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A theory of transfer of electrons into excited states of a proton moving above a free-electron metal
surface is presented, based on a time-dependent Anderson Hamiltonian with a degenerate atomic
level. The density matrices of the resulting atomic states are calculated. At grazing proton trajec-
tories the parallel velocity effectively brings some of the conduction electrons into resonance with
higher atomic levels. This mechanism leads to creation of excited states in which the sublevels
within the shell are unsymmetrically populated. The polarization characteristics of Balmer H, light
(n=3 to n =2 transition) emitted from 9-keV protons scattered at a few degrees are calculated, in
good agreement with experimental data. The possible influence upon the electron capture process of
the incompleteness of the screening of the fast proton by conduction electrons is discussed.

I. INTRODUCTION

The creation of excited atomic states by transmission of
energetic ions through thin foils and by reflection on sur-
faces has recently been the subject of extensive experimen-
tal studies. Such states are usually degenerate or nearly
degenerate, and the knowledge of the linear combination
into which the electron is captured can provide interesting
information about the nature of the atom-solid interac-
tion.

The light emitted during the radiative deexcitation of
such states is often linearly or circularly polarized to a
high degree, indicating that coherent excited states are
produced during the scattering. Several explanations of
the mechanism of creation of these states have been pro-
posed, which look for their origin either in the bulk, in the
region where the atom leaves the surface, or in the evolu-
tion after the initial creation of the excited atom. A brief
survey can be found in Ref. 1; yet, no quantitative theory
has been developed. We note that the approaches used for
charge exchange processes between atoms in the gas
phase, where both species have a small number of discrete
levels, cannot be applied directly to metal surfaces with
delocalized bands.

The aim of this paper is to present a theoretical ap-
proach to the problem in which the electronic degrees of
freedom are described by a time-dependent Anderson
Hamiltonian. This model is already rather simplified
(e.g., it neglects the electron-electron interaction from the
start), but it has the advantage of being soluble. The re-
sults are evidently at least semiquantitative. The experi-
ment we have in mind is the reflection of protons at graz-
ing incidence on a smooth metal surface, such as Ni(110),
at energies around 10 keV.!~3 This system offers several
advantages from both experimental and theoretical points
of view. First, hydrogen atoms do not damage the surface
owing to their small mass. Second, the hydrogen atom
has no inner-shell excitations which could complicate the
process, and its dynamics after leaving the surface ‘is
strictly a one-electron problem. The metal surface can be
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described by a free-electron jellium model.

The geometry of the experiment and the coordinate
frames used are shown in Fig. 1. In Ref. 1 a capacitor
was added after the point of scattering with an electric
field applied in the direction of the surface normal. The
polarization of the light emitted in the direction perpen-
dicular to the scattering plane after a flight of approxi-
mately 1 cm from the scattering point was studied as a
function of electric field.

We start by making some general remarks about the
process. Excited hydrogen states (n =2,3,...) have rath-
er extended orbitals with expectation values of the radius
(r)=[3n2—1(I+1)]ag/2 (ag=Bohr radius), and their
energies fall within or above the metal conduction band.
They therefore cannot exist as well-defined states when
the proton is in the bulk or even at the distance of closest
approach during the scattering, as the typical interatomic
or interelectronic distance in the metal is comparable with
or smaller than (7). In that region many conduction
electrons participate in the screening of the proton. How-

FIG. 1. Geometry of H atom scattering on a metal surface,
and the coordinate frames used in the text. In the experiment a
capacitor approximately 2 mm long with the electric field in the
z direction was placed after the point of scattering. The light
emitted in the z’ direction was measured, after a flight of ap-
proximately 1 cm. ' /
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ever, the final atomic state is not simply a projection of
this screening charge onto free hydrogen states. A much
better picture is that in which the conduction electrons
adjust almost adiabatically as the proton recedes from the
surface, up to the point where the interaction effectively
stops.

These considerations do not apply to the creation of
ground-state (n =1) atoms, because the energy of the
n =1 state lies below a typical metal conduction band.
Indeed, the latter may be influenced by the electronic
wake which exists while the proton is moving inside the
metal.>* As we are only interested in excited states, it
will be sufficient to assume that the capture into n =1
and n > 1 is independent, which is quite likely.

In Sec. II the time-dependent electronic Hamiltonian is
formulated and solved. In Sec. III the formalism is ap-
plied to n =2 and n =3 hydrogen levels. In Sec. IV the
subsequent evolution of the atomic state and the emission
of light are treated. Section V contains a discussion of the
results.

II. THE HAMILTONIAN
AND THE DENSITY MATRIX

We describe the resonant tunneling of electrons between
the conduction band of a metal surface and the localized
atomic states of a proton using the Anderson model.’ In
the second quantized form the Hamiltonian reads

H= 26?"?’" IZea(t)nI,,,
—’ m

+ V% im c,mc~+H c.l, (1)

k I,m
where c% and c,m are creation operators for band states
|K) and atomic states |[,m), respectively, and

n=c-c- and Ry, =Cp,C;, are number operators (we
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use atomic units, #i=m,=e =1). The atomic states are
degenerate, and I,m are the usual angular momentum
quantum numbers, [ =0,1,2,..., and —I/<m <l. The
first term describes the conduction electrons, the second
the atomic level, and the third is the interaction. We have
assumed that the proton moves along a classical trajectory
T(2), so that the position-dependent energy level €,(r) and
tunneling V—» (?) become time-dependent quantities
€,(t) and V»
dependent electromc Hamiltonian of Eq. (1).® In fact, it
turns out that for calculating the final electronic state of

the atom it is sufficient to take into account the outgoing
part of the trajectory and assume that the motion is uni-
]

(t) respectively, and we obtain the time-

i (1) =€4()cpm () —i 2 Ve
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where ¢% =¢ _’(to) is the operator at the initial time ¢,.

K
In order to make further progress, we must make some

simplifying assumptions. We assume that the matrix ele-

ments V- factorize as
k,Im

Lt )epm(t)e ¥
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form, i.e., in cylinder coordinates, z =v, ¢, —v||t7 We
have not included the intra-atomic Coulomb repulsion,
which is justified 'when the occupation probability
1m {Mim ) of the atomic level is small at all times. Then
the two spin channels are independent, and Eq. (1) is the
Hamiltonian per spin. We have taken only one hydrogen
shell (for example, n =2 or 3, etc.), assuming that the
capture into different shells is uncorrelated. To explain
this, we note that the expectation value 7 ) of the orbital
radius increases with n2 The final electron capture
occurs, roughly speaking, when the surface-atomic orbital
overlap vanishes as the atom leaves the surface, so that
the capture takes place at points far apart in space for dif-
ferent n. The neutralization into » =1 (which is some-
what different in nature, because the level lies well below
the Fermi level of the metal) occurs first, and only those
atoms which are not neutralized can subsequently pick up
an electron into the n =2 state, etc.

The atomic level €,(T) =€, + €;maqe( T) is position depen-
dent because of the image shift near the surface. We have
assumed that it is still degenerate with respect to /, since it
can be shown that the splitting in the image field is small
at the energy scale which is relevant during the capture
process. Further on in the paper we shall include the
spin-orbit splitting when calculating the evolution of the
atomic state after it has left the surface.

Our aim is to calculate the final density matrix p at the
time t— . In the Heisenberg representation this is

Pim,im D=0 | cln()crmAD) | 20) , @)

where | ty) is the electronic state (both metal and atomic)

at some time before the interaction. The total capture
probability into the level under consideration is Trp, and

the degree of coherence is Tr(p?)/(Trp)>.

The problem of finding the operator c(¢) for Hamil-
tonians similar to the Hamiltonian of Eq. (1) was first
solved by Blandin, Nourtier, and Hone? using the Keldysh
formalism. A more usual approach is to work with equa-
tions of motion for the operators in the Heisenberg repre-
sentation.”’ Using Eq. (1) we obtain

il (t)=—[H,c}, (1)]
=6€4(t)cp, (1) + 2 e
I’
ié¥(t)=-[H,cT(> )]

=€pcp(+ X Vo

Lm

(t)c-»(t) (3)

i Eim (2) . (4)

Equation (4) can be solved and reinserted into Eq. (3),
which becomes

ie>(t'—t)

—ie(t—ty)
+ZVy 0k T, ®
T ,

K,Im u (t)V?,Im : ©)

Explicit calculation shows that this is not exactly true, but
the time dependence of the overall magnitude is approxi-
mately exponential, while the relative importance of dif-
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ferent metal states | K ) varies much more slowly. Equa-
tion (6) is then a good approximation taking into account
that the final capture of the electron occurs in a rather
narrow region of distance z from the surface. We intro-
duce the matrix A

Ap met)=m, V"i.lm(t)VT(» rm(DB(E—€) (7)
< ,

which is diagonal in m if the coordinate frame with the z
axis perpendicular to the surface is used. We further as-
sume that the energy dependence of V and A is small at
the energy scale relevant to us. Then the sum over |k )
in Eq. (5) is proportional to a 8 function of (r —¢’). Mak-
ing a unitary transformation from the basis |m ) of
atomic states into the basis |j) in which the matrix A is
diagonal, the differential equation (5) can be integrated to
give

cj(t)=—-z; ft;dt'exp [ ftt’dT[Aj(T)-l—l'Ea(T)]]

x> V’%j(t')
<

o ’ . 0
X exp( —iept +l€i’+6t°)ci’+6 .
(8)

Here we have omitted a term proportional to c)),, because

it would produce effects due to the “memory” of the ini-

tial atomic state. These effects are negligible in the situa-
‘tion considered here.” We have assumed that the surface
is completely translationally invariant and we use the
coordinate frame which follows the adatom motion paral-
lel to the surface. The parallel motion has the effect of
translating in k space the fermion operator by Q =(6,0),
6:7“.10 The density matrix of Eq. (2) at t— o« is found
to be

pi= ZE( e (Ve Vi S g ©
k

where the function F is
© t
Fle)= [,"dtuexp [ [l araud@)+ie ()] —iet
(10)

-and wvhers 'fi'+ 5= (cgki_,_ ?2"A%’+ 3 - -ds- the Fermi-distri-
bution. (The time dependence of ¥ and A according to
Eq. (6) has been explicitly written down.) Equations (9)
and (10) can be evaluated numerically for a specific form
of u(t) and €,(¢). Instead of doing that, we make further
approximations. The functions u (¢) and €,(¢) are smooth.
For t— o0, u(#) vanishes and u (¢,) is very large. The in-
tegrand in Eq. (10) is therefore non-negligible only in a
narrow. interval of ¢, delimited on the one side by the van-
ishingly small u (¢) and on the other side by the exponen-
tial of the integral of [u(#)]%. Let us denote t* a value
from this interval and z*=v,t* the corresponding dis-
tance. The integral F(e) itself will be peaked around
some energy €*~¢,(t*), the width of the peak becoming
smaller for v, —0. The velocity v, in Ref. 1 is sufficient-
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FIG. 2. Factors in Eq. (9), in kK space. The spherical shell at
energy €* =—;—k(2, is the factor F;Ff, the shaded area is the
transtated Fermi sphiere f; & . Owing to the factor VYJV%J
the only significant contribution to the density matrix p comes
from ‘the region where the spherical shell just starts to intersect
the Fermi sphere.

ly small to make this peak very narrow compared with,
for example, €x. Figure 2 shows the spherical shell in k

space corresponding to the maximum of F,F}, together
with the translated Fermi sphere f T+9 The third factor

in Eq. (9), V?‘,V}j, depends only upon the “angular”

coordinates of K, and has its maximum for k vectors per-
pendicular to the surface. The velocity of 9-keV protons
is comparable with vr of typical metals, and therefore
higher hydrogen levels, which for an atom at rest lie
above the Fermi level of the metal (remember that an up-
ward image energy shift exists near the surface), now in-
tersect the translated Fermi sphere. This situation is simi-
lar to the finite-temperature case discussed in Ref. 7, al-
though the origin of the partial overlap of €* with occu-
pied states is different: In Ref. 7 it was the tail of high-
temperature Fermi distribution, and here it is the motion
of the atom parallel to the surface. The approximation
consists in neglecting the width of the maximum of Eq.
(10) altogether and approximating it by a & function. It
can be easily proved that

gF,FJ"‘ V}’,,-V*i’,,-:‘sii (11)

K

by using the assumed energy independence of VT{ ‘,V*T: .

and writing the sum over k states as an energy integral
and two angular integrals. Therefore, approximately

21
(e)FF(€)=—""§(e—&*
F;(e)Fj (e) 5+4, (e—€*), » (12)
so that the density matrix of Eq. (9) becomes
—y 27 .
pij= z A +A Ve e eigdlep—en. 13
K

This expression can be evaluated if the matrix elements ¥
are known. Once’ calculated, the density matrix can be
transformed back into the familiar | I,m ) basis.
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III. APPLICATION TO HYDROGEN ATOM
STATES

To calculate the matrix elements occurring in the densi-
ty matrix of Eq. (13), we have employed the usual approx-
imation

Ve @=(K|V|Lm), (14

where ¥V =1/r is the Coulomb potential of a proton at
distance z from the surface, | I,m ) are the atomic states
of the shell under consideration, and | k) are the unper-
turbed metal states.

Grozdanov and Janev!! have found the matrix A, Eq.
(7), for a hydrogenic atom by using a nonperturbative
method. In their approach, A is diagonal in the basis of
Stark states.”> However, we need more information;
namely, we also need the dependence of the matrix ele-
ments upon the angular variables which are integrated
over when calculating A, so that the results of Grozdanov
and Janev can only serve as a check.

Figure 3 shows the potential energy of the proton-
surface system along the surface normal. The “relevant”
distance z* lies where | ,m ) states overlap with the very
tail of | k) states. This tail is determined solely by the
electron self-image

V(iz)=—1/4z, (15)

where z =0 has been put at the image plane. An approxi-
mate solution of Eq. (15) is

C. zl/4qexp(—qz +iE“'ﬁ') (16)
where g =(2¢+k{)!/? and € is the energy measured from

the vacuum level. On the other hand, the potential in the
bulk is constant:

Viz)=—V,. (17)

In principle, Egs. (15) and (17) should be joined smoothly
by a realistic surface potential and the normalization con-

FIG. 3. Various contributions to the atom-surface potential,
schematically: surface potential, 1; electron image, 2; core im-
age, 3; Coulomb potential of the proton, 4. Also shown are a
metal electron wave function | k') (an eigenfunction of 1 and 2)
and an atom wave function | /,m ) (an eigenfunction of 4). Toa
good approximation, potentials 2 and 3 only shift the local vacu-
um level, i.e., P.

e1mage(z ).

stants C-. in Eq. (16) found accordingly. The strong E”
dependence of the matrix elements of Eq. (14) comes from
the factor exp(ik ) in Eq. (16), which at large k), oscil-
lates rapidly and makes the integral small. The normali-
zation constants C z have a weaker k| dependence in any

case, and their absolute value is unimportant to us.
Therefore we do not make a serious error if we use a sur-
face potential with a discontinuous jump from Egq. (15) to
Eq. (17) at some z >0, which makes it possible to calcu-
late the constants C? analytically. Some details of the

evaluation of the matrix elements of Eq. (14), using the
wave functions of Eq. (16), are given in the Appendix.
The calculated A(z), Eq. (7), agrees well with the analytic
formula of Ref. 11, although the basis in which it is diag-
onal is only close to, but not identical with, the Stark
basis.!?

Finally, we must determine the distance z*, as dis-
cussed after Eq. (10). Here we encounter a difficulty, be-
cause various elements of the diagonalized A differ by or-
ders of magnitude for the same value of z, and therefore
give different z*. In the calculations we have used an
“average” z*, an approximation which will be justified
a posteriori. Also, the factorization of Eq. (6) does not
hold exactly, the half-width in k| of V-+ z) becoming

smaller at larger z. We have used Ve (z*) For 9-keV

protons reflected at an angle of 5° w1th respect to the sur-
face, the estimate is z* =9 a.u. for » =2 and z*=20 a.u.
for n =3.

To recapitulate, the perpendicular velocity v, of the
atom enters into the final result only through z*, which in
turn specifies Ve (z" ) and the image shift of the level

The parallel velocity v, enters into Eq. (13)
through the translated Fermi sphere.

The only symmetry element of the whole system is the
scattering plane, and the atomic states are either even or
odd with respect to it. The off-diagonal elements of the
density matrix between states of different parity are zero.
In fact, the population of odd states is very small, only
about 2% of the total in the n =3 case and 4.5% in the
n =2 case. The states with positive m (the z’ axis perpen-
dicular to the scattering plane) are preféerentially popu-
lated over those with negative m.

For n =3, z*=20 a.u.,, and ®=4.6 ¢V, the calculated
total capture probability is Trp=0.0013. This value
should be interpreted as the probability of neutralization
into the n =3 state of those atoms which have not previ-
ously been neutralized into n =1 or n=2. There is no
experimental data for comparison, but this value is
reasonable. The density matrix is quite coherent, with
Tr(p?/(T1p)*=0.57. (This quantity can vary from  for
equally probable incoherent occupation of each of the 9
sublevels to 1 for a completely coherent state.) The best
single-function representation of the even and odd part of
the normalized density matrix p/(Trp) is

|e)=0.496|5,0)+0.377 | p,— 1) —0.576 | p,1)

+0.203|d,—2)—0.152|d,0) +0.442 |d,2) ,
(18)
|o)=0.091|p,0)+0.047 |d,—1)—0.101|d,1) .
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Incomplete coherence means that the off-diagonal ele-
ments of the true density matrix are smaller than those re-
sulting from Eq. (18).

The value of the work function ® of the metal influ-
ences the total capture probability more strongly than the
relative amplitudes, i.e., the normalized density matrix.
This dependence is still much weaker than in the case of
small parallel velocity. For example, even the case when
the adatom level is below €f. (i.e., the Fermi sphere in Fig.
2 larger than k) is only quantitatively different at large
velocity, while for small v, it would be qualitatively dif-
ferent, giving n, ~ 1.

The capture probability varies strongly if we choose
another value of z*; thus for n =3 and z*=30 a.u,, it is
0.00002, while the coherence increases slightly to 0.63.
On the other hand, the normalized density matrix changes
very little. This is the main argument in support of
choosing a single z*, as the polarization of the emitted
light depends only upon the relative magnitude of the ele-
ments of p.

Some caution is still necessary, because the large differ-

ence between the elements of A may lead to a somewhat
different density matrix if a more complete theory (i.e.,
not assuming a single z*) is used. Still, the diagonal ele-
ment which is largest when using Eq. (13) will remain
largest, etc., and the phase of the off-diagonal elements
will not be substantially altered.

For n =2 and z* =9 a.u., the capture probability is 0.12
and the coherence is 0.56. The relative population of odd
states is larger and the coherence of the density matrix is
smaller than for n =3, which means that the capture
from a larger number of states can occur. The best
single-function representation is

|e)=0.5525,0) +0.344 | p,—1)—0.729 p,1) ,
(19)
|0)=0.212|p,0) .

Finally, we discuss another effect which possibly influ-
ences the final density matrix. It has been observed that
the axes of the elliptically polarized Balmer « light (n =3
to n =2 transition) appearing along the z’ direction are
not respectively parallel and perpendicular to the surface,
but lie obliquely.! Density matrices with real coefficients,
such as the one defined by Eq. (18), cannot explain this
feature. The evolution in surface electric field of the ex-
cited state after its creation has sometimes been invoked, '
and here we examine this possibility in some detail.

The obvious question is what the nature of the addi-
tional electric field is like. Near a metal surface any free
charge is rapidly screened by conduction electrons, so that
long-range electric fields are improbable. After the cap-
ture, the excited atom is a neutral object. Still, the dif-
ferent nature of the image potential of the proton and the
self-image of the electron has two consequences. First,
the difference between them at the site of the proton gives
an upward shift of the level (which we have included).
Second, their different spatial dependence around the pro-
ton can be regarded as an additional perturbing potential.
However, in the first-order perturbation calculation this
potential does not split the degenerate hydrogen levels.
Higher-order effects cannot cause an appreciable phase
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evolution of the density matrix.

This discussion has assumed that the charge screening
is perfect. In fact, the velocity of a 9-keV proton is com-
parable with the Fermi velocity of metal electrons, and
the charge screening a proton which moves parallel to the
surface is not fast enough to follow it, but lags behind it.
This surface wake has been studied in detail, mostly in
connection with energy loss to surface plasmons of fast
ions.!> The parallel component of the force (and therefore
of the field at the site of the proton) is!®

w. 12
5 ] Ko
vy

where w; is the surface plasmon frequency. A local

2w,z

> (20)

1
F ==
= 9 v

‘Drude dielectric response of the metal has been assumed.

This approach can be easily generalized to calculate the
field at other points in space, and it turns out that it is not
very different from Eq. (20) in the whole region between
the proton and the metal. The Bessel function K, de-
creases rapidly with increasing z, so that the effect is re-
stricted to a region very close to the surface. In other
words, the screening of a charge moving parallel to the
surface at larger distances becomes perfect quickly. If,
however, a larger imaginary part of the dielectric function
is a3sls6umed, the effect has a longer range, decreasing as
z7°.

We have restricted our attention only to the parallel
component of the field. This component does not exist
with perfect screening and it alters the symmetry of the
atom-metal interaction. It seems that it is more likely
that the effect influences the capture process itself, and
not the subsequent evolution of the already created state.
It is difficult to estimate the value of F) quantitatively, as -
the dielectric function of Ni, which was used in the exper-
iment,? cannot be approximated well with the Drude
function, and it is even more difficult to calculate the ma-
trix elements of Eq. (14) with the complicated field due to
the wake effect. The simplest approximation is to add a
constant electric field parallel to the surface to the poten-
tial ¥V in Eq. (14). Then the matrix elements can still be
calculated by the method described in the Appendix. We
have done this for » =2. Qualitatively, the result is that
the coefficients in Eq. (19) become complex, as if a rota-
tion by a small angle around the z’ axis (Fig. 1) were per-
formed. This agrees with the qualitative picture that the
tunneling on the front side of the proton where there is
less accumulated image charge is preferred, and also with
the experiment (see next section). However, it would be
premature to draw definite conclusions, as the effect has
not been estimated quantitatively.

1V. TIME EVOLUTION
AND RADIATION DEEXCITATION
OF ATOMIC STATES

The interaction of the atom with the surface stops at
several tens of angstroms at the most. After that the
atomic state evolves under the free-atom Hamiltonian.
Owing to comparatively long times of flight (the distance
between the surface and the spectrometer slit in Ref. 1 is
approximately 1 cm), a new, much finer energy scale be-
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comes important. This includes the spin-orbit and Lamb
shift splittings of the sublevels, the width due to radiative
transitions to lower states, and, if an external electric field
is applied along a part of the trajectory,!? the Stark split-
ting. The first step is to construct the initial density ma-
trix, including spin. We assume that the capture into each
spin state is equal and independent, so that the density
matrix consists of two submatrices as found in the preced-
ing section, in the basis which is a direct product of the
orbital and the spin basis. Thus the matrix is of order 8
when n=2 and 18 when n=3. This can now be
transformed into the | nlju ) basis in which the spin-orbit
and Lamb splittings are diagonal:

|nLjpu)=3 {Lm,5,s |ju) |nlm) |s) . (21)
m,s
Here (l,m,%,s | j,p) are Clebsch-Gordan coefficients and
s=1= % is the spin index. A convenient approximate
description of the time evolution of the density matrix is
the so-called Bethe-Lamb approach, based on the effective
non-Hermitian Hamiltonian

Hgy=Hy— ér , (22)

where H, contains the energy splitting and T is the width
due to the radiative decay. The equation of motion for
the density matrix is

d .
—d/tl= —i[Hg,p]—+{T\p} , 23)
where the square brackets and the curly brackets denote a

commutator and an anticommutator, respectively.
If the Hamiltonian of Eq. (22) is time independent, i.e.,

with no field or with a constant external field, it can be

diagonalized by a nonunitary matrix S, giving complex
eigenvalues A,. Then the solution of Eq. (23) can be writ-
ten as

i(A

p(=S{e s =1p00)SH 1, )ST,  @4)

where p(0) is the initial (# =0) density matrix. If the
Hamiltonian (22) is explicitly time dependent, Eq. (23)
must be integrated numerically.

In our calculations we have used the solution in Eq.
(24), assuming that the atom first traverses a region
without field, then a region with a constant electric field,
and finally another field-free region. This is, of course, a
rather simplified description of the experiment in Ref. 1
where the condenser plates are approximately 2 mm long
and 3 mm apart, and consequently the electric field is
quite inhomogeneous. However, the Stark effect of hy-
drogen is linear, and this description will on average give
correct phase evolution, although we cannot hope to
reproduce all the details of the field dependence of Stokes
parameters. The fine-structure splitting and the decay
widths of hydrogen n =2 and n =3 levels are given in
Table L.!7 The 2s level is metastable, having no allowed
electric dipole transition. The decay width of 3p levels
consists of transitions to 2s and to 1s; the latter was not
measured in Ref. 1. The Stark splitting is'?

=3&n(n,—n,), (25)
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TABLE I The fine-structure splitting AE (relative to the
lowest sublevels) and the electric-dipole transition widths " for
n =2 and n =3 states of hydrogen atoms.

nl T (10~° au.) j AE (1077 a.u)
2s . 0 5 1.6
2p 15 = 0
- 3
3 16.6
3s 0.15 + 0.5
3p 4.6 + 0
3 4.9
3d 1.6 3 4.9
= 6.5

where & is the electric field, n is the principal quantum
number, and n.,n, are parabolic quantum numbers,
n=n;+n,+|m|+1.

The steps of the calculation of the evolution of the den-
sity matrix and'the polarization of the emitted light can
be summarized as follows.

(1) Form the initial density matrix, including spin.

(2) Form the Hamiltonian of Eq. (22) without external
field, diagonalize it to find S and A,, use Eq. (24) to find
the density matrix after the first part of the trajectory.
We have included some averaging over time to account
for the spread of atom velocities, points of creation, etc.

(3) Repeat (2) for the part of the trajectory inside the
condenser, including field.

(4) Repeat (2) for the last part of the trajectory, without
field. :

(5) Use the density matrix obtained to calculate the
properties of the emitted light.

The polarization of the light is usually expressed
through the Stokes parameters

S Iruc—Iinc
I Iypc+Iinc '’
M Ie—Iy

= , 26
Iy +1gy (26)

I
C  ILis—Iys

I Iis+1ps

Here Iy, I4s, Igy, and I35 are the intensities of linearly
polarized light emitted along the z’ direction. The num-
ber denotes the polarization plane, 0° being along the sur-
face normal and 90° along V. Iryc and Iyyc are the in-
tensities of light with right-hand and left-hand circular
polarizations, respectively.-

Figure 4 shows the calculated Stokes parameters for
n =3, with an applied electric field from —800 to + 800
V/cm. Comparison with experimental data! shows good
agreement for the position of oscillations. The general
shape of the curves is also well reproduced, although some
finer details are not. However, in the experiment, C /I is
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FIG. 4. Calculated Stokes parameters of light emitted in the
n =3 to n =2 transition as a function of applied electric field.

not zero at zero field. An explanation of this discrepancy
was proposed at the end of the preceding section.

Figure 5 shows the results for n =2. The curves are
now symmetric with respect to the sign of the electric
field. This is due to the simpler structure of n =2 states,
for which the eigenstates of the effective Hamiltonian and
hence the time evolution is symmetric with respect to the
field. There are no experimental data for direct compar-
ison of these calculations, because the linear and especially
the circular polarization of the corresponding uv light are
difficult to measure.

V. DISCUSSION

The theory presented in this paper gives a clear physical
picture of the process of electron capture into excited hy-
drogen states (n =2,3,...) during the scattering of pro-
tons on a metal surface. When the proton is close to the
first layer of atoms (and the point of reflection of grazing
incident protons is certainly in this region), it acts as a
scattering center for metal conduction electrons, but no
sufficiently stable resonance states can be formed. As the
proton moves away from the surface, hydrogen atom
states appear as resonances. The motion of the atom
parallel to the surface is crucial because it enables some of
the metal electrons to match the energy of hydrogen orbi-

-08 T T T T T

©-800 0 800
Electric Field (V/icm)

FIG. 5. Same as Fig. 4, but for the n =2 to n =1 transition.

tals. Thus the resonances have a small average occupation
due to continuous population from occupied metal states
and depopulation into empty states. The final state re-
flects the situation at the point where the tunneling finally
becomes too slow and the atom-metal interaction effec-
tively stops.

"The general agreement of calculated curves with experi-
mental data is very good. One may ask if better agree-
ment in details would be obtained by using Eqgs. (9) and
(10) instead of the approximation of Eq. (13), and calcu-
lating the matrix elements of Eq. (14) with better wave
functions. However, one must keep in mind that the
Hamiltonian of Eq. (1) and the density matrix of Eq. (9)
are already approximations, so that complete quantitative
agreement cannot be expected.

Another approximation is that we have assumed free
metal electrons, in particular, not including any surface
periodicity. The optimum resonance condition (see Fig. 2)
occurs when the parallel velocity of the atom is
~ | 2(e; —€r) | /2. For a typical metal work function this
corresponds to protons with kinetic energies of 3 and 7
keV for n =2 and n =3 states, respectively. This mecha-
nism exists up to a proton velocity of ~2uv, i.e., a kinetic
energy of 100 keV. At higher proton energies the reso-
nance condition according to Eq. (13) cannot be achieved,
and a more complete model must be used, probably with
the atomic structure of the surface included.

The capture is a purely surface process, but it depends
on the very tail of the metal electron density, which has a
universal form for all smooth metal surfaces (to within a
normalization constant). Therefore the normalized densi-
ty matrix of the final state, and hence the polarization of
the emitted light, is not expected to be surface specific.
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APPENDIX

With use of Eq. (16), the matrix element (14) becomes

V?,IM(ZO)ch(’ -f()°° d221/4qe _qunlm(207z) ] (Al)
where
Loy (20,2)= fw dx fw dy eik||(xcos¢+ysin¢)
XV (P (T) . (A2)

Here ¢ is the angle between the x axis and k;, V(r) is the
Coulomb potential centered around z,:

(A3)

and ¥ are hydrogen-atom wave functions around the same
point. Using the real representation of spherical harmon-
ics,'® we can write

V=r_1=[x2+y2+(z _ZO)Z]—I/Z ,
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¢'fllm =Ne —r/nrp (x,y’Z,") s (A4)

where the value of the index i may be even (e) or odd (o),
O<m <l, and P is a polynomial. The integrals (A2) can
be found from the basic integral

I=f°° dxfw dyr—leiax+iby—-cr
=2m(a*+b*+cH~1?
Xexp[ — |z —zo | (@®+b*+c?)'/?] (A5)

by taking the derivatives with respect to a, b, and c. As

an example, for n =2, /=1, m =1, and iéven,

Y11 =(327) "V 2xe —7/2 (A6)
and
Iy =(+m)12ig=%k cospe 70 (144 |z —2,]),
(A7)

where g =(2e,+k})!/2. The integral over z in Eq. (A1)
must be performed numerically.
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