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Excitations from a filled Landau level in the two-dimensional electron gas

C. Kallin* and B.I. Halperin
Department ofPhysics, Harvard University, Cambridge, Massachusetts 02138

(Received 12 March 1984)

We consider an interacting two-dimensional electron system, with a uniform positive background,
in a'strong perpendicular magnetic field at zero temperature, under conditions where an integral
number of Landau levels are filled and the Coulomb energy e /elo is smaller than the cyclotron
energy Ace, . The elementary neutral excitations may be described alternatively as
magnetopIasma modes, or as magnetic excitons —i.e., a bound state of a hole in a filled Landau lev-
el and one electron in an otherwise empty level —and they are characterized by a conserved wave

vector k. The dispersion relations may be calculated exactly, to first order in (e /BIO)/%co„ for the
lowest magnetoplasmon band, which comes in to the cyclotron frequency at k =0. We also calcu-
late the spin-eaUe dispersion relations for the case where one spin state of a Landau level is com-
pletely occupied, and we discuss qualitatively the exciton spectrum for a partially filled Landau lev-

el, under the conditions of the fractional quantized Hall effect.

I. INTRODUCTION

The inversion layer formed in silicon metal-oxide-
semiconductor field-effect transistors (MOSFET's) or
GaAs-Al„Gal As heterojunctions is well described, at
low temperatures, as a two-dimensional electron gas. '

These are particularly interesting systems in which to ob-
serve correlation effects because the density of electrons,
and hence, the relative strength of the Coulomb interac-
tion, can be varied over a wide range by varying the gate
voltage in the MOSFET's or by varying the concentration
of donors in the heterojunctions. In addition, the scatter-
ing due to impurities can be very small in the best devices.

In the presence of a strong magnetic field normal to the
layer, correlation effects in these systems give rise to the
fractional quantum Hall effect at low densities ' and are
expected to cause Wigner crystallization at even lower
densities. ' Anomalous structure in the cyclotron reso-
nance line shape, both in GaAs heterojunctions and in Si
MOSFET's, ' has also been attributed to correlation ef-
fects. By Kohn's theorem, electron-electron interactions
cannot affect the cyclotron resonance in a system with
translational symmetry. However, the presence of impuri-
ties allows coupling to magnetoplasma modes at nonzero
wave vector, where correlation effects are important.
Structure in the magnetoplasrna modes of the two-
dimensional electron gas will then lead to structure in the
cyclotron resonance or optical absorption spectra.

In principle one can directly study the finite wave-
vector density response function Xz(k, co) and obtain the
magnetoplasmon dispersion curve by means of phonon
absorption or reflection from the inversion layer. ' One
may also generate electromagnetic absorption at finite
wave vectors by means of a grating superimposed on the
sample; however, the interesting wavelengths here are
on the order of 50 A, which would be difficult to achieve
in this manner. " In any case, it would clearly be of in-
terest to have a theory of the excitation modes and
response functions of the two-dimensional electron gas in

a strong magnetic field.
In this paper we consider an ideal two-dimensional elec-

tron system, with a neutralizing positive background but
no impurity scattering in the presence of a strong perpen-
dicular magnetic field 8, at a density such that an integral
number of Landau levels are occupied. We consider the
limit where the cyclotron energy co, is large compared to
the Coulomb energy e /elo, where e is the background
dielectric constant, and lo=(e8/c) ' is the magnetic
length. (We set A'= 1.) The elementary neutral excitations
of this system can be described alternatively as "magneto-
plasma modes, " or as "magnetic excitons" in which one
electron is excited to an unoccupied Landau level n', leav-
ing behind a hole in a filled Landau level n. If the
electron-electron interaction is ignored, then the energy of
the excitation is just equal to the kinetic-energy difference
(n' —n)co„added to the Zeeman energy change

1 gp&B 15S, if a spin flip is involved. When the electron
interaction is included, the energies are shifted by an
amount of order e /elo.

Our restriction to an integral number of filled Landau
levels is made because it greatly simplifies the calculation.
Of course, experimentally, one is interested, at least equal-
ly, in the case of noninteger filling factors. Some discus-
sion of the noninteger case will be given in Sec. V below.

As we shall see below, an important feature of our
problem is that the neutral excitations may be classified

by a conserved wave vector k. Therefore, we may discuss
a set of dispersion curves

E~(k) =mcoc+
I gp&~ 15S,+DE (k),

l

where m = n' n is an inte—ger )0, and b,E ( k ) is of or-
der e /EI0 The functi. on b,E (k) depends on m and also
on which Landau levels were initially occupied; moreover,
there will be several branches to AE, in general, which
we distinguish by an additional index p when necessary.

To make our discussion concrete, let us focus our atten-
tion on the excitation spectrum at m=-1. We consider
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first the case where the initial state has both spin states
equally occupied, i.e., Landau levels with index
n =0, 1, . . . , vo —1 are filled with both spin-up and spin-
down electrons, and there are a total of 2vo electrons per
quantum of magnetic flux. In this situation the ground
state is an eigenstate of spin angular momentum with
S=O, and the one-electron excitations may be classified as
singlet or triplet states.

The m= 1 singlet exciton branch E'&(k) is the familiar
magnetoplasma mode, which couples to the charge-

density operator p(k), and which gives rise to a pole at
co=E&(k) in the density response function Xz(k, co). The
triplet exciton states do not affect the response to a densi-

ty perturbation p(k), but they do appear in the response
functions associated with the spin-density operators cr ( k ).
If we denote by E~ (k) the energy of the triplet exciton
with 6S,=0, then the spin-density response function

X (k, co) has a pole at co=E&(k). The triplet excitons

with 5S, = + 1 have energies shifted from E ', ( k ) by the
Zeeman energy

~
gp&B

~

6$„and these states therefore

give rise to poles at co=E&(k)+gpsB in the transverse

spin-density response functions X~ ( k, co ). '2

When the ground state of the system has different occu-
pations for the two spins, the classification of excitons
into singlet and triplet is no longer valid. The case of
greatest interest has v, =v, + 1 where v, and v, are the
number of occupied Landau levels for spin up and spin
down, respectively, and the total number of electrons per
flux quantum is (2v, + 1). If v, & 0, so that there are elec-
trons present with both spins, then we find two branches

Et(k) and E&(k) of the exciton spectrum at 1=1,both
of which appear as poles in the density response function

X&(k,co). The spin quantum numbers of both the ground
state and the two branches of excited states are
S = —S,=X~/2, where X~ is the number of flux quanta
in the system. There are also corresponding excited states
with S =X~/2 and S,= —S+ 1; these give rise to poles

at E~(k)+ ~gpsB and E~(k)+ ~gp~B
~

in the spin-

density response X ( k, co).

When v, =O, so that only one spin state of the lowest
Landau level is occupied, then there is only one exciton
branch E~&(k) appearing in Xz(k, co), and one branch with

energy E ~

+
( k ) appearing in the spin-density response

function X (k, co), at m= l. The branch E~&(k) also ap-

pears in g
Z

We shall find that when the Zeeman energy is omitted,
the various branches of the m =1 exciton spectrum have

E~~(k)~co, for k~O in all cases. Thus Kohn's theorem
is clearly satisfied for the m =1 modes appearing in the
density response at k~0. [Excitations with m&1 give

vanishing contribution to X&(k,co) in the limit k~O. ]
In the absence of impurities, and at T=O, the m =1 ex-

citons have infinite lifetimes, at least if the parameter
(e /locus, ) is not too large, because there are no other
states possible with the same energy, wave vector, and
spin quantum numbers.

Excitation modes with m=O do not exist if the initial

state has equal, (integer) occupation numbers of the I an-
dau levels of both spins. The m=O mode is meaningful,
however, if we have unequal occupation numbers,

v, =v„+ 1. Excitations with an energy Eo( k )

=b,EO(k)+
~
gp&B

~

appear as poles in the spin-density

response X~ (k,co), and the corresponding excited states
+

1
have spin quantum numbers S = —S,= —,X~ —1. These
m=O excitons. are just spin waues in the ferromagnetic
ground state.

For values of m &2, however, an excitation described

by Eq. (1.1) can generally decay into two excitations with
lower indices m' and m"=m —m', in such a way that
the spin quantum numbers, the total energy, and the total
wave vector are conserved. Since we estimate the decay
rate for these processes to be of order e /elo, the excita-
tions with m &2 may have a width in energy comparable

to the energy shift b.E~(k).
In this paper we shall not calculate any decay rates, but

we shall derive formulas for the energy shifts bE (k),
which are correct to first order in the parameter e /eloco„
for the cases m=O and m= l. There are in fact three

contributions to the energy shift bE (k) which we must
take into account.

(a) A constant, independent of wave vector k and fre-
quency co, which represents the difference of the exchange
self-energy of an electron in the excited Landau level and
the self-energy in the level from which the electron is re-
moved.

(b) The direct Coulomb interaction of the excited elec-
tron and hole.

(c) An "exchange energy, " arising from terms in the
Hamiltonian where the electron and hole annihilate each
other at one point in space, and an electron-hole pair are
created simultaneously at another point.

The third term (c) is the only term taken into account in
the commonly employed random-phase approximation

(RPA) for the density response function Xz(k, co). The
second term (b) is represented in diagrammatic perturba-
tion theory by the "ladder diagrams" omitted from the
RPA. (Note that direct interactions between a particle
and hole are generally considered "exchange interactions"
in a perturbation theory using electron propagators, and
vice versa. )

The exchange interaction (c) is analogous to the
"dipole-dipole interaction" responsible for the mobility of
a Frenkel exciton in a molecular solid. ' By contrast, the
direct interaction (b) is the term responsible for electron-
hole binding in the familiar hydrogenic Wannier exci-
ton in the present case, however, the separation between
the electron and hole is dependent on the overall wave

vector k of the exciton. The exchange interaction (c) is
absent in the case of a triplet exciton, so that the k depen-
dence of the spectrum is completely determined by the
direct interaction in that case.

In cases where there are several exciton branches, for a
given m, which are not distinguished by symmetry con-
siderations, the three terms (a), (b), and (c) are matrices
connecting the various branches, and the sum of these ma-
trices must be diagonalized to find the energy spectrum at
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a given value of k.
If the exchange terms (a) and (c) are ignored, and if any

possible transitions of the electron and hole between dif-
ferent Landau levels are omitted, then the exciton problem
is equivalent to the problem of two interacting charged
particles of opposite sign, confined respectively to Landau
levels n and n'=n +I, in two dimensions. This problem
has been studied in some detail by Lerner and Lozovik, '"
in a somewhat different context —the excitons in their dis-
cussion are made of an electron and hole in the conduc-
tion and valence bands, respectively, of the host semicon-
ductor. ' (In that case, transitions between Landau levels
are generally excluded in the strong-field limit by energy
conservation, since the cyclotron frequencies of the con-
duction and valence bands will be generally incommensu-
rate. )

The mathematical description of Lerner and Lozovik is
directly applicable to our case, since the exciton wave
functions are independent of the masses of the two parti-
cles involved. The form of the wave function, in the
strong-field limit, is independent of the potential of in-
teraction between the positive and negative particle, and is

uniquely determined by the wave vector k and the
Landau-level indices n and n' The f.orm of these wave
functions and the associated binding energies will be re-
viewed in Sec. II below.

In Sec. III we introduce the Feynman diagram pertur-
bation expansion for the density 'esponse function

Xz(k, co), and the spin-density response functions g and
2

We review the random-phase approximation and

show how the results are modified when one includes the
exchange self-energy and the ladder diagrams, which
describe the electron-hole interaction calculated in Sec. II.
We note that the density response function Xe has been
studied by previous authors in the random-phase approxi-
mation, ' and also, in a calculation which includes some
corrections to RPA, by Fukuyama, Kuramoto, and Platz-
man. ' It is difficult for us to make a direct comparison
with the work of Fukuyama et a/. , however, because their
calculations were restricted to the long-wavelength limit,
at finite temperatures T and filling factor v less than 1,
and their formulas are not well defined in the limit v~1,
T~O.

Results of our calculations for exciton dispersion curves
in some particular cases of interest are presented in Sec.
IV. Included are the spectrum of modes near the cyclo-
tron frequency (m=1 modes) for several different filling
factors, and the spin-wave dispersion relation (m=0) for
the case of a single Landau level with one spin occupied.
We also present an illustrative curve for the higher mode
m=2, neglecting damping for the initial state of a single
occupied Landau level.

A qualitative discussion of the applicabihty of our re-
sults to excitations from a partially filled Landau level, in-
cluding a state of the fractional quantized Hall effect, will
be given in Sec. V below. Calculations of some required
matrix elements are presented in the Appendix.

It must be emphasized that the calculations of this pa-
per are not directly applicable to current experiments, be-
cause the parameter e /eloco, is of order unity in the ex-

periments of greatest interest, and because the effects of
impurities cannot be completely neglected. However, we
believe that the present description provides a useful con-
ceptual framework, and perhaps a useful starting point
for more accurate calculations when e /choco, is of order
unity.

We shall present in a separate publication calculations
of the effects of a moderate amount of impurity scattering
on the magnetoplasmon absorption near the cyclotron fre-
quency, which we have carried out using a self-consistent
Green's function approximation.

Bychkov, Iordanskii, and Eliashberg' have discussed
the spin-wave spectrum ( m =0) and magnetoplasmon
dispersion ( m = 1) for the case of one spin component oc-
cupied in the first Landau level (v, = 1, v, =0). Their cal-
culation includes the exchange energies (a) and (c) as well
as the direct Coulomb interaction (b), and agrees with our
results, presented in Sec. IV, for this case. Details of the
calculation were not given in Ref. 18, however.

II. EXCITON WAVE FUNCTIONS
AND BINDING ENERGIES

In this section, we consider two particles of opposite
charge, each with an effective mass I, and confined
respectively to Landau levels n and n'=n+m, in two di-
mensions. (In GaAs, m' =0.067m„where m, is the
mass of the electron. ) We assume that these particles are
described by the Hamiltonian

, [(p~ —eA~/c) +(p2+eAz/c) ]—u(r& —r2),2'
(2.1)

where p; is the momentum of the ith particle and the
particles interact through the potential u (r). In the case
of interest u(r) is the Coulomb potential e /er, but we
will let it be arbitrary for now. We choose the Landau

gauge, so that the vector potential is A;:—A(r;)=Bx;y.
In this gauge, the single particle wave functions which
describe an electron of charge e &O in the nth Landau lev-
el are

(2')' (m' 2"n!Io)'

g exp
(x+kio')'

II.((x +kIo )/~o )
2IO

The momentum operator I'y =p]y+p2y commutes with
the above Hamiltonian (2.1) in the Landau gauge, as can
be seen by writing the Hamiltonian in relative and center-
of-mass coordinates:

where H„ is a Hermite polynomial. The wave function
which describes a positively charged particle (hole) with
momentum k in the y direction, in the Landau level n' is

(2.3)
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2 '2
~y

4 2 2(2 +Ap„

X
bp —— —u (br),» lz0

(2.4)

f~~ (ri, rZ)= f dq Cnk qPqn+|n(ri)Pk «(rZ) .

We wish to solve the eigenvalue equation

&0q, n'4 k q, n—I ~I 4k &=[bEak +(2n +m +1)~c]

(2.5)

where R=(r, +rz)/2=(X, Y) and b, r = r, —rz ——(bx, by),
while bp = p, —pz. Therefore the total momentum in the

y direction is a good quantum number which we denote

by k». The eigenstates of the Hamiltonian (2.1) can be la-

beled by k~, n, m and an additional quantum number a
and can be expanded in the single-particle eigenstates as
follows,

&«4', '4'k, , —I 0 k, &

which gives the following integral equation for the expan-
sion coefficients C k q.

f dq'C k q [bE k 5(q q') —Fk "—(q —q')]=0, (2.7)

where

q 2102 g2

Fk "(q)=, f db, r u(bx+lok», by)e 'q»e"+"n!n'!

zr'»ioz X+bx /2 —
1oq /2 X+bx /2+ loq/2

dX e 'H„ H'„
0 0

X —bx /2 —1oq/2
XH„

0

X —bx /2+ l oq /2

l0
(2.8)

P-"(R,br)= e'"' e 'g „(br—lokXz), (2.10)
k

where

g „(r)—: 1 Lmm

[2 lo(n +m)!/n!]'i 2lo

—r /410 ~+jy
)&e

0
(2.1 j)

and the energy spectrum depends on the Fourier
transform Fk" of Fk "(q),

bEIBlf FIP(k lz)

f db. r u(b, r+lok Xz)
2 lo(n+m)!

Since the expression in square brackets in Eq. (2.7) de-

pends only on the difference between q and q', the in-

tegral equation is diagonalized by a Fourier transforma-
tion. Thus we find solutions to Eq. (2.7) of the form
C k q

——e'q and hence, from Eq. (2.5),

gak (rl rZ)= f dqe" 0q, n+m(rl)(t'k qn(rz—)

Performing the q integral and defining ala —=k„, one
finds'

I

where L„ is a Laguerre polynomial. ' '
From Eq. (2.10) we see that the two particles form a

bound state, which we will call a magnetic exciton, whose

binding energy due to the direct Coulomb interaction be-

tween the two particles is given by Eq. (2,.12). The exciton

wave functions and eigenvalues are labeled by the continu-

ous variables k„and k». The vector k plays the role of
the total momentum of the particles as can be seen by not-
ing that the operator

Q=[P—e(A, —Az)/c]+eBXbr/c, (2.13)

Qglllli k gfltn (2.14)

One can define a conserved momentum operator Qz
for any system of N charges I q; I which is charge neutral,
i.e., g,. q; =0. The operator

which is equal to P eB byx/c in—the Landau gauge,
commutes with the two-particle Hamiltonian (2.1) and its
components commute with each other. In addition, one
has classically

BA /BQ=(1/2m*)[P —e (Ai —Az)/c] =V,
where V is the velocity of the center of mass. (Q is also
the generator of infinitesimal translations to within a

gauge transformation. ) We will refer to k as the exciton
momentum, noting that

—hr /210 5p'
Xe

0

2XL-"
2I2

(2.12)

1 1
Q~ ——g p; ——q;A; ——g q;b)&r;,

C C
(2.15)

plays the role of the total momentum of the particles, in a

magnetic field B, and is conserved by the Hamiltonian in
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the same way as discussed for the two-particle system.
From Eq. (2.10) we see that, other than a phase factor

which is gauge dependent, the exciton wave function is
the direct product of a plane wave in the center-of-mass

coordinates R and a function of the relative coordinates

g~„(b,r —lok Xz), whose magnitude is spherically sym-

metric about the point b, r =10k Xz. Therefore one can
define a dipole moment of the exciton,

X (k,co)= i —f dt e' '([p(k, t),p( —k, t)]),
where the density operator is

(3.2)

where A; =Bx;y. We consider the case where the Fermi
level lies between two Landau levels. The charge-density
response function P& is related to the density-density
correlation function by

e(P„"~br
~
g„")=elokXz, (2.16)

elAt g 1 —iAt

J

2

b, E "=—
2 for klo ~&1,

ekl o
(2.17)

as one would expect for point particles separated by a dis-
tance klo. It turns out that except for the case m =n =0,
the dispersion AE " is nonmonotonic at small k, because

k
of the internal structure of the exciton wave function.

' III. CALCULATION
OF RESPONSE FUNCTIONS

In this section we calculate the electron charge density
and spin-density response functions for a two-dimensional
electron gas, at zero temperature, in a strong perpendicu-
lar magnetic field 8, described by the Hamiltonian

which is perpendicular to k and proportional to k, in-
dependent of m and n Th.is is what one would expect
from the classical picture, where one finds that two parti-
cles of opposite charge in a magnetic field move parallel
to one another with a constant linear velocity perpendicu-
lar to their separation (in contrast to the case of two elec-
trons in a magnetic field, which orbit one another). The
exciton momentum increases with increasing separation
between the particles, although the velocity decreases.

For u (r) =e /er, the asymptotic form of the exciton
binding energy is

The spin-density response functions are

X (k, co) = i f d—t e'"'([cr, (k, t),cr, ( —k, t)]), (3.3)

X (k, co) = i —f dt e'"'( [o~( k, t),o+( —k, t)]), (3.4)

where the spin-density operators are

e(k, co)—:[1—u(k)X(k, co)]

where u(k)=2m. e /ek is the two-dimensional Fourier
transform of the Coulomb potential. The magnetoplasma
frequencies Re[co(k)] satisfy the equation Re[e(k, co)]=0.

o(k, t)=2e' 'g e 'SJe
J

o+ =(o„+io~)/v 2 and SJ is the spin angular momentum
operator for the jth electron.

These response functions have poles at the frequencies
co(k) corresponding to the charge neutral excitations of
the system. [The imaginary part of co(k) is the decay rate
of the excitation. ] The poles of Xz are the magnetoplasma
modes of the system, which may also be defined through
the dielectric function

g (p —eA /c) + g u(r; —rj)
J /, J

+ IgPa& I g ~sJ ~ (3.1)

A. Diagrammatic formalism

The charge density and spin density response function
can be written in terms of the single-particle Green's func-
tion and the vertex parts I

&
and I as

dk' ik ~ r dc'X~(k,co)= g dq~ f dq2(q~a ~e'"''8, ~q2P) f G~(~ co')Gtt(co—')I &hatt(q&, q2, k', co),
~p 17 2' (3.5)

where A =p, g„or o.+,' and 0&
——1, 0 =2S„and

8 =2S+. The labels a and p represent both the Landau

level index n and the spin index s =+—,', e g , a=(n~.,s.~),
so that (r

~ q, a) is a single-particle eigenstate, given by
Eq. (2.2), multiplied by a spin state ( t or L ), and G~(co) is
the electron Green's function which is independent of q.

We assume the Coulomb energy e /rip is smaller than
the cyclotron energy co„and we calculate the excitation
spectra to lowest order in (e /elo)/co, . This means that
we keep only the terms in Xz which correspond to a single
exciton present at all times and neglect terms with two or
more excitons present. The diagrammatic representation

of this approximation, which we refer to as the strong-
field approximation, is given in Fig. l. Examples of some
omitted diagrams are given in Fig. 2.

The single-particle Green's function is

G (~)= (3.6)
(n~+ 2 )~e —

I gpa+ I s~ X~+ie~—
where e~=O+ for n~ &(vs~), e~=O for n &v(s ), and
v(s ) is the lowest unoccupied Landau level with spin s

1
a

[i.e., v( —,)=v„v( ——,)=v, ]. In the strong-field approxi-
mation, the self-energy is
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quJ - qcd

X( &.~) =

kgr-
k'P k'P

ka

FIG. 1. Strong-field approximation for the response func-

tions Pz(q, co) and P (q, m) is shown. I p(k, k'; q, co) is the ver-

tex part and G (co) (thick line) is the single-particle Green's

function. The thin lines with arrows represent the noninteract-

ing single-particle Green's function G (co) and the wiggly lines

represent the bare (unscreened) electron-electron interaction. As

usual, the direct (Hartree) self-energy is cancelled by the uni-

form positive background.

FIG. 2. Shown are two examples of diagrams which are not
included, in the strong-field approximation for the response
functions. For any choice of Landau-level indices on the propa-
gators in (a), there is always a propagator off the energy shell.
(We are only considering integer filling factors. } Therefore this
diagram will contribute to the exciton spectrum only in order
(e /elo) /co, and not order e /halo. The same is true of (b) for
co~2co, . However, for co&2co„one can choose the Landau-
level indices such that all propagators are on the energy shell.
Such a choice, corresponds to the decay of an exciton (with ener-

gy near 2'„ for example) into two excitons (each with energy
near co, ). In this case, (b) will contribute to order e /elo in the
exciton energy shift and decay rate. Since we neglect such dia-
grams, our calculation is exact, in order e /halo only for u &2',
(i.e., rn (1).

X (q,~)= i lim—g f dq~ f dq2 f V~p~p(q, q3, q~, q2)Gp(co —co')e'"
5~0+ p 2m

where

V~I3ais(qi, q2, q3, q4)=5, , 5, , f dr& f dr2u(r, —r2)&qi& I r~&&q»l r2&&r21 q3A&&r, lq4p&

='83s, s ~s&,s&V nni3n&n (ql&q2~q3~q4) ~

(3.7)

(3.8a)

(3.8b)

We shall see that the self-energy is real and independent of q as well as co. The vertex part satisfies the following integral

equation,

I Z p(q&, q2, k', CO)=&q2P
~

e '" ''0&
~
q&a& i g f dq3 f dq4—V &p„(q&,q4, q2, q3)

A, ,p

dc'
X Gz(~ ~ )Gls(~ )l wadis(q4 q3'k2'

dco+ g f q3 f dq4V..Isp(qi, q4, q3, q2, ) G~(~ —~')G, (~')~~~,«4 q3 k ' ~) ~

A, ,p
2%

(3.9)

The above equations will be solved in Sec. IIID, but
first we consider separately the two contributions to the
energy shift AE (k) which arise from exchange terms:
the exchange energy which is calculated in the RPA and
the constant exchange self-energy difference, as explained
in the Introduction.

B. Random-phase approximation

Before solving for the response functions in the strong-
field approximation, we review the RPA, ' which is one
contribution in the strong-field limit. In the RPA only
the bubble diagrams are kept. These diagrams correspond
to the electron and hole annihilating at one point and an

Xp(k, ~)
&RPA(k~~) =

1+u (k)Xp(k, m)
(3.10)

where Xo is the response function in the absence of
Coulomb interactions,

I

electron-hole pair exciting simultaneously at some other
point. In this way, the exciton moves within the plane.
When the initial state is spin symmetric, the bubble dia-
grams contribute only to the charge-density response
function P&, and not to the spin-density response func-
tions. (An electron-hole pair with parallel spins cannot
recombine through the Coulomb potential. )

The RPA density response function is
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dk'
&o«~)= X f f dqi f dq2&qi~le'"' lq2P&&q213le

'" '
lqi~& f " G'. (~ ~—')Gp(~')

p (2n. ) 2~

and

[G~(co)] '=co —(n~+ —, )co, —
I gpsB I

s +ie

Evaluating Xo, one finds

(3.11)

(klo) e
X.(k,~)=

2 (n+m)! 2n.lo

k2l~/2 [L„(k 10/2)]
+(CO~ —CO),

(co —me@, +ie) (3.12)

co —me@, +is co+mao, +is
gg' V „(k)

s =+1/2 m n

where the sum g is over the range v(s) —m & n & v(s) —1.
The RPA response function has poles at the solutions to

(3.13)

1+u(k) g g g V „(k)
s =+1/2 m n

1 1

cu —mco, +is co+me@, +is (3.14)

For co & 0 there is a solution near each harmonic mu, for m & 1. In the strong-field limit [i.e., neglecting terms of order
(e /elo) /co, ] these solutions are

E (k)=mco, +u(k) g g V „(k) .
s =+1/2 n

(3.15)

The energy AE~ =E(k—) mco, is —always positive [for u(k) & 0] since it corresponds to an exchange interaction be-
tween electron and holes. Using Eqs. (2.10) and (2.11), we see the the matrix element is V~„(k)=2m

I

g-"(R, b, r = 0)
I

which makes it clear that this interaction is a point interaction; the electron and hole can annihilate only if their wave
functions overlap. Therefore hE~ (k) goes to zero rapidly for large k. The asymptotic form for small k is

SHERPA(k)
e n m .

(ki )2m —1+g((ki )2m+1)
elo 2 (m~) nt

(3.16)

which is linear in k for m = 1 and klp « 1.

C. Exchange self-energy

There is a self-energy contribution to the exciton energy spectrum due to the difference of the exchange self-energy of
an electron in the excited Landau level n p

——n +m and the self-energy in the Landau level n from which the electron is
removed. From Eq. (3.7), this energy difference is

Ep"'"(q, co) =Xp X—
I

g f dq~ f dq2 f Gq(~ —~')e'" '
[Vpqpq(q, q2, q~, q2) —V q~g(q, q2, q~, q2)]

&~p+ A,
277

(3.17)

=fdq, fdq, Vnplnp1(q, q2, qi, qz) g Vn In l(q 'q2 ql q2)
l (v(sp) l (v(s )

(3.18)

where a=(n~, s~)
The matrix elements V are defined in Eq. (2.7) and

evaluated in the Appendix. The exchange energy can be
written as [see Eq. (A12)]

independent of q and co. This energy is positive for
u(r) &0; there is a cost in exchange energy to excite an
electron to a higher Landau level.

pg
2

~v{s ) —1
2lp

2

n

Eexch d r —r /2lo

2mlp

p 2 p 2

X ~ v(sa —1 2 L„
2lp P 2lp

(3.19)

D. Inclusion of ladder diagrams

In this section we solve for the response functions in the
strong-field approximation, which is defined by Eqs.
(3.5)—(3.9) and is shown diagrammatically in Fig. 1. That
is, we now include the direct interaction between the elec-
tron and hole, i.e., the ladder diagrams, as well as the ex-
change terms considered in Secs. IIIB and IIIC. If one
ignores possible transitions of the electron and hole be-
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tween different Landau levels, then summing the ladder
diagrams is equivalent to the two-particle problem con-
sidered in Sec. II. In certain cases—for example, when

only the lowest Landau level is occupied or when the two
spin states of each Landau level are equally occupied and
m =1—there are no possible transitions of the electron
and hole between different Landau levels in the strong-
field limit. We shall see that, in these cases, the total exci-
ton energy is just the sum of the three contributions which
we have already calculated —the particle-hole binding en-

ergy plus the. RPA energy (which vanishes for a spin trip-
let exciton) plus the difference in exchange self-energy. In
general, these different terms are matrices which we need
to diagonalize to obtain the exciton energy spectrum. We
now treat the general case.

The integral equation for the vertex part
I z p(q&, q2,'k, co), Eq. (3.9), is diagonalized by the same
transformation used in the two-particle problem of Sec.
II. That is, we change to the variables q—:(q~+q2)/2 and
b,q—:q~ —q2 and then take a partial Fourier transforma-

I

' 1/2

tion of I' with respect to q, which we define as

I g p(p, Aq;k, co)= f dqe 'I „p(q, b,q;k, co} .

One finds, from Eq. (3.9), that

I g p(p, hq;k, co)=5(p —k, )5(hq+ky)I g p(k, co),

where I" satisfies tlie matrix equation,

I '„p(k, co)=M„' p(k)+ g [V"gp„(k)—V x„p(k)]
A, ,p

XD&x(co)I z&x(k, co) . (3.20)

The matrix elements V" are defined in the Appendix; the
matrix element M„ is defined as

Mp p(k)5(p —k„)5(hq+k„)

= f «q '«qual""'~. Iq2p&.

so that

Mg p(k)=
2"~n pt

2 n f

k2I2 y4
22

e ' [lo(ky ik„)] —pL„(sp
I
g„ I

s ), (3.21)

and D ~ is the two-particle propagator,

D~p(co) = f G~(co+co'}Gp(co')
ddt

2' (3.22a}

f (1—fp) fp(1 f }-
co (np n)co, ——

I gp~B—
I
(sp s) Xp+X—+ie— co (np n—)co, ——

I gppB I (sp s) Xp—+X—ie—
(3.22b)

The response functions from Eq. (3.5) are then given by

g„(k, )co= g M~~p(k)D~p(co)I g~p(k, co) .
a, P

If we define

II~ p(k, co) Dp(=co)I g p(k, co),

then the response functions can be written as

X„(k,co)= g M„~p(k)II~ p(k, co),
a, P

where II& satisfies the matrix equation

g I5~ g5p„[D(co)] p' —V"„'px(k)+ V'„'xp(k))
A, ~p,

Xllgg„(k, co)=M„' p(k) .

(3.23)

(3.24)

(3.25)

Equation (3.25) must be satisfied for all (a,p) such that
one member of the pair, is occupied and the other unoccu-
pied in the ground state; the polarization Hz p is zero
otherwise. The poles of the response functions, co(k), are
the solutions to

5p„[D(~)] p' —v"„'p (k)+v'„' p(k}IB „=o.
A, ~lm

(3.26)

The spin structure of the eigenvector B~& determines
which response function the pole appears in.

IV. DISPERSION CURVES

The dispersion curves, which correspond to poles in the
response functions, can be labeled by the index m and an
additional label p, when necessary, as explained previous-
ly. In addition, these curves depend on which Landau lev-
els are initially occupied. In this section we give explicit
expressions for the dispersion curves in the cases of
greatest interest —small filling factors and small m.

To lowest order in e /aloes„we may restrict the pairs
of indices (a,P) and (A, ,p, ) in Eq. (3.26) to values such that

I
n np I

=
I

—nx n„ I
=m, and—such that one member

of each pair is occupied and the other is empty in the ini-
tial state. Thus Eq. (3.26) becomes a finite-dimensional
matrix equation. The dimensionality of the matrices are
further reduced when we take into account the spin sym-
metry of the system and the conservation of spin in the
matrix elements V".

In the simplest case, the matrix can be reduced to a sin-
gle element and the dispersion curve obtained directly
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from Eq. (3.26). For example, if there is just a single
mode contributing to g&(k, co) in the vicinity of moi„ its
energy mill be given by

I

E~(k)= mQ) +p V z, (k) V', (1 )+Ecxch (4

or, explicitly,

Em(k) =m sic+ yn 2 (klo) I.n2~(n +m)! 2~1o

—k lQ/2
e

2 u(r —/pk Xz)
2 (n+m)! 2mlp lp

2
~m

2lii

—r ~/2l(~)
e

r

1 0 p+ )~n p ~n g ~n+m
2irlo 2lo 2lo 2lo

(4.2)

where n'=—n +m, n is the highest occupied Landau level,
y„=2 if both spin states of the nth Landau level are oc-
cupied, and y„= 1 otherwise. In fact, the above expres-
sion applies for two cases: (i) m = 1, y„=2, with arbitrary
n; and (ii) n= 1, y„=1 or 2, and arbitrary m. In these
cases, there are no possible transitions of the excited elec-
tron and hole between different Landau levels in the
strong-field limit, and therefore the total exciton energy is
just the sum of the three contributions calculated in Secs.
II, III 8, and III C, as can be seen by comparing Eq. (4.2)
with the sum of Eqs. (2.12), (3.15), and (3.19). (For m & 2,
however, we have made an uncontrolled approximation in
neglecting multiexciton states. )

There are two checks that we can perform on Eq. (4.2).
It follows from Kohn's theorem that the m=1 exciton

energy E, ( k ) must approach co, as k ~0. Since
(2) (&) exchV

rt�+,

n, n+l, n(0) 0 d V n+i, n, n~ 1,n( ) En+i, n~

Kohn*s theorem is clearly satisfied by Eq. (4.2). The
second check that we can perform on Eq. (4.2) is to con-
sider a 5-function potential between electrons, with a
spin-polarized initial state, i.e., u (r)=c5(r) and y„= l.
Since electrons in the same spin state are never in the
same place, the exciton energy in this case must be the
same as that in the absence of electron-electron interac-

I

tions, EE~(k)=0. For u(r)=c5(r), one has E„'"„'"=0
and V „' „'„„(k ) = V '„'„'«(k ), so that Eq. (4.2) gives

E (k) =mco, as required. We now consider some specif-
ic cases of small filling factors and small m.

A. Excitations near co, (m=1)

DER(k)= Vipip(k) —Viopi(k)+Eip" . (4.3)

Performing the integrals of Eq. (4.2), we find, in agree-
ment with Ref. 18,

We first consider the excitations with m = 1. There are
three types of initial states to consider: (i) a completely
spin-polarized sample (here, v, = 1 is the only physically
realizable occupation for GaAs since the Zeeman energy
is small compared to the cyclotron energy); (ii) equal oc-
cupation of the two spin states; and (iii) both spins
present, but in unequal occupations (only v, =v, + 1 is

physically realizable in GaAs).
The first two cases (i) and (ii) are included in Eqs. (4.1)

and (4.2). For a completely spin-polarized sample with

v, = 1 and v, =0, the dispersion curve, from Eq. (4.1), is
E~& ( k ) =co, +b,Eii'( k ), with

1/2
8 1 77

EE~)(k)=
alp 2 2

—k ~l2/4
1 —e (1+k Ip /2)Ip

2j' 2

I)
k'l p

1/2
(Q /2

klpe
7T

(4.4)

where I„ is a modified Bessel function of the first kind. This spectrum corresponds to a pole in the density response
O -+

function+&. There is also a pole in the spin-density response functions at Ei+(k)=co, +
~
gp~B

~

+AEi+(k), with

(k) = —V iooi(k)+Eip
1 /2

8 1 7T

alp 2 2

—k21Q/4 2 2 k lp
' 1 —e (1+k lol2)Io

4

k'l'
pI

2

Ql2

(4.5a)

(4.5b)

b, E~i(k) = .

klp

tip 2

e 1

alp 2

for klp « 1, -

1/2
7T 1

klp
for klp »1,

The asymptotic forms of these spectra are

(4.6a)

(4.6b)

bEi+(k)= '

2

rip

2

alp

1

2 2

1/2
kl

' 2
p

' I/2

for klp «1,

for klp»1 .
(4.7a)

(4.7b)
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FIG. 3. Energy shifts for a spin-polarized sample wIth only
the lowest Landau level filled, v&

——1 and vt=0, and m=1 are
shown. The energy scale is in units of e /elo. The solid curve
denotes AEI ——EI(k) —co„where co=E~(k) is the pole in the
density response function+&. The same pole appears In+ also.

The dashed curve denotes AEI ——EI+ —~,—
~
gpa

m=EI+ is the pole in the spin-response function g . The

RPA energy shift, ERpA —co„ is denoted ynoted b the dotted curve.

The k = ac asymptote for AE
&

and AE&+ is also indicated.
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These dispersion curves are shown in F'g.n Fi . 3. The RPA
energy cs a so s ol shown in this figure. The branch AE~&,

which is the sum of b,ERPA and b,E&+, has a maximum at

tion to the shift is more important for klp « 1, t e
and ladder contributions are comparable for klp- 1, and
th l dd r diagrams are more important for klo ~&1.e a e

ied theIf the two spin states are initially equally occupie, e
dispersion curve for m = 1, which corresponds to a pole in

E'(k) =co, +AE~(k), with

~@(k)=2~'n'+i, n, a+i, n(k)

(4.8)

where 5S,=O, +1, and

b,E)(k)= —V'„'+) „„„+)(k)+

and 2. One can calculate analytic expressions for t ese
curves, involving modified Bessel functions, polynomials,
and exponentials, for all n. However, they become in-
creasingly complex and we will not display the expres-

(4.9)

This pole corresponds to a spin singlet exciton. There are
also poles, corresponding to spin triplet excitons, in t e
three spin-density response functions. These occur at

co=co, +HEI(k)+
~
gp~8

~

5S,

0.8

~00
~ ~

k=CO asymptote ~

0,6

0.2

0 —-
BE)
I-0.2 0

~ 0

r~0
~ ~ ~ ~ ~ ~ ~ \ ~ ~~ ~ ~ ~0 ~ 0 ~ ~ ~ ~~ 0

sions here.
1 E. 3.26)isaFor the third case, rn= 1 and v~

——v, + 1, Eq. . is
2)&2 matrix equation (to order e /E p which we need to
diagonalize. One finds two poles in Xz
co=co, +EE")(k), with

o

FIG. 4. Energy shifts are shown for m =1 and equal occupa-
tion of the spin states with initial filling factors (a) v, =v, =1, (b)
v =v =2 and (c) v, =v, =3. The energy scales are in units ofvg=vt=, an c vg —vt-

s Ese /elo. The energy shifts of the singlet excitons, hE j ——E~ —co„
are denoted by solid curves and those of the triplet excitons,
AE =E~ —co, by dashed curves. There is a pole in the density

&

—~c~
ponse function P at co =E

~ and in the spin-density response

RPA energy shifts, AERpA=ERpA —0) are—co are denoted by dotted
curves. The k = oo asymptotes for hE& and AE& are also indi-
cated.

E„+)(k)+E„(k)
b, E~)(k) = " +

2

2

+ ~n+2, n 1+, n1,+n(k)~n 1,+n, n 2,+n+12

1/2

(4.10)
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FIG. 5. Energy shifts are shown for v, =2, v, = 1, and I= 1.
There are two poles in g~, at co =El ——AE1+co, and
co =E1——b E1+co, . There are also poles in g at

co=E~(k)+
I gpgB I

and co=Ef(k)+
I gljgB

I
. The RPA en-

ergy shift, ERp& —co„ is denoted by the dotted curve. A11 ener-
gies are in units of e /elo.

B. Spin waves ( m =0)

The case m =0 only occurs when the two spin states are
unequally occupied, and corresponds to spin waves. %e
consider the physically rdevant case v, =v, +1. The
dispersion relation is

Eo(k)= Igp~B I

—2„—V'„'„„„(k), (4.11)

where n =v, . For n=0, we have, in agreement with Ref.
18,

Eo(k) —
I gIJ~B I

1/2
e

halo 2

kzloz&4 k IO
1 —e 'Io

4
(4.12)

which is shown in Fig. 6. Note that the energy shift tends

where p=1,2, while n =v, —1 and
-(2) -(&)E„(k):—V„+t „„+(„(k)—V„+) „„„+)(k).

There are also poles in X~ at co =co, +b E ~ ( k )

+
I gp&B I

. The shifts bE"
&

are shown in Fig. 5.
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FIG. 7. Energy shifts are shown for the case where only one
spin state of the lowest Landau level is occupied, v, =l and
v, =0, and m =2. These energy shifts were calculated, neglect-
ing the possible decay of the exciton into two excitons. The
solid curve denotes AEz ——Ez —2'„which corresponds to a pole

CT+ CT +in g~ and g . The dashed curve denotes b,Ez ——Ezz

—2cg, —
I gp~B I, where there is a pole in g nt co=Ez+. The

RPA energy shift, ERMA —2~„ is denoted by the dotted curve.

C. Excitations near mco, for m &2

For the case I)2, we consider only the simplest ex-
ample where v, =l and there are no spins with s, = —,'.
Then the dispersion relation, from Eq. (4.1), is

E~ (k) =mco, +E'"'"—V"' (k)+ V' ' o(k),
corresponding to a pole in g&, and

E (k)™c+
I gpaB I +Emo —V oo

(4.13)

(4.14)

corresponding to a pole in 7 . These curves are shown
in Fig. 7 for m =2.

V. PARTIALLY FILLED LANDAU LEVEL

to zero in the limit k~0, and the spin-eave energy ap-
proaches the unshifted Zeeman energy, as required by
Larmor's theorem.

QEo
1.5

vw "-0
k = 6) asymptote y

Although the discussion above has been restricted to
the case of an integral number of filled Landau levels,
there are at least some qualitative extensions that can be
made to the more general case, where the uppermost Lan-
dau level is only partially filled.

1.0

0.5

00 6
ufo

FIG. 6. Spin-wave spectrum ( m=O) is shown for v, =1 and
v, =O, with the Zeeman energy omitted. There is a pole in P
at co=bEp(k)+

I gpgB I
.

A. Quasiexcitons in a fractional quantized Hall state

A particularly interesting problem is the low-energy ex-
citation spectrum when the initial state has a stable ra-
tional filling factor v associated with the fractional quan-
tized Hall effect. ' ' The observed stable values of v, can
be written in the form v, =l/p, where I and p are integers,
with p odd. (We assume v, &1, and v, =o.) As
noted by Laughlin, our understanding of the fractional
quantized Hall effect requires that the elementary charged
excitations be quasiparticles and quasiholes with fraction-
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al charge +qe, where q
' is equal to p, the denominator

of the fraction v, . We m'ay therefore expect that the
lowest-lying neutral excitations may be described as
quasiexcitons a—bound state of a quasiparticle and
quasihole.

A quantitative analysis of the quasiexciton spectrum
would require detailed knowledge of the microscopic wave
functions for the quasiparticle and quasihole, which is not
available. Certain qualitative features are evident from
our earlier discussion, however, For these neutral excita-

tions, the wave vector k is a good quantum number, and
the lowest branch of the excitation spectrum should be

characterized by a dispersion relation Eo(k). For large
values of klo, the quasiexciton consists of a quasiparticle
and quasihole separated by a large distance,

~

6r
~

=klo/q. (Note that the effective magnetic length for a
particle of charge qe is equal to loq

'~ . ) Then for large
values of k we may write

Eo(k) =b, — (5.1)
kilo

where b, is the energy gap corresponding to the creation of
one quasiparticle and one quasihole, infinitely far apart.
The value of 6 has been estimated by Laughlin to be
=0.056e /halo, for the case of the v= —,

' state, in the
strong magnetic field limit. A molecular-dynamics
evaluation of a specific trial wave function for the quasi-
particle, carried out by Morf, gives a somewhat higher es-
timate, 6=0.1e /elo.

For values of klo & 1, the interaction between the quasi-
particle and quasihole is undoubtedly more complicated
than the Coulomb interaction between two point charges
of magnitude

~
qe ~. In the limit k~O, we expect that

Eo(k) will approach a constant Eo(0) &0, with correc-
tions of order k .

The quasiexciton should appear as a pole in the density
response function X&(k,co) for k&0. The weight of the
pole must tend to zero faster than k, for k~O, however,
in order for Kohn's theorem to be satisfied —at k=O the
dipole matrix element can only connect the ground state
with an excitation of energy co, . It follows from this that
the exchange interaction between the quasiparticle and
quasihole will not give a contribution to Eo(k) that is
linear in k for small k, such as was found for the m= 1

magnetoplasma mode, in the preceding sections. A sketch
of a possible form of Eo(k) for the quasiexciton, con-
sistent with the above considerations, is given in Fig. 8.

B. m = 1 magnetoplasma mode

We may also enquire about the behavior of the nz=1
magnetoplasmon branch for the case of a partially filled
Landau level, v, &1. As a first approximation we may
construct a dispersion curve qualitatively similar to that
in Fig. 3, for a filled spin-polarized Landau level (v, =1,
v, =O). The RPA energy is reduced by the factor v„ in
the partly filled case, while the attractive interaction be-
tween the electron and hole remains unchanged at large
separations (large k ). As the background electron density
is smaller than for a filled Landau level, the area occupied
by a hole of charge

~

e
~

must be larger by a factor =v, ',

~k=(D asymptote

FIG. 8. Expected qualitative behavior of the quasiexciton
spectrum for a partially filled level, when the ground state is a
stable state associated with the fractional quantized Hall effect.
Asymptotic energy b, is the energy necessary to create a separat-
ed quasiparticle and quasihole.

so we might expect the attractive interaction —e /(ski 0)
to be cut off at a constant value for klo & constv, ' . At
the same time, the positive exchange energy contribution
X& —

X~ will be reduced by a factor which might be of or-
der v', , if it scales inversely as the mean separation be-
tween electrons. Since Kohn's theorem still applies, the
m=1 magnetoplasmon mode still has energy Ef(k)~co„
in the limit k —+0. Thus, the riet effect of the partial fil-
ling is to reduce the energy shift b,E&(k) relative to that
shown in Fig. 3.

Partial filling of the Landau level will of course have a
major effect on the damping of the magnetoplasma oscil-
lations. At T=O, for sufficiently long wavelengths, the
m= 1 mode should still have very long lifetime, as it can
only decay by conversion to a state containing a large
number of m=0 quasiexcitons, in the strong filled limit.
For larger values of k, however, the m=1 exciton state
can decay more readily. For example, it should be possi-
ble to scatter the m = 1 exciton to a small value of k, em-

itting a quasiexciton to conserve energy and wave vector.
Another possibility for a large-wave-vector m= 1 exci-

ton is that the hole in the partially filled Landau level will
break up into several fractionally charged quasiholes,
while the excited electron remains in the higher Landau
level. This process is presumably forbidden near k=O, as
the close proximity of the electron in that case should
make it energetically unfavorable for the hole to break up.

At finite temperatures, there w'ill be a variety of
thermal excitations present in the partia'lly filled Landau
level —spin waves, quasiexcitons with small values of klo,
and free quasiparticles and quasiholes, or large-wave-
vector quasiexcitons.

All of these have energies small compared to the cyclot-
ron energy, in the strong-field limit, and all of these
should lead to increased scattering of the m= 1 magneto-
plasmon, reducing its lifetime and increasing the width of
the m = 1 peak in the response function gz(k, co ).

We may also consider a situation where we have one or
more completely filled Landau levels, in addition to a par-
tially filled Landau level. For concreteness, suppose we
have two filled Landau levels for spin g, while for spin g

we have the lowest level completely filled, and the second
level partially filled, i.e., we have v, =2, v, =1+x, with
0 & x & 1. If damping could be neglected, we might expect
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to find two m= 1 peaks in the response function Xz(k,~),
just as in the case v, =2, v, =1 illustrated in Fig. 5. As x
increases to 1, the intensity of one of the branches should
disappear, so that at x= 1, we have only a single peak in

X&(k,co), corresponding to the solid curve in Fig. 4(b).
For T=O, and x sufficiently small, there will be little

damping, and there will be two well-defined magneto-
plasmon branches, just as in Fig. 5. There may be consid-
erable damping at finite temperatures, however, even at
k=O, due to scattering by spin waves and other excita-
tions.
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APPENDIX: MATRIX ELEMENTS

In this appendix we evaluate the relevant matrix elements V which are defined in Eq. (3.8). By writing the single-

particle wave functions in center-of-mass and relative coordinates, these matrix elements can be written as

Vn(n2n3n&(ql~q2|q3q4) 2~@ql +q2 q3 q4) Vn& n2nn34(ql q3~q2. q3) i

where

q 2102/2

V„' „„„(q,q')= + + + $/2m.(2 ' ' ' "n(!n2!n3in4!)

d Z r &,~ ~z
—(~+(02q)'ni02

X
2m l()

X+—,
'

b,x —lo(q —q')/2

lp
n2

X ——,
'

Ax+ la(q —q')/2

Ip

(Al)

X —,' b,x + l()(q +q') —/2

~H„n3
0

Hn
X+—,

' bx —lo(q +q')/2

lo
(A2)

We will actually need the partial Fourier transforms of V' defined as follows:

(A3)

(A4)

Performing the q' and X integrals, one finds'

2 '2 'n 2!n 3!

2 '2 n, !n!

1/2

der + 2k && /210 Ax +shy ' ' hx —Ehy

2m l() lo lo

hr ,—, hrn —n n —n

2l
(A5)

and

V „','„,„,„,( k ) =
1/2

2 '2 n2!n4!

2 '2 'ni!n3! fl o

22 22
3 2n& —n4 O n —n O —k 212/20

4 2 2 2 (A6)
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for n2&n4 and n3(n&. If n2&n4, then n2 and n& are
interchanged in the above expressions; and if n 3 & n &, then
nj and n3 are interchanged. For the case n& ——n3 and
n2 ——n4, V' ' is the matrix element which appears in the

RPA energy [see Eq. (3.12)]:

V„".„'„„(k)=V„(k),
where m:—n' —n.

(A7)
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