character, the results establish
that the anomalous negative value of a;; below 20 K
arises from the dominance of contributions from the
zone-center transverse acoustic phonons at low tempera-
tures.

Finally it is useful to comment upon the mode contri-
butions to thermal expansion of antimony at room tem-
perature. The high-temperature limits of the mean zone-
center acoustic-mode Griineisen parameter components
[(yﬁ‘)H= —0.56 and (") =—0.08] are quite different
from the thermal Grineisen parameter components
(7ﬁ‘= +0.9 and y"=+1.1). Since the Debye tempera-
ture [210 K (Ref. 21)] of antimony is quite low, at room
temperature phonons will be excited throughout all states
in the Brillouin zone in both optical and acoustic
branches. The positive value of ¥ (=+40.97) implies -
that the thermal expansion at room temperature involves
substantial contributions from phonon states for which
the mode Grlineisen parameters have the more usual posi-
tive sign, unlike many of those for the acoustic branches
at long wavelength.
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