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Corrections to the conventional dipole expression for the attractive interaction between an atom
and a metal surface are calculated and discussed in several models: (i) the electrostatic image model,
primarily used to define the multipole corrections and to give.a simple, although accurate, estimate
thereof; (ii) a model that includes both s and d electrons in the metallic dielectric response together
with an atomic polarizability accounting for multipole contributions; and (iii) a model with a realis-
tic treatment of the coupling between density fluctuations in the metal and on the atom (the conven-
tional methods overestimate it). The models show what factors are needed to avoid a singular in-
teraction at the dynamical image plane. While the point dipole of model (ii) allows polarization
response at all wavelengths, and leads to singular behavior, model (iii) shows how the finite extent of
the atom limits the ability of the system to respond to polarizing fields of short wavelengths. The
latter “saturation” of the response competes with the multipole contributions and reduces their in-
fluence on the interaction potential over the whole range of distances, and leads to a finite potential
also for shorter distances, where the saturation is particularly important. The models are illustrated
with numerical calculations for helium on noble metals. With a proper description of the repulsive
interaction the resulting physisorption potential is in agreement with experimental findings. We also
apply our results for helium to give some brief comments for another interesting atom/substrate sys-
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tem: H, on noble metals.

I. INTRODUCTION

In recent years, atom-scattering experiments have be-
come increasingly important tools to investigate the
characteristics of metal surfaces.! By an interplay be-
tween experimental and theoretical studies,>~> one tries to
find the interaction potential between the incoming atom
and the surface. Formally, this interaction potential is ob-
tained by solving the Schridinger equation for the many-
electron system of the combined atom-metal system in a
self-consistent way,? varying the atomic configuration,
particularly the atom-metal distance d. This gives the to-
tal interaction potential. For the inert-gas atoms, com-
monly used in atom-surface—scattering experiments, a
simpler description of the potential as a sum of a (corru-
gated) repulsive part’ and an (uncorrugated) attractive
part® is often used. The attractive part, the van der Waals
interaction, is usually described by the first term (~d —3)
in an asymptotic power-law expansion with respect to the
separation d.> This is an acceptable representation at
large distances. For smaller separations, however, it
diverges as ~d ~3. A divergence like this is not physical-
ly correct, since the correlation effects embodied in the
van der Waals interaction should give a finite potential
everywhere in the bulk. Instead, the attractive interaction
is expected to be a smooth function of the distance, with a
d 3 dependence far away from the surface and a finite
value for shorter distances. The purpose of this work is to
give a more accurate description of the attractive part of
the potential, which eliminates this misleading divergence
and has a realistic behavior over the entire range of atom-
metal separations.

There is a large number of relevant and important con-
tributions to the theory of the van der Waals interaction
between bodies of various shapes and dimensions. We
will indicate here some of the relevant theoretical papers
for this work.® Calculations of the interaction between
neutral species were first done for molecules,”® leading to
the well-known d ~® form of London.” The first person to
consider the interactions between an atom and a substrate
(~d %) was Lennard-Jones'® in a model with a perfectly
reflecting metal. Lennard-Jones’s treatment was later
found''= to overestimate the strength of the inter-
action—it does not take into account the limited ability of

‘the substrate electrons to follow the instantaneous polari-

zation of the atom.

Casimir and Polder'> have subsequently introduced re-
tardation effects and the idea of the van der Waals in-
teraction being a change in the electromagnetic field ener-
gy brought about by the interaction. This was then, in-
dependently, developed into a general form for the van der
Waals interaction, which we currently recognize as the
Lifshitz formula.!® In Lifshitz’s treatment, fluctuating
electric and magnetic currents have been introduced into
the Maxwell equations. In a similar spirit the van der
Waals interaction was later identified as a change in sur-
face normal-mode frequencies.!” In the early 1970s, cal-
culations of the attractive interaction which a neutral
body feels outside a polarizable medium have focused on a
better treatment of the medium.>!®—~23 This has been
done by taking into account the spatial dispersion in the
dielectric response of the metal, i.e., the response of the
metal to fields varying in space, within a linear-response
formalism.??

With the advent of more realistic electronic wave func-
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tions for the substrate, the calculations along these lines
by Zaremba and Kohn® currently serve as the “standard”
reference for atom-surface interactions. It is only quite
recently that there have been any serious attempts to also
treat the spatial response of the atom in a better way,
mainly triggered by the improved experimental accuracy.
This has been made by studying multipole moments
higher #~?7 than the dipolar one.

In this paper we will first review two simple multipole
models before performing a calculation of the atomic
response to all multipole orders, together with a realistic
treatment of the metal surface. The calculations have the

Eaw=— [dF [a7’ [d% [dR o R+X—FwR+X'—
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same starting point as the approach of Zaremba and
Kohn® and are very similar in outcome for the metal
response, although using a much simpler procedure. The
description of the atomic polarizability in this work is far
more realistic than the point-dipole approximation. It
leads to a finite potential close to the surface, but to simi-
lar results for intermediate and large separations. The
latter is shown to be due to compensation of two different
types of corrections to the Zaremba-Kohn treatment.

In terms of the response functions X, for the atom and
X for the metal, the van der Waals (vdW) interaction can
be “quite generally” expressed as’

) [ du@m) TG (XX i o (F,F i) (1.1)

where »(R+X—T7) is the Coulomb potential between the electrons on the atom and the metal, respectively, when they
are separated by the vector R. We represent v in terms of its two-dimensional Fourier transform?
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where L? is the surface area of the solid, and T=(7),z). This implies that

R R+ =T —ky ld+z,—
v(R+x—r «3e IR+ T =7 =Ry 4+ =2 |

)

for an atom at a distance d from the surface (Fig. 1). If the overlap between the atom and the metal electron wave func-

tions were exactly zero, then |d +z, —z,, | =d 42z, —2z,,.
the atomic and the metallic coordinates, respectively,

Equation (1.1) then separates into two uncoupled integrals over

BT T
iR (k” k”)

(1.2)

where k | 1= k” +G G being a rec1proca1 lattlce vector in
the plane of the surface. Only the G=0 term gives a
power-law-dependent interaction energy, which corre-
sponds to the conventional van der Waals energy. All the
other terms decay exponentially. Limiting ourselves to
the power-law terms, we thus obtain
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FIG. 1. Parameters of the physisorption geometry. The met-
al coordinate z,, is defined from the jellium edge, negative in the
bulk, z, is the atomic coordinate, and d is the distance from the
nuclei to the jellium edge.

Wk iu) plkeyin)
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is the atomic polarizability, and

p(k”’iu)=i_‘ﬁfdz’” fdz"ne_k||(z"'+z’")Xm(k”,zm,Z,ln,iu)
(1.5)

is the reflection coefficient of the metal.?®

From a physical point of view it is not a bad approxi-
mation to neglect the overlap when the atom is located at
distances typical for physisorption. Furthermore, the
large metallic screening limits the penetration of the mu-
tual polarizing field. This is not contained in Eq. (1.3),
however. The result of using this form is that the in-
tegrand for Eqw in Eq. (1.3) diverges when k| —0 due to
the growth of exp(—k)jz,) in the polarizability for large,
negative z, values. It is then incorrect to neglect the over-
lap and afterwards integrate over all space. The latter
leads to an infinite value for the overlap. Zaremba and
Kohn® avoid this problem by restricting the treatment to
the asymptotic region, retaining only the dipole contribu-
tion to the polarizability.

For physical reasons one expects that only the lowest
terms in a Taylor expansion of exp(—i k%) contribute to
the interaction, when the distance is large (the metal only
“sees” a point dipole when the atom is very far away). In-
clusion of only these terms means that Eq. (1.3) describes
the situation in-an asymptotically exact way.

In Sec. II we derive the relevant terms (dipole, quadru-
poles, and octupoles) in a multipole expansion using sim-
ple perturbation theory?’ in the spirit of Lennard-Jones'®
for the case of perfect metallic screening. We also discuss
the modifications due to a limited screening ability. This
gives an upper bound for the corrections from multipoles
to the dominating dipole contribution.

In Sec. III we improve this expansion?® by using Eq.
(1.3) with a more realistic surface response, including a
smooth variation in the dielectric properties at the inter-
face, as well as the d-electron contribution to the screen-
ing. The polarizability of the atom is calculated with
rather simple, though properly orthogonalized, wave func-
tions, yielding a good value for the static polarizability.
The resulting van der Waals potential combined with a
proper repulsive interaction gives a slightly deeper phy-
sisorption well than a standard treatment.> For He on no-
ble metals the correction is less than 10% at relevant phy-
sisorption distances. Inclusion of all higher-order terms
in the Taylor expansion leads to a divergence of Eq. (1.3)
for all distances. This is a situation analogous to the
Stark effect,”” where the perturbation series diverges but
the predictions from the leading terms are borne out very
well by experiment. The mathematical series contains the
possibility that the electron can be in a region where the
field is stronger than the Coulomb potential. Equa-
tion (1.1) does not contain this divergence since
exp(—k| |d+2,—2,|)<1 over all space. This means
that E, 4w is finite even when d —0.

To avoid cutting off the exponential tails of the wave
functions, it is necessary to integrate over all space, but
then one is faced with the effects of overlap. The factor
exp(—Kk)| | d+z,—z,, | ) contains a coupling between the
coordinates of the atom and the metal, which makes it
impossible to separate the integrals and then calculate the
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atomic polarizability and the metallic response function
according to Egs. (1.4) and (1.5), respectively. Zaremba
and Kohn® circumvent this difficulty by letting
|d +2z,—2z,, | =d +2,—2z, (the zero-overlap approxima-
tion). As mentioned earlier, this implies a divergent van
der Waals interaction as d—0. By using the triangle in-
equality, |d+z,—2z, | < |d+z,| + |z, |, however, one
can decouple the coordinate systems. Then the polariza-
bility and the reflection coefficient can be calculated
separately, yielding a finite E.4w interaction as d—0
since we retain the important property of the full expres-
sion, namely that exp(—k| |d+2z,—2z, |)<1. In Sec. IV
we show that this is a better model than neglecting the
overlap completely, and that it leads to a smooth, non-
singular behavior of the van der Waals interaction at all
distances, even when the atom nears the surface.

II. ELECTROSTATIC IMAGE MODEL

In this section we calculate the multipole corrections to
the standard dipole interaction potential using an exten-

‘sion of the electrostatic image model studied by Lennard- .

Jones.!® The quadrupoles and octupoles are found to give
at most a 15% deeper potential at relevant physisorption
distances.

Within the Born-Oppenheimer approximation, the elec-
tronic problem can be solved in a model with a proton at
a fixed distance d outside a perfectly reflecting metal sub-
strate, the sharp boundary of which is at z=—d. The
electron thus moves in the attractive potential from the
proton, as shown in Fig. 2. The system is then described
by the following total Hamiltonian:

H=H0+ V( f’) ’
where

Hgpo=Egih

is the Schrodinger equation for the free atom, and where
the perturbation

—_—
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FIG. 2. Adsorption coordinates for a polarizable atom, in the
form of a proton, a distance d outside the substrate, and an elec-
tron with coordinates T=( p,z).



5724

e2 e2 e2

4d " Wd+2) | [2d+27 P17

contains the interactions of the proton and electron with
their image charges. Recently,?” we calculaied the energy
shift due to the image interaction for an atom, which is
not allowed to deform in the presence of the substrate,
and showed that to O(d %) it is sufficient to use first-
order perturbation theory. In principle, there are both de-
formations due to overlap with the metal wave functions
and due to the image potential itself. Far away from the
surface (d >>z), Vis expanded in terms of z/d:

V(T)=— (2.1)

V(i)=& e—f‘, —z/d)"
4d ~ 4d =, '
2 o
—“’E 2 P,(— cosO)(r/2d)" . 2.2)

Both the n=0 and n =1 terms in Eq. (2.2) vanish, leaving
the leading term proportional to d ~3, which is the stan-
dard dipole contribution. Inserting V between the unper-
turbed states |0) =1}, assumed spherically symmetric,
we find

= C
AE=(0|V]0)=— 3 —*1, (2.3)
i=1d
where the coefficient for the /th multipole moment is
e2( r21) )
=" 2.4
Casr 22+ 1) 2.4)
The terms relevant for physisorption,
20,2 20,4 2¢,6
AE=-% (’3> _£ <’5> £ <’7> — (25
12d 20d 28d

are successively decreasing. The dipole term is the
Lennard-Jones result.® To assess the importance of the
quadrupole and octupole contributions it is convenient to
normalize AE to the standard —C; /d? dipole term,

AE/(—C; /d*)=1+d}/d*+d} /d*+0(1/d°) .

Using hydrogenhke wave functlons, |0)=(A3/7
with A=ag ! for H and 1.453ag ! for He, the characteris-
tic quadrupole (length)? and the octupole (length)* are

d2=Cs /C3=9/2)2

(2.6)
)1/2 —Ar

(2.7)

and

di=C, /C3=45/\%, (2.8)
respectively. For He, d}=0.60 A? and d}=0.79 At
These quadrupole and octupole contributions are plotted
in Fig. 3. They give at most a 15% more attractive poten-
tial in the range d =4—8 a.u. For H, the corresponding
corrections are twice as large since H is larger than He
and then less pointlike.

Further insight into the question of the contributions
from the higher poles can be obtained in the case of limit-
ed screening. Using a model with one dominant transition
for each metal and atom, respectively, we have shown?’
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FIG. 3. Percentage corrections to the standard dipole van der
Waals interaction from (a) quadrupole and octupole contribu-
tions, and (b) from octupole contributions alone, calculated with
parameters for helium a distance d outside a perfectly reflecting
metal (d in a.u.).

that the strength of the different poles are reduced accord-
ing to

ws
g+ o

where o, is the surface-plasmon frequency and wq is the
frequency of the atomic transition. For He on a metal
surface, wg is of the order of several w;, which means a
significant reduction of the attractive potential. This is
reasonable since the atom cannot interact any longer w1th
a perfect image of itself. However, the ratios d and d

remain unchanged, which is what one would expect since
they are basically atomic measures. Including more tran-
sitions in the system, as is done in the next section, will
change them slightly, but the values calculated above are
indeed upper bounds for the multipole corrections also for
a calculation with a metal substrate having a finite plasma
frequency. We conclude that this model, though admit-
tedly crude, can be expected to yield reasonable estimates
for corrections in other atom-surface systems of interest.

Cup1— Cag1 s

III. IMPROVED DESCRIPTION
OF THE MULTIPOLE CONTRIBUTIONS

The expression for the van der Waals interaction in Eq.
(1.3) is based on the neglect of the overlap between the
atomic and metallic electron wave functions. As we have
argued in Sec. I the multipole contributions to the interac-
tion have a meaning only when the atom is located away
from the surface, e.g., at the physisorption equilibrium
distance. The model breaks down completely close to the
surface since all terms in the series diverge.

In this section we improve the description by account-
ing for both the metal reflection coefficient and the atom-
ic polarizability in an optimal way. By this we mean that
these quantities are described by the simplest possible
mathematical expressions which include the relevant
physics. For the metal we use a model dielectric function,
which for noble-metal substrates includes s- and d-
electron contributions in such a way that the main peaks
in an electron-energy-loss spectrum® are reproduced. The
influence of d electrons on the effective surface position
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(image plane) is described according to self-consistent
local-density calculations.’!

The atomic polarizability of the He atom is described
by two types of transitions, a discrete one, from primarily
|0) to |2p), and one from |0) to continuum states
| @), where the latter state is orthogonalized to the other
ones (compare the orthogonalized-plane-wave method*?).
The method is described in further details in Secs. IITA
and IIIB. The resulting multipole corrections contribute
less than 5% to the interaction at relevant physisorption
distances. This is in accordance with experimental find-
ings that for the scattering of a helium atom against a no-
ble metal, the dipole term together with a repulsive poten-
tial seem to give a reasonable description of the interac-
tion potential.!

A. Metal response

The response of the metal to external electromagnetic
fields can be expressed in one quantity, the surface
response function?®

[e(iu)— 11—k d, )
eliu)+1+[e(iu)—1]kd,

plk),iu)= , (3.1)
which is another way of expressing Eq. (1.5). Here, €(iu)
is the bulk dielectric function at infinite wavelength, and
d, is the center of gravity of the density 8n, induced in
the metal by the atom, -

dl=fdzzﬁn/fd28n.

For the calculation of multipole contributions in the
physisorption range, we are interested only in the small
wave-vector limit. Thus, expanding Eq. (3.1) to lowest or-
der in k| d, gives

(3.2)

e—1
1—-2k _—
”d]p'+ et+1

_€e—1
P="er1

b

€—1 1.3,
1+ =L |2k -
+e+lll”+

(3.3)

where dip=[€/(1+4€)]d, defines the so-called dynamical
image plane.

In a classical treatment, d, =0, since the center of grav-
ity then is located exactly at z=0, and p takes the classi-
cal form

e—1
€e+1°

Po= (3.4)

Using p, together with a point-dipole form of a(k)j,iu) in
Eq. (1.3) gives the well-known result for the van der
Waals interaction.!®

In our improved description it is not sufficient to use
the free-electron form for the dielectric function e,
eszl—co; /@?, with @, being the free-electron plasma
frequency. For noble metals it is important to incorporate
the d electrons, which can be made by adding a d-electron
contribution to €. For our purpose a physically well-
motivated two-parameter expression for this quantity is

e=¢€+Nak /(0f—a?) . (3.5)

5725

N is the effective number of d electrons responding in the
frequency range of interest [N(w= 0 )=10]. The two pa-
rameters N and wq are chosen such that two of the main
peaks in a bulk or surface electron-energy-loss spectrum®
of the pertinent metal are reproduced (Im(—1/€) or
Im[ —1/(14€)]— o, respectively). Equation (1.1) con-
tains an integration over an imaginary frequency argu-
ment w=iu. In Appendix A, we show that

E%*y? 4 F*

s 3.6
(u?+B*)(u*+C? .6

po(iu )=

where
E’=(N+1)o?,
F2=w,co0(a),=wp /V?2),

and
B(C)=5[(E?+0§+2F*)'?+(E*+ 05—2F")'"?]

are the surface-plasmon poles.
We must also include the d-electron contribution to 4,
which we write as

di=dif,

where

di= fdzz&n‘/fdz&n’

(3.7

"~ and

f= fszns/deSn .

We then used the fact that [ dzz8n?~0 when the jelli-
um edge is at z=0. The function f measures the extent to
which the d electrons participate in the response of the
metal to the electromagnetic field. We can relate én to
the polarizing field and can, therefore, relate € with
Poisson’s equation. This gives®

_&=] (3.8)
f= e—1 ° :
Defining
s __€ s
dip =exl di (3.9)
and
€—1 o*u?+F*
ps=— . , (3.10)

e+1  (u2+B)(u*+C?)
and keeping only the first terms in Eq. (3.3) (since the
third term is negligible, which will be demonstrated in
Sec. III C), we thus obtain the final form for the reflection
coefficient used in our calculation,

p=po—2k psdip - (3.11)
For dip we use the following form:
., D¥5(0)
= _D—Z-HJ_Z ’ (3.12)

where the parameters D and d,(0) are taken from a
density-functional calculation for the metal® and are tab-
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TABLE 1. Parameters characterizing the noble metals in calculating E qw.

@p b/} N B /a, C/w, E*/o? F*/o; d.(0) D*/w}
Ag 8.98 1.37 5.44 2.98 0.56 6.44 2.74 1.42 0.380
Au 9.03 0.62 5.94 2.83 0.39 6.94 1.24 1.42 0.380
Cu 10.80 0.25 2.59 1.99 0.36 3.59 0.50 1.48 0.345
ulated in Table I. This form was recently suggested by and
Persson and Apell,’! and has the virtue of fulfilling im-

31,34

portant sum rules for the surface response. tgolle i) = 2 I 1S 2 (3.16)

B. Atomic polarizability

In order to calculate the polarizability, i.e., the response
of the atom to the polarization from the metal, we need to
calculate the density-density response function

s [SO1AG DG IAEI10)

X (X,X -
€;—€p—IlU

iu)=

’
i

(3.13)

where the sum goes over all intermediate states. In this
calculation we will only consider excited states which give
the major contribution to the polarizability. Thus we only
take into account transitions from |1s) to |2p) using
Slater orbitals,

| s)=(A3/m) 2 =M
and

|2p,m ) =(4u’/3)\%r e ¥y, (Q,), m=0,+1,

where A=1.453 and p1=0.525 a.u., and transitions from
| 1s ) to continuum states,

1Q)=13)—(q|s)|s)—2(q|m)|m),
m
(1§)=e'9"T, and |m) is short for |2p,m ). The coef-
ficients (g |s) and (§|m) make the continuum states
orthogonalized to the other states. This gives a static po-
larizability a(0)=1.43 a.u., very close to the exact value,
1.38 au®
Rewriting the matrix elements in Eq. (3.13), a needed
in Eq. (1.4) can be expressed in the familiar form

24; -
ki iu)=S —L | ()2, 3.14
alk),iu) Ei'A.z-le | fitk)] (3.14)

where A4; =¢; — ¢ is the excitation energy, and

fi(K)=(0]e' ¥ % i)

is a generalized oscillator-strength amplitude. In the cal-
culation of o the full Taylor expansion of f;(K) can be
used. As we are only interested in the first three terms,
these can be taken into account afterwards. Using the
transitions mentioned above gives two contributions to the
polarizability,

2}_; | fom | (3.15)

aB(k”,lu

(B denotes bound, and sc denotes scattering), where
A,=¢€,—¢; and A, =€, —¢,. The factor 2 in Eq. (3.15)
comes from summing over spin, and

fom=(s|k|m), K=ei¥%

This kind of _matrix element is conveniently calculated,

- expanding X% in spherical harmonics. Since K-k =0,
one has to be careful, however. We have found that

(3.17)

¥ ¥ = 2 (—kyr)dpm Yim(8,) (3.18)
,m
is a useful expansion.’® In this expression,
172
A =(—iyme™ % dm (3.19)

QI+1DU+mM—m) ’

and ¢; is the azimuthal angle of k). Using this expan-
sion in Eq. (3.17), and the fact that spherical harmonics
are orthogonal, immediately leads to

24k

=— W /mVaps 3 —lg4, .

fom # (may
Thus the bound contribution to « is given by
k2 21p\3,5 24,

T+ 42442

24,
PA pu?
(3.20)

aB(k”,lu)—- 2k‘2,

For continuum states,
fo=(s|k|Q)=(s|k|§)—(q|s)(s|k|s)

— 3G Im)s|k|m), (321

with the same expansion as before for k, and the conven-
tional expansion for |§ ),

© ! N N
1§ )Y=47 3 i'ii(gr) 3 Yi.(Q,)Y,(80,) .

(322)
1=0 m=-—I
In Eq. (3.21),
(q |s>—(?»3/1r)1/2(——28—}£7)2
and
(g|m) =32i1r(4;45/3)1/2—(—;%iz—)3 Yim(@,),
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and the first term of fq can easily be evaluated,

~ * ! A
(s|k|1g)=SklFF 3 AmYm(Q,), (3.23)
1=0 1

m=—
where

Fy=4n(A/m' (= 1) [ " drr2+le=Vjy(gr) . (3.24)

Representing j;(qr) as (—q/r)(d/qdq)jy(qr),> we can
perform the radial integration and obtain
I
Fy=ar(W3/m\ 2~ 1ya 2OTEE DI g5,

(g24A2)!+2
The /=0 term is immediately seen to cancel the second
term in the expression for the generalized oscillator
strength f,. The third term in Eq. (3.21) is evaluated in

analogy to Eq. (3.17). The contributions from transitions
to continuum states can be written as

L © 2A2
aglky,iv)=3 2k [ dgq*———a,(q)
sellepin) = 2, 2] J; JERSE

= 2;1 2kfe . (3.26)

The /=1 term of this expression, and ap, form the ordi-
nary dipole contribution

G 210}\’5q2 1 _ 32”’6
T3 (@240 A +p)(gR+p?)
(3.27)
For 1>2,
1 F} 2
&= —— A . (3.28)
ap 47 2! m§—1 | Im | )

Only @, and @; are interesting. The higher-order terms
represent multipole contributions, which, in practice, af-
fect the atom-metal interaction only when the atom is so
close to the surface that there is strong overlap. In sum-
mary, Egs. (3.20) and (3.26) give all the important contri-
butions to the atomic polarizability. This representation
of a together with Eq. (3.11) for p allows the calculation
of the van der Waals interaction according to Eq. (1.3).

C. Evaluation of the potential

The simplest step in the evaluation of Eq. (1.3) is the
k) integration with

5727
24, w 24,
a(iu)=dp———+ dg g*———a,(q)
! B A3 u? fo 79 Aj+u? e
24, 24, 2 24,
=¢ ¢ =>6—
! A¥+u? T A3 +u? ,~§1 A u?
(3.30)
and
® 2A2
(iu)= dqq*———d(q) . (3.31)
a; fO q949 A%+u2 \q
Using Eq. (3.11) for p, the k|| integration gives
C d}
Eygy(d)=———"— 14—
(d —dyaw) (d—dyw)
- d +
(d—d,aw)*
(3.32)
In this expression the constant of the dipole term is
Cuaw=1% [ _dunlpoliu)ay(iu) , (3.33).
and
dvdwz—%ﬁ f_: du ﬂ_lps(iu Jaq(iu )dip(iu) /Cyqw
(3.34) -

is the effective surface position for the van der Waals in-
teraction. Equation (3.34) thus represents a correction to
Eq. (2.6), where a model with a sharp boundary at z=—d
is used. As we will show, the corrections are small, how-
ever. Finally,

=34 [ _‘: du 7 "poliu Yay(in ) /Cyaw + O(d 2aw)
(3.35)

is a measure of the quadrupole contribution. Here, we °
have neglected the kﬁdi contribution to d,f from (i) the
second-order term in p, as mentioned in Sec. III A, and (ii)
the expansion of (d —d,qw) >, since they are both propor-
tional to d24w <<d? (d~4—8 a.u.), and thus only make a
very small correction to dqz. Replacing a, in Eq. (3.36)
by 15a; gives the octupole contribution, d,.

Expressions (3.30) and (3.31) for «, and Egs. (3.6) and
(3.10) for po and py, respectively, are then substituted into
Egs. (3.33)—(3.35). The identities

1 1 | 1
T u?+ A% u>4+ B2 AB(A+B)’

14,8+ [~ du

(3.362)
alk piu)=ay(iu)2k} + 3 a2k + -+, (329)  [(4.B.C)— A+B+C
I i1+ 2 I I(4,B,C) =~ (3.36b)
where and
|
2 2
1(4.8,C,0)~ AXB+C+D)+ A(B+C+D)’+(B+C)B+D)C+D) (3.362)

ABCD(A +B)(A +C)A +D)B +C)B +D)(C+D)
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TABLE II. Results for Cyyw, dyaw, dq, and d} for He interacting w1th Ag, Au, and Cu. Perfect-

image—model results are within parentheses.

Cuaw (VA3 dyaw (A) dg (A?) d} (A%
Ag 0.250 0.154 0.504 (0.60) 0.661 (0.79)
Au 0.274 0.126 0.505 (0.60) 0.659 (0.79)
Cu 0.253 0.168 0.499 (0.60) 0.650 (0.79)

are used. Then we finally end up with the following ex-
pression for the van der Waals coefﬁcient (in a.u.),

2
LS &[(EX(4;,C)—(E*B*~F"I(4,,B,C)14; ,

CvdW
i=1
(3.37)
the van der Waals surface position
—d{(0)D? 2
waw=———" 2, &[w}I(4;,C,D)
4Cyaw /=]

—(CO?BZ—F“)I(A”B’C’D)]AI ’

(3.38)
and the quadrupole—correction coefficient
4 109 5
2 2 q 2792
= dgq°A
% de IR e =

X[E%(A,,C)—(E*B*—F*I(4,,B,C)] .

(3.39)

Since D? is a small factor, d,qw characterizes a plane
close to the jellium ed de This also means that to a high
degree of accuracy dj is given by the first term in Eq.
(3 35). Table II summanzes the results for C gw, dyaw,
dq, and d, 4 for a helium atom interacting with the noble
metals Ag, Au, and Cu. Whereas the values for the ordi-
nary van der Waals coefficient C,4w agree well with the
results of Zaremba and Kohn,® except for a somewhat
larger value for Cu, d,qw does not. This is because of our
different choice of D in Eq. (3.38), connected with the re-
quirement of fulfilling sum rules for the surface
response.’""3* Finally, the quadrupole and octupole con-
tributions are only slightly reduced from those in the very
simple model in Sec. II, and d glves a 5% correction to
the d 3 term at 6 a.u., whereas d only contributes 0.5%
at the same distance.,

IV. van der WAALS POTENTIAL
CLOSE TO THE SURFACE

We now turn to the question of the divergence of the
potential (3.32) when the atom approaches the surface. It
is obvious that this divergence cannot be a real physical
feature. Since the singularity lies in the region of strong
overlap, which means that the repulsive part of the poten-
tial dominates the attractive one, this problem is usually
neglected. The bulk value of the van der Waals interac-

tion, E°3%, is finite, however. Thus E 4w is expected to
be a smooth function of d, as it varies between the asymp-
totic 1/d? behavior far outside, and E°% vdW The possibility
of significant corrections to the common dipole term at
relevant physisorption distances cannot be excluded.

In this section E 4w is calculated from Eq. (1.1) in yet
another approximation. Equation (1.2) neglects the over-
lap between metal and atom wave functions completely.
As we have argued in Sec. I, this is incorrect when in-
tegrating (1.1) over all space. Here, we use instead the
fact that

e—k”( l[d+z, |+ 2,]) <’e_k” ld+z,—2,, | <e~k”(d+za—zm) ,
for z,, inside the metal, to separate the atom and metal
coordinate systems in Eq. (1.1). The right-hand side of
the inequality is the Zaremba-Kohn® ansatz, which gives
an upper bound to the strength of the attractive potential,
i.e., | Eyaw |. The left-hand side, which is the approxima-
tion to be used in this section, clearly gives a lower bound.
However, it also fulfills the important criterion that it al-
ways vanishes for large values of d, z,, or z,. Thus it
does not only give a lower bound, but 2 value, whlch is
much closer to the exact one using e kyld I, than
the upper bound. For large separations the difference is
negligible.

Modifying Eq. (1.3), which corresponds to the upper
bound, gives

#i @ w , .
Evdw(d)=—g fO dk“ f——oodu '}’(k”,lu)P(k“,lu) ;

(4.1)

where we use the same approach as in Sec. III for p, and
where

24, L,
mlfi(k)l , @2)
i 1

with

F(E)=(0|R|i) andF=e' I T 7Rulz+el

Representing the factor e ki lz+d] by its Fourier
transform, we find ‘ :
=" dpi k2 (0|71}, 4.3)

where T=¢!V'¥ and v=(k”,p). Now, V-V=£0, which al-
lows the use of thé conventional expansion of ¥ in spheri-,
cal harmonics. Using the same transitions as in Sec. III,
we again find two types of contributions, i.e., from transi-
tions to bound and continuum states, respectively.
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Equation (3.17) will be changed to

~ © 1 2k|| . -
= dp—— 5P (s |t |m), (4.4)
Som f_a, 1"27,-1,2_,_k|2| (s|7]
which is evaluated in Appendix B. Defining
bi=kfj+q*+A% b3I=k{+(u+17, bi=kj+4r%,
(4.5

the contribution from transitions to bound states can be
expressed as

oty iv)=+e  *Wap(ky,iun)[13(by) +13(by)]
24,

=¥p——>, (4.6)
VB A%+u2
where the functions
(k;—b)d d 2
Iy(b)=|1—e I [l—f-E(bz—kH)
d_ 2 122
+ =21+ bd)(b2— k) @.7)
8b
|
~ © 1 2k|
Jo= I .oy PR

In Appendix C we show how to obtain

(s|7|g)=(s|7]|q,0)+ (s |T|gm), (410)
where
o~ 8mA
(S|v|q,0>=(l3/ﬂ)l/2m
and '
(s[i)vl'q’,m)

. 1/43 1 2777'2 A.QU A A

=—3A/m)'”? R Yim(Qy) Y1 (Qy)
from an expansion to first order in 9-§vg/(v2+g2+A2).
This approximation works well, except in a negligible
small interval where |9§|~1 and v,g~A. Since the
two first terms in Eq. (4.9) are proportional to
Yoo($,) Y50(2y), | f4] 2 does not give any cross terms.

Veolkyp,iu)= dg q* a2+ a? |~
sel | fo s m2=0 Pl A2 4y
24,

S 25
= [, daq P T ru? (4.11)
where the first two terms in Eq. (4.9) for fq build up «a,

and a,, is built up by the third and the fourth term. We
find

8AK,

a, = /m)\2——"
A

[£(b1)—&(b3)], (4.12)

| ipdl(s|a|q,o>—<'q~|s><s1u~|s>—z<<q|m><s|a|m>—<s|z7|'q:m>>].
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and

14— (14+db)(b2—kF)

(ky —b)d
e 2
2b

I,(b)= ke
! b

+é;[3(l+db)+d2b2]

><(b2—k|2|)2H 4.8)

contain the entire difference between this approach and
the earlier one in Sec. III. These functions will cut off the
atomic response close to the surface. This cutoff can be
understood in terms of the smaller ability of the adatom
to respond to polarization fields of shorter wavelengths
(~d). Such fields become increasingly important when
the atom approaches the surface. When d— o0, both I
and I, approach unity in such a way that their influence
is already negligible at physisorption distances. Equation
(3.21) changes also:

(4.9)

]
where

§(b)=%e”"d 1+§1)7(b2-—k|2|)(1+bd)]. (4.13)

This contribution was cancelled completely in Sec. III [the
first term in Eq. (4.9) corresponds to the zeroth-order
term in Eq. (3.23)]. Within the present model it gives a
small contribution which decays exponentially fast for
large distances. In an analogous way as the contribution
from the s —p transition (see Appendix B), the following
equation for a, is obtained:

_ 25()»5)1/2e—k”dq I,,(by)
P (31)172 Il (qz_{_)\z)a
32u°I,,(b,)
Mu+A)(g%+u?)?

(4.14)

This expression corresponds to Eq. (3.27) and differs only
from that expression through the factors I,,, which are
plotted in Fig. 4. The figure shows that their influence is
to cut off the integrand for small atom-surface distances.
These factors give rise to only a 1% correction at d =5—6
a.u., since in the total van der Waals interaction they are
weighted with ke _k”d, which has maximum when
k| =1/d. Nordlander and Harris’® have derived a cutoff
function with a similar behavior by imposing a cutoff on
the k| integration in Eq. (1.3). They have determined
this by matching E 4w to its value inside the bulk metal.
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FIG. 4. Saturation effects on the atomic polarizability
a(k,d). The influence of the cutoff functions I,,(b) are illus-
trated by normalizing the contribution to a from transitions to
bound states, to the “bound” polarizability of the free atom (Sec.
III). We have then defined

a=ag(k),d)/agk),o)=7 [15(b)+I(by)]| .

Since the most important contributions to E,qw come from
k|| < 1/d, the saturation effects are limited to d ~0—6 a.u.

With the same treatment of the metal as in the preceding
section and with Eqgs. (4.6) and (4.11) for the contributions
to y(ky,iu) from the different kinds of transitions, we can

perform the u integration in Eq. (4.1) and obtain
E,aw(d)=E\dw+EGw , 4.15)

~ where

© 2
Evw=—1% [, k) 3 9; A[E*1(4;,C)
i=1
—(E?B®—F*%I(4,,B,C)]

(4.16a)
and
ERw=—1 [~ dk kD% (0)

2 f
X 2 ?i AI[QZI(ADC’D)

i=1

_(szz——F“)I(A,,B,C,D)] ’
(4.16b)

where we have introduced the operator #; for the “bound”
and “scattering” contributions to the polarizability;
P1=9p [Eq. (4.6)] and the integral operator %,
= f 0°° dq q*¥,. [Eq. (4.11)], respectively. In Fig. 5 we
have plotted E,qw according to Eq. (4.15) together with
the dipole contribution, i.e., the one obtained with
I,(b)=1 and a;=0. The figure shows that the full van
der Waals interaction is finite even for d =0, and that the
influence of the cutoff functions I,,(b) is negligible when
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FIG. 5. Calculated van der Waals interaction for a He atom
outside a noble metal. The solid curve is the full saturated van
der Waals potential, and the dashed curve is the conventional di-
pole contribution. The latter is formally applicable only asymp-
totically for d— . The combined effects from saturation and
multipole corrections make the difference between the two
curves negligible at the relevant physisorption distances, howev-
er. The inserted curve gives the ratio f between the two
potentials which rapidly approaches 1 with increasing d.
Ey=E . w(d=0)=—1.51 eV'(Ag), —1.55 eV (Au), and —1.59
eV (Cu).

the atom-metal distance is around 5—6 a.u. (physisorption
distance).

In the scheme of Nordlander and Harris,*® this satura-
tion corresponds to a cutoff k. =0.87a5 ' which is rough-
ly 20% larger than the one estimated from the size of the
atom (k2**"~A/2, where A is the decay parameter of the
ground-state wave function). Using the same argument,
one can estimate k2™ for H, to be approximately
0.32a5! (with A=~1.189%a5 ! and an internuclear separa-
tion of 1.4a,), and with the same scaling as for He this
leads to a value of 0.39a5! for k, as a zeroth-order esti-
mate. Together with a proper repulsive potential, the van
der Waals interaction potential, which is then found for
H,, seems to give a reasonable total potential.39

V. SUMMARY

We have calculated the attractive interaction between

" an atom and a metal, successively improving the descrip-

tion. Starting from the perfect-image model in Sec. II,
the improvements concern the inclusion of imperfect
screening and a better treatment of the Coulomb coupling
between the atom and the metal. The perfect-image
model is shown to give a good account for the relative size
of the multipole contributions. Doing poorer for the lead-
ing dipole term, however, the model has to be improved
with respect to the metal response and the atomic polari-
zability. . ;

Treating the metal, not as a perfect mirror, but as a
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medium with a dielectric response, where both free and
bound electrons take part in the screening, and using
several atomic transitions instead of only one characteris-
tic frequency for the atomic response, we find a dipole
coefficient which agrees well with other more elaborate
calculations. The effective surface position, the image
plane, is found to be somewhat closer to the positive back-
ground of the metal than in earlier theoretical studies.
This is caused by the inclusion of the d electrons in the
metallic response in a way that fulfills recently found sum
rules for the surface response.3’** A very small change in
the relative multipole contributions compared with the re-
sult in the perfect-image model was found. We thus con-
clude that for a zeroth-order estimate of the quadrupole
and octupole coefficients d,,2 and d}, the simple model is
sufficient, while the dipole term and the image-plane posi-
tion need to be evaluated in the improved model. The
multipole contribution is about 5% at relevant physisorp-
tion distances for He on noble metals. This means that,
when combining the multipole terms with the dipole term
and a proper repulsive part, we find a slightly deeper po-
tential well than in the standard treatment, which only re-
tains the dipole term. This result seems in accordance
with most experimental results and with the analysis of
Ref. 38. Such a judgement must be made carefully, how-
ever. What can be stated with certainty is that in the re-
gion where the overlap between the atom and the metal
wave functions is negligible, the metal feels a pointlike
atom, i.e., a dipole plus a small contribution from higher
multipoles. The latter decays faster than the dipole term
for large distances. There is no doubt that in this region
the multipole approach is the correct and most physically
appealing one. For shorter distances this picture breaks
down completely, however.

From a physical point of view we expect a limited pos-
sibility of the system to respond to polarizing fields,
which have a small wavelength compared with the dimen-
sion of the system. Such wavelengths become more and
more important as the atom approaches the surface. The
wavelength spectrum extends typically up to k“~d
which means that there should be a cutoff value for k”
corresponding to the minimal wavelength, which can be
“felt” by the system, i.e., typically the size of the atom.
This will lead to a saturation of the van der Waals interac-
tion, which is strongest close to the surface.

Going beyond the approximation requiring zero overlap
(Sec. IV), we find that the saturation effect cancels the
multipole corrections over the entire range of distances
where the latter make a substantial contribution to the in-
teraction. The resulting attractive potential is finite close
to the surface, and is, further out, reasonably well
described by a term of dipolar character.

It is customary when interpreting atom- surface—
scattering experiments to combine an attractive 1/d> di-
pole term from the Zaremba-Kohn calculation® with a
repulsive potential, yielding a satisfactory description of
the experimental outcome. Evidently, this cannot be tak-
en as any evidence for that the 1/d? term has any a priori
justification as such. In fact, as we have shown in this pa-
per and a point which is also clearly realized by Zaremba
and Kohn,? there are the additional contributions to the
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simple asymptotic 1/d* term coming from the detailed
atomic response. These multipole and saturation effects
have compensating effects, as can be expected on general
grounds. The degree of compensation depends on the sys-
tem under study, and it so turns out, in our example of He
on noble metals, that they in fact are almost equal in mag-
nitude at the atom physisorption position, making the ap-
parent potential well described by a 1/d* term. However,
this does not have to be the case for other atom/metal or
molecule/metal systems, and we hope that our study can
stimulate further efforts in this area in order to use and
investigate the deviations from the simple dipole term to
learn more about the nature of the atom-substrate interac-
tion. A study of the H,-metal interaction is in progress.>®
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APPENDIX A
Starting from
e—1
Po= e+ 1 ’ (Al)
where for w=iu and w§=2w‘2,,

2 2 2
L (A2)

wo+uU

We first have to calculate N and wg from the poles w; and
w, of I,,(—1/€), which we take from an electron-energy-
loss spectrum,

1o wloptu) (A3)

€  (u*+20))w0i+ud)+2Nolu
The poles are solutions to the equation

(u?+202)wa+u?)+2Nw?u?=0, (A4)
which is equivalent to

(0 4+ o) u?+w03)=0. ’ (A5)
Identifying

w%ca%: 2w§w%
and

01+ 0} =2(N+ 1o’ +oj,
it is trivial to obtain

d=w3wl 20} (A6)
and

—-(a)1+co2—coo—2ws) . (A7)

From Egs. (A1) and (A2) we obtain
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202wt +u?)+2Nwiu?
2(wo+u2)u +20Hwi+u?)+2Nowu

Po=

wsa)0+(N+l)w
T utr [N+ Dol +odlu +w§w(2,

E*?4+F*

_ , (A8)
u*+(E*+ od)u*+F*

with E2=(N +1)w? and F*=w,w,. Now, B and C in Eq.
(3.6) can easily be identified as the imaginary roots of the
equation

u* H(E*+odu+F*=0.

- © 1 Zk” . . v(u+A)
= dp— ———eP4 32i7(A3 /7) X 4u’ /3)1 2
Jom f—w P o p2+kf # [v2+(p+A)P

With b3 =k? +(p+1)?,

T Figy .
Q fm==1,
Y’:m(Qv)=(3/4ﬂ,)1/2l \/ik“e itm

p if m=0,
and
1 1 a8 P
(p2+b3) 8 | bydby | pi4b3
we obtain
fpmz_szwps)m( MSI m(b2) . (B3)
Here we have defined
IR
In(bo)=""¢ b,0b,
2eP(®, k|,
x [ e P l) (B4)

"2m (p>+k}(p2+b3)

where ®,, =Fe q:“’S"/\/i However, since I, will only
enter the dlfferent contributions of a(k,iu) as P P s
we can set ®,,=1 and only sum over m =0 and m=1.
After evaluating the integral in Eq. (B4), we find

_(p+A)f |
1,(b) 8 53b
1 k4 1) _p—bd ﬂ‘_lll
Xkﬁ~b2 e (i,1)—e [ b ,

where the first term in the vector represents the m =1
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APPENDIX B

We shall evaluate the generalized oscillator-strength
amplitude f,,, in order to prove Eq. (4.6). First, consider
the matrix element

(s|T|m)Y=A3/m)"X(4u’/3)!2

X(e—”|e"—‘7'7"|re_“’Y1m(ﬁ,)) . (BD
Using the expansion
eV ¥ *-—47r21 Jitor) 2 Vi (@) Y5 (8,),  (B2)

m=—1

and the fact that

J 4055 ()Y 1n(8,) =818 mm' »

we easily evaluate Eq. (B1). We thus obtain

Y‘I,,,(ﬁ,,)l i

term, and the second term is the m =0 term. After the
derivation step we finally obtain

Tp=1—c* 17" 1+5dg(b2——k;2,)
+———3~[(1+bd)(b2 K )Z]I (B5)
ki kg~ 1 bd)(b?— K>
Il=l—Te 1+“‘I;‘2‘(1+ d)(b"—kjj)
8b4[3(1+db)+d2b2](b2 k)
(B6)

Equations (B5) and (B6) are divided by e ¥ identical to

Egs. (4.7) and (4.8).
APPENDIX C
When evaluating matrix elements of the following type,
(s|7]17)= [ dRype!T+DT (1)
it is not necessary to expand the exponential factors at all

since we have a spherically symmetric problem. Then we
immediately find

8A
[(V+3)?+AP
87A
(v2+q%+A%+2vg cosg)? ’
where ¢ is the angle between V and q g] It is not an easy
task to evaluate the p mtegral [v=(kj; p?)1/?] with-this

¢ dependence, and it will give rise to unnecessary compli-
cations when taking | f, | 2 and integrate over all q space.

(s|0|q)=A>/m)'?

=()\,3/1T)1/2

(c2)
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Rewriting expression (C2),
(V4+9)*=0, as
8wA
518 = (A3 /)1 72
(s|7|q)=(A/m) R
1
1+2vg cos¢ /(v2+q2+A?)

2
, (C3)

the ¢-dependent term is small everywhere except when
| cosp| ~1 and v~gq dominates over A. However, for
large v and q the entire matrix element is small and every-
thing else in 7y, which should be multiplied with
(s || @) is also small. Thus we expand Eq. (C3) to first
order:

8A
(v 4+q24+22)?
4vg cosé
v2+q2+k2

(s|7)q)(A3/m)}/?

X |1— (C4)

which is maximum when
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This approximation works well, except in a negligible,
small interval where | cos¢ | ~1 and v,qg ~A (the impor-
tant contributions to y,. occur when v and g are small),
and has the advantage of making the calculation feasible.
We now expand cos¢ in spherical harmonics:

cos¢=P1(cos¢)—— 2 Yi(8, )Y'{,,,(Q ). (CS)
m=—1
Setting
~ 8A
(s|v |q,0)=(7\.3/1r)1/2m (C6)
and
oy 2" Agqv
(s|T|g,m)=—A/m'"? it a? 40
X Yim( @)Y im(8,) (e7))

we find Eq. (4.10).
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