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We have developed a formalism for including cluster effects in the one-electron Green's function
for a positionally disordered {liquid or amorphous) system without any correlation among the

scattering sites. This method is an extension of the technique known as the traveling-cluster approx-
imation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararak-
sa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local

potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz
solution. To our knowledge, this is the only analytic theory for considering cluster effects. Further-

more, we have performed some computer calculations in the pair TCA, for the model case of 5-

function potentials on a one-dimensional random chain. These results have been compared with
"exact calculations" (which, in principle, take into account all cluster effects) and with the
coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the

pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approxima-
tion distorts some of the features of the exact results.

I. INTRODUCTION

The properties of electronic states for a spatially disor-
dered system, after many years of study, are still not well
understood. On one hand, there have been exact, or near-

ly exact, numerical studies, in which the actual states are
counted for finite, randomly chosen, one-dimensional
samples' to obtain the integrated density of stakes.
These results, which can be described as computer exper-
iments, " can be used to demonstrate the success or failure
of theories developed to understand the physics of such
systems. [It may be mentioned here that there is very lit-
tle experimental data with which to compare theoretical
predictions about densities of states (DOS).] On the other
hand, there are analytical methods which start from
the one-electron Hamiltonian and make some approxima-
tions to obtain the configuration-averaged Green's func-
tion. Usually, these theories do not try to look at the ef-
fects of vibrations of the scatterers on the electronic densi-

ty of states (electron-phonon interactions). Also, in most
of them the electron-electron interaction and the conse-
quent screening effects are neglected. Our presentation
falls in the category of analytical approximation methods.
There are two important aspects of the problem to be con-
sidered. The first is the effect of local clusters of scatter-
ers (regardless of correlations), and the second is the effect
of correlations (or short-range order). In each case, it is
particularly important to preserve the Herglotz property
of the averaged Green's function, which is the set of
analyticity properties (see Ref. 10) that are necessary to
ensure causality and a non-negative, single-valued density

of states.
The time-honored "coherent-potential approximation""

(CPA) is a single-site approximation (that is, it does not
include scattering from clusters in the perturbative expan-
sion of the full Green's function) developed for substitu-
tional alloys, that preserves the Herglotz property. The
application of the CPA logic to liquids due to Klauder
and Faulkner, also has the Herglotz property, as demon-
strated in this paper, but like the substitutional CPA does
not take into account short-range order. The effective
medium approxiination (EMA) of Roth and others ' is
also a single-site approximation, which deals with short-
range order by means of an approximate expression for
the n-scatterer correlation function in terms of the pair
correlation function. Like almost all other ways of in-
cluding short-range order, the EMA fails to preserve the
Herglotz property, but nevertheless gives quite reasonable
results in many instances. Progress made in this direction
may be found in some recent works of Nicholson and oth-
ers. ' ' Singh has devised an ingenious modification of
the EMA which seems somewhat contrived but which
preserves the Herglotz property and gives quite nice nu-
merical results.

Of the efforts to include cluster scattering in random
substitutional alloys, there are two extensions of the CPA
that preserve the Herglotz property and translational sym-
metry, the traveling-cluster approximation (TCA) of Mills
and Ratanavararaksa' (which we will refer to as MR) and
the generalization of the TCA to off-diagonal and envi-

ronmental disorder by Kaplan, Leath, Gray, and Diehl'
(KLGD). The TCA retains translational symmetry and
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achieves the Herglotz property by the inclusion of large
classes of curnulant average graphs. It can be described as
the analytic completion of the m-site CPA. ' ' KLCxD
similarly achieves proper translational symmetry and the
Herglotz property while extending the cluster approxima-
tion to general Hamiltonians by paralleling the TCA
development in the augmented space formalism. ' ' '
The major shortcoming of these approximations is that
short-range order cannot be treated fully self-consistently
but rather only in a perturbation expansion of the un-

correlated solution.
In this paper, we apply the TCA concepts to spatially

disordered, uncorrelated systems, e.g. , fluids or amor-
phous metals without short-range order. We believe that
this is the first approximation scheme for amorphous sys-
tems that takes cluster effects into account while preserv-
ing the Herglotz property for any amount of disorder. It
is the natural extension, with inclusion of cluster effects,
of the Klauder-Faulkner CPA. It is our hope that this is
a step toward the goal of a systematic cluster approxima-
tion for amorphous systems that includes short-range or-
der and also preserves the Herglotz property.

The presentation of the paper is as follows. In Sec. II,
we develop the set of self-consistent equations that need to
be solved for a pair theory. This we do without trying to
be general and without introducing the more abstract for-
malism. In Sec. III, we solve these equations for the
model case of a one-dimensional liquid with 5-function
potentials at the scattering centers, so that we can corn-
pare our approximation with the exact results that are
available only for this case, and with the CPA.

To be able to study the nature of the TCA at the formal
level, it is convenient to express the configuration average
as the "ground-state" expectation value of suitable resol-
vent operator in a much larger vector space called the
augmented space. ' ' ' ' In Appendix A, we construct
the augmented space for a liquid and show how to
develop the fluid TCA in this framework. This gives a
formal expression for the coherent potential for any
finite-order TCA which is then used in Appendix 8 to
prove the relevant fixed-point theorem. Assuming that
the initial approximation for the coherent potential has
the Herglotz property, the coherent potential obtained at
any stage of iteration of the self-consistent equations also
has- the Herglotz property, while the iterative process it-
self necessarily converges to a unique, self-consistent, Her-
glotz solution as the number of iterations goes to infinity.

II. TCA FOR UNCORRELATED FLUIDS:
PAIR APPROXIMATION

In a fluid or, in general, in a positionally disordered
(amorphous) system, the Hamiltonian for an electron has
the form

(r
~

V~
~

r')i=5(r r—')v(r —x ), (2.3)

where v is the same for all the scatterers. The scattering
sites x; are taken to be uncorrelated with density n. We
seek an approximation to the mean resolvent, or average
Green's function 6', defined as

G'= ((&—H) ')
=(L p

—V')

where E is the complex energy variable,

Lp E ——Ho —(G —)—

(2.4)

(2.&)

(2.6)

and V', defined by Eq. (2.S), is called the "coherent poten-
tial."

Now, in a fluid, as opposed to a substitutional alloy,
each site may be anywhere in the whole volume, with the
consequence that the modified cumulant average (MCA)
is identical to the cumulant average (CA). [Mills and Ra-
tanavararaksa (Ref. 10); Mills (Ref. 17).] To see this, re-
call first that the MCA (see MR) of a given order m, asso-
ciated with a site i, is the sum of all the mth-order CA
graphs involving overlapping CA's associated with the
site i The. presence of interactions at other sites inter-
spersed among the m interactions at site i does not affect
this definition. This is illustrated in the fourth order in
Fig. 1(a). However, the volume dependence of the dif-
ferent terms depends on the number of distinct CA's, with
the result that in the infinite-volume limit only the lead-
ing term, consisting of a single mth-order CA, survives
[Fig. 1(b)], as explained in detail but in different language,
in Ref. 17. Thus, the expansion for a fluid or amorphous
material can be seen as a CA expansion in which no CA's
associated with a single site i are allowed to overlap.

The contribution (V')'" to V' corresponding to Fig. 1

is given by

( V')'"=n f dx V„G V„G V~G V„, (2.7)

where n is the density of scatterers and each single MCA
line is associated with a factor n. In keeping with the no-
tation introduced in MR, in the MCA graphs the electron
line is not shown [as on the left-hand side of Fig. 1(a)]
since it carries no useful information.

The terms in the MCA expansion can be characterized
by the different sets of sites referred to as "overlap sets, "
involved in each place where MCA lines overlap. A given
approximation in the TCA consists of the sum of all
terms in which the overlap sets are restricted to some
family T of sets that characterizes the approximation.
For the substitutional alloy, the simplest approximation
beyond the CPA is that for which T consists of all
single-site sets and all nearest-neighbor pairs. In the fluid

H=Hp+ V,
N

V=+V, ,

(2.1)

(2.2)

where Hp is the nonrandom part of the Hamiltonian and
V; is the potential due to a scatterer at the random posi-
tion x;. V; is taken to be localized, centered at x;:

FIG. 1. MCA graphs reduce to CA graphs in the infinite
volume limit.



5688 SEN, MILLS, KAPLAN, AND GRAY 30

TCA, degree of "neighborliness" is not so conveniently
defined, and the simplest approximation beyond the CPA
is that for which T includes, in addition to the single-site
sets, all pairs regardless of separation. Some typical terms
are shown in Fig. 2.

Now, this way of truncating the expansion, correspond-
ing to the diagrams indicated in Fig. 2, yields a non-self-
consistent approximation if between any two successive
scatterings the propagator 6 is used. To achieve self-
consistency in the (non-Herglotz ') m-site CPA (see Ref.
17), one simply sums over irreducible graphs while replac-
ing 6 by 6'. In the general m-site TCA, on the other
hand, the MCA expansion explicitly includes reducible
terms, and thus replacing G by 6' would lead to over-
counting of graphs. The prescription obtained by MR for
alloys requires inserting a different self-consistent propa-
gator 6' ' for each different overlap set S. To avoid
overcounting, it is necessary that each self-energy graph
included in V' ' (the self-energy corresponding to 6' ')

begin and end on sites i and j such that the sets S U [i j
and S U Ij j do not belong to the family T of allowed
overlap sets defining:the approximation. The fluid TCA,
however, includes in T all sets of sites up to a specified
order m, with the result that 6' ' reduces to 6, if S is of
order less than m, while G' ' becomes the full mean resol-
vent 6'if Sis of order m.

A formal expression for G' in a given approximation
TCA(m) in the augmented space formalism is obtained in
Appendix A. This form is particularly useful in proving
the related fixed-point theorem, which says (1) that at any
stage of iteration of the self-consistent set of equations,
G' will be Herglotz (see MR), provided only that it is ini-
tially chosen to be so, and (2) that for any complex E, the
process of iteration converges to a unique physical solu-
tion. It may be reiterated here that if the solution for
6'(E) is not Herglotz, then its time Fourier transform
6'(t) is not causal, and the density of states may become
negative and/or nonunique. ' The fixed-point theorm for
the fluid TCA is proved in Appendix B.

e(g) =nv+ vG'(0)e(g) +vG'(g)f(g),

f(g) =uG'( —g)e(g)+uG'(0)f(g) .

Of course,

6'(g) =6'( —g) .
We solve and get

e(g) =nu [1—vG'(0) ]/b (g),

f(g) =nu G'( —g)/b(g),

b(g) =[1—vG'(0)] —u 6'(g)G'( —g) .

(2.8)

(2 9)

(2.10)

(2.11)

(2.12)

(2.13)

Next, V' is expressed in terms of its initial and final
scatterings as represented in Fig. 5(a):

V'(x —y)=nu5(x —y)+nu p(0, 0;x —y), (2.14)

where p(g, g;x —y) represents graphs where y and x are
the initial and final scatterer locations, and y+g and

x+g are the initial and final electron locations. As
shown in Fig. 5(b), p satisfies

For the purpose of demonstrating the nature of the
fluid TCA, we now have to formulate the problem at a
calculational level. For computational feasibility and to
permit comparison with "exact" results, we have carried
out the two-site TCA for a 1D liquid with 5-function po-
tentials of strength u. The structure of the calculation is
suggested by Fig. 3, in which a typical graph is broken
down into different types of overlap regions. Thus, e and
f represent two different types of overlap regions, that is,
e is the sum of all two-site overlap contributions that be-
gin and end at the same site, while f is the sum of terms
that begin and end on different sites as explained in Fig.
3. The self-consistent propagator in the overlap regions is
the full average Green's function G', while in single-site
regions it must be G, the free electron Green's function,
to avoid overcounting. The functions e and f satisfy
simultaneous algebraic equations displayed pictorially in
Figs. 4(a) and 4(b). Thus,

I

p(g, rl;x —y)=G (g—g)5(x —y)+uG (g)p(0, rl;x —y)+ f G (g —g')e(g')p(g', g;x —y)dg'

+ f 6'(e+r)f (r)p(r, n;x'r' y)dr— —

In fact, we need p only for g =0. We now Fourier transform in x —y, to obtain

p($, 0;k)= f e ' p($, 0;x)dx

=G (g)[1+v~(0,0;k)]+ f dg'6 (g—g')e(g')p(g', 0;k)+ f dg'6 (g+g') f(g')e ' ~p(g', 0;k),

V'(k)= f e ' V'(x)dx=nu+nv'p(0, 0;k),
and

(2.15)

(2.16)

(2.17)

6'(k) =
E—k —V'(k)

I

I

I

I

I

I

I

I

I

I
I

I
I
I

I
I

I

I

I
I

I

I

I

I

I

(2.18)

FICx. 2. Typical contributions to V in the two-site TCA.
Only one- and two-site overlap sets are allowed.

FIG. 3. A typical V' graph broken up into distinct overlap
regions e and f.
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FIG. 5. Diagrammatic representation of the coherent poten-
tial V' in TCA(2).

FIG. 4. Diagrammatic representation of overiap regions (a)

e(g), and (b) f(g).

where our units are such that A' /2m = 1. It may be men-
tioned here that two of us (T.K. and L.J.G.) obtained the
same set of equations as above by starting from the aug-
mented space formulation (as given in Appendix A) for a
family of up to pair clusters and using a (nondiagrammat-
ic expansion) method analogous to that presented in
KLGD. '

e(g)~e( oo ) =
1 —uG'(0)

(3.1)

Defining a renormalized e (g), which does vanish at
g=m, by

e"(g)=e(g) —e( ~ )

and a renormalized Green's function,

(3.2)

ly beyond g=xo, and should be reasonable if they become
small beyond xo. On the assumption that 6'(g')~0 for
large g, we see from Eq. (2.11) that, while f(g)~0, e(g)
approaches a constant value,

III. MODEL CALCULATIONS AND DISCUSSIONS
OF RESULTS (60)R [(60)—1 e( )]

—I (ER H )
—1 (3.3)

For machine calculations of the electronic density of
states of one-dimensional amorphous or liquid metals
with 5-function potentials, we start from Eq. (2.16), and
cut off the integrals on the right-hand site at g=xo. This
would be strictly valid if e(g) and f(g) vanished identical-

t

where

E =E e(oo), — (3.4)

we can rewrite the integral equation in a form which is
valid if e and f are sufficiently small for g&xu:

g($,0;k)=[G (g)] [I+up(0, 0;k)]+f dg'I[G (g—g')] e (g')+[6 (g+g')] f(g')e '"~ Ip($, 0;k) . (3.5)

The density of states, p(E), per unit length is then calcu-
lated using the formula

p(E) = — Im TrG'1

mI-

= ——Im dk G' k,E1 1

2'
=——Im[6'(x, E)]„1 (3.6)

Computations were done, with v= —2, at three particle
densities, n=0. 1, 1.0, and 10.0, and compared with exact
results, which were obtained using the program of Peter-
son, Schwartz, and Butler (Ref. 4), for the case of ex-

tremely smaH short-range order. The results are shown in

Figs. 6—8. Comparison with single-site TCA, which is
identical to the Klauder-Faulkner CPA (Refs. 5 and 7),
were also done to show the importance of cluster effects.

The first thing to note is that at all the scatterer densi-
ties, the DOS extends much further in the negative energy
region in the TCA(2) than in the CPA. This is somewhat
to be expected from a non-self-consistent view, since an
isolated dense cluster of 5 functions can give a bound state
of arbitrarily large negative energy. For an isolated pair
of 5-function potentials of strength u= —2, separated by

a distance x, the ground-state energy is given by
Eb ———a, where ~ satisfies

1+e (3.7)

In the low-density limit, x &&1 and Eb-1, corresponding
to the single-scatterer bound state at Eb ———u /4. In the
high-density limit, x « I and E~-—4, corresponding to
two 5-function potentials falling on top of each other
(since there is no short-range repulsion between scatter-
ers), which is equivalent to a single 5-function potential of
strength v'=2v = —4. Similarly, if we take an isolated m
cluster in the high-density limit, the non-self-consistent
bound state is at Eb ———(mu) /4. For a cluster of three
this is Eb ———9. In the pair TCA, then, one might expect
finite densities of states for —4 & E & —1, with something
like a band edge at E= —4. It is not clear mathematical-
ly how self-consistency affects the results within or out-
side this energy range but one can anticipate how the ex-
ponential distribution of pair-separation length x should
affect the results within the energy range. For n =1.0,
one expects that the exponential distribution of x makes
the DOS between E= —1 and —4 rather flat with a posi-
tive slope to close to E= —4. The exact results support
this idea [Fig. 7(a), n=1.0] in contrast to the TCA.(2),
which shows a sharp peak at —4. When we made a non-
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the integrated DOS has been used for comparing different
theories, obscuring many features that are very clear in
the differential DOS, which thus gives much better in-
sight into the success or failure of a particular theory. In
any case, we have included graphs for integrated DOS,
too, at all the densities. At higher densities, the difference
between the exact calculation and the two approximations
is much reduced, as seen in the case n=10.0 [Fig. 8(a)].
Again there is a sharp peak at E=—22, but it has re-
duced in intensity and has moved much closer to the peak
in the exact results. In short, then, we conclude that the
effects of large clusters become much more important in
liquid metals than in substitutional alloys, and that the
pair TCA, which seems to do quite a nice job for substitu-
tional alloys, has a curiously distorting effect in the fluid
case. It now appears that a much greater degree of self-
consistency may be achieved by deviating from the pure
MCA expansion, and work is now in progress to see what
can be done in this way.

It is important to understand the characteristics of the
TCA in the case of fluids, so that we can see what still
must be accomplished in order to treat cluster effects sa-
tisfactorily. The ultimate goal, a satisfactory cluster ap-
proximation including short-range order, seems to be even
further away.
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FIG. 8. (a) Differential, and (b) integrated density of states
for n = 10.0. The integrated densities are matched at
E= —67.5.

results clearly show a peak in the DOS near E= —4; but
it is much weaker than the single-site bound state near
E= —1. But in the TCA(2), the peak at E= 4 is great-—
ly emphasized to the extent that there almost seems to be
a band edge below E= —4, while the peak at E= —1

does not appear at all. In contrast to this, we may say
that the CPA shows none of these peaks, at all, even
though in other ways it seems to match better with the ex-
act results. The failure of the CPA becomes more evident
at lower densities, say at n=0. 1, Figs. 6(a) and 6(b). In-
cidentally, we may remark that in much of the literature,

APPENDIX A: AUGMENTED SPACE FORMALISM

Here we develop the machinery for applying the TCA
logic to an uncorrelated gas of scatterers. By treating the
scatterers as infinitely massive noninteracting bosons, and
describing their configurations by means of creation and
annihilation operators, we convert configuration averages
to expectation values. The configuration average for the
uncorrelated system is obtained by taking an expectation
value in the degenerate boson ground state. Vhth the usu-
al c-number substitution for the annihilation and creation
operators of the macroscopically occupied state, we can
use the basis of excitations above that ground state, which
we may ca11 "pseudobosons, " as a convenient basis for a
perturbative expansion of the ground-state expectation
value. An m-site TCA is obtained by restricting this basis
to a maximum of m pseudoboson excitations.
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Let b„create a scatter at x. Then the configuration x
corresponds to the state

~

x))=,i gb„~ vac)) . (Al)
(X')' '

where

1 ik xa„=
&i& g bke

k(~O)

a„ lacks the k =0 component, so that

(A13)

Here, we are representing the scatterer states by vectors in
a Fock space W'. The full augmented space is given by
the outer product P'=A SM', where A is the Hilbert
space of the original Hamiltonian as discussed in Sec. II.

If Vz is the potential for a configuration x:—[x;],
N

V=gu„ (A2) F = f dx(v'n +a„)u„(v'n +a„) . (A15)

(A14)

Thus
~ P & is a ground state with respect to the pseudobo-

son excitations a . The interaction (A4) can now be writ-
ten as

then the mean resolvent is

G'= «, & =
&
[(G')-' —V.]-'& .

With an interaction of the form

P"= f dxb„u„b„,

(A3)

(A4)

The vectors in the new Fock space a are
~ P &, the pseu-

doboson vacuum,
i
x & =a„P&, the one pseudoboson ex-

citation, and so forth. The general state
i
x & is labeled by

the set x of occupied locations x;:

(A16)

we obtain G~ as the expectation value,

((x
i p i

x')) =G~5, (x,x'),
where

[(GO) —1 y ]
—1

and

5,(x,x')=((x ~x')),

(A5)

(A6)

(A7)

the symmetrized 5 function. Here the symbol G actually
represents G I~, where I~ is the unit operator in the
Fock space, ~ '. We suppress this I~ in similar expres-
sions below.

The creation operator for the momentum state k is

bk f e bxdx~1/2 (A8)

where 0 is the normalization volume.
The degenerate ground state, which is the pseudoboson

"vacuum" state, is the reference state for the TCA
analysis, and is given by

where r is the order of x. Graphically the pseudobosons
are represented by horizontal lines, logically equivalent, in
fact, to the MCA ("modified cumulant average") lines of
the TCA for substitutional alloys. ' In a perturbative ex-
pansion, successive virtual pseudoboson states appear
from right to left, as shown in a typical case in Fig. 9.
The set x characterizing the successive pseudoboson states
are referred to as overlap sets.

Following MR, let us now define the projection opera-
tor Q onto the non-null overlap sets of the Fock space ~:

(A17)

[(G )
' —F ]=[(G )

' —QP ]— P&((t
~

P . (A18)

Multiplying both sides of (A18) by (P
~

[(G )
' —P ]

on the left and by [(G )
' —QP ] 'i/& on the right, and

using (A6) and (A10), one gets

&O
I

[(G')-' —Q~]-'
I s &

=G' —G'(It P [(G )
' —QF] '~(t &, (A19)

(bo) vac))= ~i2 f d x ~x)) .
(x!)' 0

from which, by the property

&OIQ=0
(A9)

of Q, one has

(A20)

Since the bosons have no dynamics, an expectation
value in state

i P & constitutes simply an average over con-
figuration x: or

G'=G' —G'(It
i
~(1—GOQ~)-'

i y &G' (A21)

G'=(P
i
S

i
P&= f d x G (A 10)

bo bo ~N, ——
so that

(Al 1)

In the macroscopic limit N~ ao, n =N/A=constant,
we can make the standard c-number substitution (Mills )
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(A12) FIG. 9. Virtual pseudoboson states in a typical graph in the

expansion of V'.
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Gc [(Go)—i Vc]—1 (A22) The norm
I
IA I I

of an operator 2 is defined as

where

V'=&/
I
P (1—G QF )

=&PI(~ ' —G'Q) 'l0& (A23)

(86)

IIF[v']
l l
( II ~II (1+llrll II ~II) . (87)

I

and thus from (85), by the usual properties of the norm,

Q=Q (A24)

where P„given by

P, = I lx„x,, . . . , x„&&x„x„.. . , x, Id~x,
(A25)

is the projector onto the space of r pseudoboson states.
Thus in this approximation,

v'=&4'l(~ ' —Q G') 'IIt& (A26)

Now comes the question of introducing self-consistency
in the manner described in Sec. II. According to that
prescription, we have to replace Q~G [for TCA(m)] by

the coherent potential, expressed as an augmented space
expectation value [cp. MR, Eq. (A16)]. But the expres-
sion in (A23) contains Q, which comprises an infinite
number of possible overlap sets. The TCA(m) for fluids
consists in limiting Q to overlap sets up to some finite
maximum order m, that is,

We can use the same pattern of proof as in the substitu-
tional alloy case, ' but in order to do so we need to estab-
lish five points:

(i) P is a Hermitian operator, i.e., W=F . This fol-
lows directly from Eq. (A15).

(ii) If V'(E) is taken to have the Herglotz property,
then F[V'(E)] is also Herglotz. This. can be seen by in-
spection of Eq. (82).

(iii) —Lo(E) is a Herglotz operator valued function of
E, which need not be bounded.

(iv) For D a compact subset of the upper half W+ of
the complex E plane, ImLo(E) has a uniform lower
bound y )0 in D, namely

y=infImE .
D

(v) V„ is a bounded operator on 4: the derived opera-
tor P is therefore a bounded operator on 5 . This point
is nontrivial; its proof makes up the bulk of what follows.

From the definition of the norm,

I
~rr~

=Q iG +P G'.
Thus, for TCA(m), we have

v'=&/
I

(F"-'—9 )-'
I P& .

(A27)

(A28) (88)

APPENDIX B: THE FIXED-POINT THEOREM
FOR THE FLUID TCA

where

(89)

In (A28), 8 depends on G', which in turn depends on
V'. Thus, the right-hand side of (A28) may be written as
a functional F[V'], and we get the fixed-point equation

can be taken as normalized, and

(810)

V'=F[ V'],
where

F[v']= &y
I
(~ ' Q,G' P-.G—'(v'))—

(82)

Starting with an initial guess Vo, our goal is to show
that for any complex E (ImE&0), V„'=F[V„' i] con-
verges to the desired solution as n ~ 00.

We first introduce the notation

Now for any normalized vector x and any operator A,

(811)

so that

(812)

where Wl is the anti-Hermitian part of W. Thus, from
(88),

(813)
inf

I @Wl@ I(~-' —u )-'=r +~r~
where

(83)
Now, let us note that from (A29), and using the ortho-
gonality of Q~ i and P

F[v']=&/
I
w(1+re)

I p& . (85)

(84)

and S~, like all such inverses appearing below, is de-
fined on the subspace W' '=Q

&m '=Qm iLo+Pm-(G')

=Q Lo —Pmv'.

(814)

(815)

Thus since V'(E) has the Herglotz property and P is
Hermitian,
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&I=1mÃ '&Q ImLp)y,

in the subspace W' ', and

(816) where Eq. (2.3) has been used, and the potential due to the
scatterer is assumed bounded and integrable.

Now, let

Next, we want to look at

sup (@~@)
tl~ll=1

(817) supu(r)=vp .

(818)

(819)

Let us label the vectors in the augmented space
&=A a as lx, r&; where x denotes the overlap set

Ix; J, i = 1, . . . , v (0 & v(rn, the order of the approxima-
tion), and r denotes the electron's position. We also write

(r
l
g&=qr(r)EP .

=g fd"x lx&(x, r l
1(&= gq„(r),

I4 f dx——f dr fdr'(P
l
r)(r

I
ax~~xa.

I

r')«'
I @&

= f dx f dr v(r —x)g(r)a„"a y(r)

=f dr u(r) f dx y(r+x)a„a„qr(r+x)

where

q.(r)= f d x
l

x &&+,r
l 1(& .

From the definition (A15) of g,
gF f=n f dx gV„P+v n f dx QV„a„g

f dx Pa„V g+ f dxga„V„a„g (821)

=" f dx f «'v(r»lie

=n f u(r)dr f lip(r')ll dr'

=n rU r (c1 (823)
I

:—I1+I2,+I3+I4 . (822)

Since V„can be expressed as the difference of two posi-

tive semidefinite operators, both of which will be bound-

ed, it is sufficient to treat the case that V„ is positive sem-

idefinite. Let us first find upper bounds for the terms I&

and I4..

l
I

l

=
l

n f dx @V„@l

=n dx dr' dr" r' r' V, r" r"

&vp g y,(r+x)a, a,q,(r+x}drdx . (824)

V

5, ( ', ") g5( —,'), (825)

where v' and v" represent the order of the overlap sets x
and x", respectively, and 5, is the symmetrized 5 function
defined by (A7). Thus

It may be noted here that this step is not valid for our
model 5-function potential, since v (r) =5(r), which is not
bounded. However, the theorem is applicable to a wide
class of realistic potentials. Even for the 5-function po-
tential, we tested our computation with many possible ini-
tial values of V'(k), and the Herglotz property (physical
behavior) was never seen to be violated, either for
TCA(1)=CPA or for TCA(2). Presumably, the proof of
the fixed-point theorem for this model potential has to be
slightly different, or perhaps exceptions could be found
using extreme forms for the initial V'(k).

Now

f g (r+x)a„a„y (r+x)dx dr= f d x'd x "(p
l

x', r+x &(x' la a„
l

x"&(x",r+x
l
g&dx dr

V

l
(x', r+x

l g& l g 5(x —x )d x'dx dr

V

= g fd"x'dr
l y,(x', r+x ) l'. (826)

Now, for each v,

f l w.(»r) I'd x d« II@Il'&1.

Thus

y, (r +x)a a„y,(r+x)dx dr &v,

I4&vp Q v=c4 .
V=O

Now as to I2 and I3 [Eq. (822)], with the restriction
V„&0 discussed above, and with the observation that
both (P"

& and (F"'&, where

(P '&=/(V n a„)V„(vn ——a )P

and hence from (824) =I1—I2,—I3+I4, (827)
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are non-negative, we see immediately that

~
Iz+I3

~
&Ii+I4(ci+cq,

so that fF g is bounded. The restriction that V„be posi-
tive semidefinite can now be dropped, and we write

glotz property), EED (where D CW+) and P Hermitian.
Having established this, the rest of the proof goes through
exactly as in MR, and is not given here to avoid repeti-
tion. The conclusion is that if m, n are the order of itera-
tion of the fixed-point equation such that n & m, then

(828)
/(V„' —V~[/ 0 (m, n~ao), (830)

Thus, from (87), (817), and (828), one obtains

2

I I+[V']
l I

&&+ (829)

and ~~F[V']~~ is uniformly bounded for V'E~ (Her-

and the sequence I V„' j has a uniform limit V'(E). Fu~h-
erinore, if Vo(E) is an operator-valued analytic function,
then so is each V„'(E), and thus the limit V'(E) is analytic
in D.
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