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Transverse magnetoresistance and thermopower in metals
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The transport equation is solved for- a quantum-mechanical system in a transverse magnetic field.
The solution gives the linear transport coefficients for electrostatic fields and temperature gradients
for electrons in metals. In term of a small expansion parameter, the solution to lowest order con-
firms the existing semiclassical theory on electrical conductivity and thermal conductivity. We also
found that the electron-phonon mass enhancement factor is present in the adiabatic thermopower.
The next-higher-order approximation exhibits the anisotropic effect caused by the presence of mag-
netic fields and explains the experimentally observed linear magnetoresistance in simple metals
under a high magnetic field.

I. INTRODUCTION

Historically, the linear response of a quantum system to
external electric and thermal fields are usually calculated
by using Kubo's formula. ' However, because of the com-
plexity in evaluating correlation functions, a complete
quantum-mechanical treatment is still lacking when a
magnetic field is present in the system. The existing semi-
classical theory is unable to explain some experimental re-
sults. This paper develops a solution to this problem
through the transport equation approach.

To provide some concrete examples, we mention the to-
pics of magnetoresistance and magnetic thermopower. In
general, simple metals can be classified into two
categories, with or without open orbits on the electron
Fermi surface. For a simple metal with no open orbits on
the Fermi surface, semiclassical theory predicts that the
magnetoresistance should saturate in the, high magnetic
field limit. However, experimental measurements give a
quite different picture. Even for simple metals such as K
and Al, whose Fermi surfaces are believed to be well
known, linear magnetoresistance has been observed
without obvious saturation. So far, no one has been
able to unify experimental results in a more quantitative
manner because the data from different experiments de-
pend also on sample purity, annealing history, or even
how the resistivity was measured.

Recently Mahan proposed that the increase in resistivi-
ty with field is caused by the anisotropy in the energy and
scattering introduced by the field. This anisotropy, when
introduced into the transport equation, caused symmetry
breaking between the forward and backward scattering of
the particles. This, in turn, introduces into the resistivity
a dependence upon both particle lifetimes: the transport
lifetime ~„and the time between scatterings r. Mahan's
calculation only applied to the longitudinal magnetoresis-
tance. The present calculation extends the theory to the
transverse magnetoresistance, which is mathematically
more complicated.

As for the magnetic thermopower, it has long been sug-
gested that the discrepancy between experiments and
semiclassical calculation can be eliminated by introduc-

ing the correction factor of electron-phonon mass
enhancement. This was first shown by Opsal et al. using
a phenomenological derivation employing the quasiparti-
cle approximation. Hansch and Mahan confirmed this re-
sult by solving the transport equation in the high-field
limit. Here we solve this problem in the entire range of
magnetic field. We found the phonon enhancement
should be present for arbitrary magnetic fields. It has
also been controversial as to whether this factor should
exist in every component of the thermoelectric tensor (i.e.,
the Nernst-Ottingshausen coefficient) or not. ' The
answer from our result is positive and agrees with the ex-
periments. "

Recently, it has been proposed that the conventional
Kubo-type formula for thermal response is invalid if a
magnetic field is present. ' Jonson and Girvin showed ex-
plicitly that some assumptions used in deriving this for-
mula were incorrect for systems in magnetic fields. It is
then necessary to examine the general conclusions derived
from the Kubo formula, one of which is the Onsager rela-
tion. '3 Our transport equation for thermal response did
not use this assumption. We found terms in the equation
which violate the Onsager reciprocal relation. However,
this effect is negligible in the bulk properties of simple
metals, as is shown in the solution scheme developed in
this paper.

In this paper we develop a solution to the transport
equation in a transverse magnetic field by using the quan-
tum transport theory of Kadanoff and Baym' (referred to
hereafter as KB). A general method of deriving a trans-
port equation in the presence of external fields was
developed by Mahan and Hansch. ' Mahan also calculat-
ed some general properties of the electron Green's func-
tion in a magnetic field. ' These theories provide the im-
portant background for solving this problem.

This paper is organized as follows: Section I gives the
definitions of transport coefficients, the distribution func-
tion, and the transport equation. Section II solves for the
dc electrical conductivity. Section III discusses the linear
transverse magnetoresistance in some simple metals. Sec-
tion IV derives the thermal transport coefficients and the
electron-phonon mass-enhancement factor in the adiabatic
therm opower.

30 5611 1984 The American Physical Society



5612 J.-W. WU AND G. D. MAHAN 30

J;=QLj Xj,
J

where L,j is a tensor defined as the transport coefficient
which describes the linear response of current J; to the
external force Xj. For a uniform system, in the presence
of electric field E and temperature gradient, the particle
current J and heat current J~ can be written as

J=pr. "eE+L12 Vp, (1.2a)

A. Definition of transport coefficients.

It is well known that the existence of external fields will
induce currents in the system. In linear response, one can
write

response is no longer true when a magnetic field is present
in the system. ' The correction terms they proposed
violate the above relation. Our transport equation also
gives terms of this nature. But the effect is negligible for
the simple metal systems in our consideration, as is shown
in Sec. IV.

g '(X„X', ) = —.($(X,)y'(X; )),
l

(1.7a)

B. Quantum transport equation

We choose the unit for Pi= 1 and use the notation in
KB. For fermion particles, the Green's functions are de-
fined by'4

J~ ——L 'eE+L .VP, (1.2b)
g'(X„X', )= ——.(g'(X', )g(X )),

1
(1.7b)

J, =eJ=cr E~- (1.3)

Jg ———K VT~ (1.4)

Thus

where p= 1/ks T with kjt the Boltzmann constant and T
the temperature. The electrical conductivity tensor o. and

thermal conductivity tensor K are defined by

g'(X1,X1)= —.( Tg(X1 )Q (X'1 ) ),
l

(1.7c)

where the notation is X =( r, t) and T is the time-ordering
operator. Only two Green's functions are independent,
and the third one can always be determined in terms of
the other two.

According to KB, the Green's functions G(X1,X1) and
self-energies X(X1,X1 ) are expressed by the following rel-
ative and center-of-mass coordinates:

e2pI 11

p2) I 22 L 21.
(I 11)—I,L 12

)

(1.5) x =(r, t) =X1—X'1,

X=(R,T) = —,(X1+X'1),
Expressions for L'j are to be derived from quantum
theory.

Semiclassical theory gives L' =L ' which has been
known as the Onsager reciprocal relation. This relation

can also be derived from the Kubo expressions for L'
and L '. ' However, Jonson and Girvin pointed out the
assumption used to derive the Kubo formula for thermal

I

so that

f(X1,X1 ) =f(X+ —,x,X——,
' x ) f(x,X)

=f(r, t;R, T) . (1.9)

One can define Green's functions and self-energies with
respect to the energy co, momentum p, position R, and T:

g~(p, ctj;R, T)

g ~(p, to;R, T)

g ~(r, t;R, T),
d j f dte 'P +'~x'

g ~(r, t;R, T),
(1.10)

g"(p, ttj;R, T)=f d r f dte '"''+'"'g'(r, t;R, T),

X~(p,co;R, T)

X~(p, ttj;R, T)

X ~(r, t;R, T),f d3r f dt e
—i 1

~ r +imt)&
X~(r, t;R, T),

(1.12)

X"(p,uj;R, T)= J d r f dte ' ''+' 'X"(r, t;R, T) . (1.13)

The distrtbution function in quantum theory is defined as

g + ( p, ttj; R, T) in Eq. (1.10) which is the Fourier

transform of i g ~ ( r, t;R, T) —with respect to the relative

coordinates (r, t). It can be verified that the particle
current and heat current are given by

J(R, T)=2 f
X 3v p m;R, Tg p co,'R,. T

(21r)

(1.14)
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J()(R,T)=Z J (m —p)2'

d3
X v p, m RT g p'coR. , 7

(2n. )'

In the following sections, we assume the magnetic field
lies in the z direction which has a twofold or higher sym-
metry. The electric field or temperature gradient lies in
the x direction. Therefore only L~, L„~, Lz„, and L~~
must be considered, and we can assume L~=L~~ and
I.~„=—I.„~ throughout.

where v is the velocity of electron, p is the chemical po-
tential, and the factors of 2 account for the spin degenera-
cy of an electron.

The relation between the three Green's functions are ex-
pressed by the following identities:

ct ( p, co;R, T)—= —2Img"(p, co;R,T) =g +g

I 0(p, co;R,T)= —21mX"(p, co;R, T)=X +X

(1.16)

g~(p, co;R,T)=G~+g P,
.eE+g it( VP, (1.18)

where G—:g
~

- - -and gi, and g&&aretheE=O, VP=O
linear-response coefficients to the electric field and tem-
perature gradient, respectively. Therefore the transport
tensors are

ii 2 j d& J p3L =— 3vg]e ~2~ (2~)'
(1.19a)

where Im denotes "imaginary part. " To solve

g ~
( p, co; R, T) and G "(p, co;R, T), some approximation

must be made beforehand. In the rest of our discussion,
we use the slow-external-disturbance approximation of
KB, which has been proved to be quite successful for solv-
ing constant and uniform external field problems. '5

In calculating the linear response, we make an expan-
sion of the distribution function

II. LINEAR RESPONSE TO dc ELECTRIC FIELDS

H(r, t, p)= p ——A(r, t)
2ptl

(2.1)

where the vector potential includes the presence' of con-
stant and uniform electromagnetic fields. We have

A(r, t)= cEt+ ,'BX—r . — (2.2)

Notice e is the electric charge of the particle which is neg-
ative for an electron. This is also implied in the electron's
cyclotron frequency co, =e8/mc. We ignored the cou-
pling of electron spins to the magnetic field, because this
will not affect the transport property.

The retarded Green's function satisfies the equation9

2 2
1

8m g "(Q,co)eE +8~ V'
c)co

The calculation of linear response to electric field gives
expressions for L" and L '. To solve for the distribution
function g ~, the usual technique is to first solve g". The
result is then used to eliminate g~ by Eq. (1.16), so g ~

can eventually be solved. We include a uniform trans-
verse magnetic field throughout the discussion.

The electron Hamiltonian is
2

3
Lzi 2

y
dco( )y dp

P

3Ii2 2J dco I dp
(2~)

(1.19b)

(1.19c)

=1+2'(Q, co)g'(Q, co), (2.3)

g'= G'+eEg» (2.4)

where Q=p+eET —e/(2c)BXR is the renormalized
wave vector. This equation has the solution, to terms
linear in E, '

L22=2 m —p P vg1p
(2m )' (1.19d) with

( —1)"e L„(2b,)G'=2
,=o co —e, —(n+ —,

'
)co, —X'

(2.5)

gi= Qy y ( —1)"e L„(2b.) L„(2b.)+2L„',(2b, )+
[co—&, —(n+ 2 )co, —X'] co(: co —e, (n+ 2 )co—,—X' (2.6)

where ~—:Qi/mco, :—(Q~+Q» )/mco, and L„are Laguerre polynomials. In the following discussion, we use the nota-
tion defined in Eq. (2.4) in the expansion for all Green's functions and self-energies. G and &0 are Green's functions and
self-en«gy in the absence of electric field and temperature gradient.

The transport equation for g & is
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Q a eBeE 7-+eE.
m aco mc

.QX V g &
X&g

&
X&g &+eE.

Q

aR,g"
V -X&— V' Reg"

aco o co

aReX"
V & ag&

R X„
a co ~ aco

Without electric fields, we have

+ .(V-X'X V-Reg" —V'-g& X V'-ReX") .
Q Q Q Q

(2.7)

a

which reduces to

Xp G —XOG =0

aReG" aXD

ag„ag„
aXO aReG" aReXO aG aG aReXo

ag„ag, ag„ag, + ag„aQ (2.8)

(2.9)

if the system has, a twofold symmetry in z direction. The solution of Eq. (2.9) has the same symbolic form as the solu-
tion in the absence of magnetic field, although 3 = —2 ImG" and I o ———2 ImXO depend on the magnetic field through
Eq. (2.5). We have

G &(Q,co) =n (co)A(Q, co),

G &(Q,co) = [1 n(co)]A—(Q,co),

Xo (Q,co) =—n (co)l 0(g,co),

Xo (Q, co) = [1 n(co)—]I'0(Q,co),

where n (co) = Iexp[p(co —p)]+1I ' is the Fermion occupation number.
To the first order in electric field, every variable in Eq. (2.7) can be expanded by

=6+eEg

All zeroth-order quantities canceled in Eq. (2.7) so that the first-order terms satisfy

Q aG& a a
a

+ Q. ag
—Q ag

(2.10)

(2.11)

0gi +Xi G —Xog

QReG' ~&o
+

aco ag»

aXo aReG"
aco a Q»

aReXO aG& aG& aReX,'

aco ag„aco aQ„
+

aReG~ aXi aRegi aXo

ag„ag, -+ ag„ag„
aReG'

ag„ag,
ar, aRegi

ag„ag,

Bgj( BRIO
ag„ag„

I

BReX~ gG& BRIO Bg& aG& aReXi
ag„ag„+ ag„ag, ag„agy

The calculations for the longitudinal and transverse magnetic field differ at this point. For BiiE the retarded function
have no linear term in E. They do for BIE, because of the Hall field, which increases the complexity of the calculation.
We can reformulate some terms by using Eqs. (1.16), (1.17), and (2.10),

Xo gp +X~ G —Xo g] —X] G =rog, +nor, —nr~, —Wr, (2.13)
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BReG" BXo

aco BQ

cIXp BReg" cIReXp ag & BReXo ag &

a~ ag„ag„a~ a~ ag„
r

aro aReg" ar. BReg
BQ Bco Bco BQ

acTo BA BA acro

Bco a Q» aco a Q»
+ Bn BReG" acro

Bco ag BQ
(2.14)

where we started to use the notation o —=ReX". Since all zeroth-order quantities are invariant with respect to rotations
around the z axis, they depend on Q only through Qz and Q, . Thus

afo
BQ„

Q. Bfo
pl 86'y

(2.15)

with ez=gq/2m. Equation (2.12) can be rewritten as

g. aA a~,—n 1—
m Be& Bco

BA ao'o aro BReg" aro BReg"
+ 1+ +

aco BEj BEg Bco aco BEy

an Q.
A 1+

Bo'p

aco m aey

BReg' o—I p +coq 1+BEg' Beg

a a (
Q ag

—
Qy ag gP

=I (g) +nAI ) —nI (p) —AX)
r

aR.eg" a a, aro
'

a a „BA '
a a

a~, Q" ag, Q' ag„ ' +"
a~, Q" ag, Q' ag„ 'g' "

ae, Q" ag, Q" ag„

(2.16)

This is an integral equation for g P (Q,co) since XP, r&, and cr& are integrals of g(. Generally, g P has the following
OITIl:

gP (Q co)=g S (Qi Q. co)+Qys, (gi Q. co»

which satisfies

a a
Q„g —

Qy g gP = —Qys„+Q»Sy .

From Eq. (2.17), we note that Xp, r~, and cr~ must be of the form

&i=&I +&iy

(2.17)

(2.18)

(2.19)

which means X&;/Q; depends only on Q„, Q„and co, and therefore commutes with the operator Q„B/BQ„—Q„a/BQ„.
The operator Q„B/BQ„—Q„B/BQ, can be eliminated in Eq. (2.16):

Q. aA a~o aA a~o aro BReg'—n 1 — + 1+ +
m BEg aco Bco aeg BE Bco

aro BReG"
Bco 8Eg

r

an Q 1+ Boo
Bco I BE'y

r

BReG" ac7o—r, +~, 1+ ( —gs+gs)

=I,(g„S„+g„S„)+nA (I,„+I, ) —nrpa —A(X „+X/ )

BReG" Xiy Xi aro
Q. g' —Qyg +na Q» g

0.
~& a~„

"a. Q- g g» g
(2.20)

We can group together terms with a factor of Q„or Q„ to reduce Eq. (2.20) into a couple of equations which are invari-
ant under rotations around the z axis. We have
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ao'o &i&I.P„—~, 1+ S„=A
EJ x

BReG' &&y BA o&y 3A Reg"—nA —co, +coen coeng„ ' a~, g, ' a~, g,
' a~, g,

an .
~ a~o

1+
m BN Bcg

aReG"
0

BE'g

n ()A ~oo gA ~oo ~I o ()ReG'+ 1+ +
m a~, a~ a~ a~, a~, a~

ar, aReG'
aco aE j

(2.2 la)

asap ~ly I ly .aReG" &P aA o1 a I
co, 1+ S„+IpS» ——A nA— +co, cu, n — -+nI p

Q, Q,
' a Q

' a g. Q,

S„and S» can be superficially solved as

(2.21b)

BO'p
Io+~. 1+

2

Io an BOQ
A 1+

m aN aug

BReG'' a,

aA aoo aA aoo aI 0 aReG" aI 0 aReG"
n 1 — + 1+ +

m a~, a~ a~ a~i a~, a~ a~ a6,

a&
+co I pn

Qy

Reg ) ()A o ]y ~op+ n I p
—6) 1+

y &x Qy &x
)

Qx

r

a~o ~I» ~lx a~o
nA c—p, 1+ +I p +co, A 1+

y Qx

BReG' ~1yI Q
aug Qy

o BReGa~
aug aEjg' (2.22a)

2 2I 0+toe 1+

r

~c Bn a0'p

2 A 1+
m Bc@ BEg

~ BReG"
0

B6'g

COc+ aA aoo aA aoo al 0 aReG" al 0 aReG"
n + 1+ +

a~, a~ a~ a~, a~, a~ a~ a~,

r

~OQ ~I 0 Reg $+n I p +co, 1+
y aEz aE&Qy'

aA
coen

BO'p (7 )y
co& 1+ +I p

aop I i„ I iy aco aReG"
+nA co, 1+ —I o + I pA+co, 1+

x y aEj a&g y

r

BOQ
age A 1+

BE'g

aReG'—Ip
a~, g„

(2.22b)

The transport coefficients are expressed in terms of S„and S»,
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2 co x

P 2m. (2~)3 m

d3

d3

d3
L '= f (co —p)f,Qq&„(Q~,Q„~),I 2n. (2m) 3

d3f (~—v)f,Qi~, (Qi, Q„~) .I 2m (2~)3

(2.23)

Some quantities in (2.28) should be examined closely. Defining P„=co—op —e, (n+——,)co„Eqs. (2.S) and (2.6) can be
written

( —1)"e L„(26)G'=2
y„+i.r, /2

—2' g ( —1)"e
c „=p

By definition,

L„(2b,)

((t„+iI p/2) co

L„(25)+2L„',(2A )

p„+i.r, /2

(2.24)

(2.25)

~ =2 g ( —I)".-'L„(2~),
n=p p„'+ r,'/4 ' (2.26)

ReG"=2 g ( —1)"e- L„(2g) y'„+r', /4
' (2.27)

=2 g ( —1)"e ~L„(25)
n p =(p'„+rp/4)'

BI p p2
BO.p—2I pg„ 1—
Bco

(2.28)

BR G" 00

= —2 g ( —1)"e L„(25)
(p'. +r'./4)'

BOp1—
Bco

2
~p Q„I p BI p

Bco
(2.29)

L„(2S) Br, , r',

,
(P„+I p/4)' Be~ 4

—2rpy, — [L„(2b,) +2L„,(2A ) ]
Be p„+r~&/4 co

(2.30)

BReG' ~ L„(24)Il

n =p (p, + rp/4)'

2 2
B~p y„rp Br,

$2
4 Beg 2 ()e~

[L„(24)+2L„' ((25)]
P„+1p/4 ~,

where we have used the relations

(2.31)

L„(x)= —L„ i (x),
dx (2.32)

COc
(2.33)

in taking derivatives.
We write explicitly,
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c) A c)cro c)A c)o'0
+ 1+ +

Bej c)co c}co Beg

Boo= —2 1—

c)10 c}ReG" c)10 BReG"
c)Eg 'c)co c)co dey

g ( —1)"e L„(26) z z + 2 2 [L„(2b,)+2L„~(2b)]
(y'„+r,'/4)' y'„+r,'/4 ~,

c)I 0 00

+2 g(
Bco ~ o

—I 4—1)"e L„(26) 2 2 + [L„(26)+2L„' ~ (2b )] 2 2, (2.34)
(y'„+r', /4)' y„'+r', /4

Reg ~
—— 2g ( —1}"e ~ L„(2b) ~ q 2 + [L„(2b,)+2L„((2b,)]

mco „0 (y„+I o/4) co y„+I o/4
(2.35)

a) —— 2 g ( —1)"e ~ L„(2b,) 2 2 + [L„(2b)+2L„)(2b)]
m~, „, " (y2+ r'/4)' y'„+r,'/4

These three equations can be reformulated by using the identity of Laguerre polynomial

L„(x)=L„'(x)—L„' ) (x} .
We define two auxiliary functions

00 r,
U~(co) =2 g ( —1)"e L„'(2b, ) 2 2.=0 0'. + I o/4

(2.36)

(2.37)

(2.38}

U2(co) =2 g ( —1)"e L„'(2b, ).=0
" y'„+ro/4

'

so that Eqs. (2.34)—(2.36) become

c) A c)cro c)A c)CTO c}10 c}ReG"+ 1+ +
c)ey c)co c)co c}eg c}e~ c)co

c)10 c)ReG"

8co BEg

(2.39)

auo1—
86)

2 a
[U&(co)—Uo(co —co0 ) l — [U] (co)+ U~(co —co, )]

62~ c)co

C)I 0+ [U2(co) —U2(co —co, )]-
c

a
[U2(co)+ U2(co —co, )], (2.40)

Reg) =—Qy 2 c}
[ U2(co) U2(co co0 ) ] [ U2(co) + U2(co co,)]-

m~c COc BQ)
(2.41)

a~ ——— 2
[U((co)—U)(co —co, )l — [U)(co}+Ut(co —co, )]

BN
(2.42)

where the co dependence in U refers only to the explicit co

in P„. A11 three equations above vanish without magnetic
field. This can also be seen from the zero magnetic field
solution

(2.43)g =
CO —6'g —X

to Eq. (2.3). When
I

co~
I

is "small, "Eqs. (2.40)—(2.42) are
O(co2). The question is by what scale

~
co,

~

could be
small, which we answer below.

Consider a system of electron gas in a metal. For mag-
netic fields in experimentally interesting ranges the elec-
tron cyclotron frequency co, is much smaller than the
electron Fermi energy EF. The ratio

~
co,

~
/EF is less

than 10; we make this an expansion parameter in the
solution to Eq. (2.22). The rest of this section derives the
lowest-order solution of Eq. (2.22), while Sec. III takes
into account the effect of next-higher-order terms. Obvi-

I

ously the lowest-order solution is different from the solu-

tion at zero magnetic field. Because of the existence of
another energy quantity I o, we cannot simply set co, =0

Eq (2- 2} smce
I

coe
I

ss certainly not small compared
to ro.

To see how an expansion in co, /EF is possible, we no-
tice that all inhomogeneous terms in Eq. (2.22) such as
A, ReG' are infinite series summing over Landau levels,
which appear quite different from the corresponding
terms in zero magnetic field. However, the transport
coefficients in Eqs. (2,23) depend only on their inte-
grations over fd Q/[( m2) ]Q~ or fd Q'/[(2m)]V&&.
These integrals are related to the corresponding integrals
at zero magnetic field in a way described below.

By interchanging the order of summation over Landau
levels and wave-vector integration, we write a typical in-
tegral as
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d Q1(ra, ) g f &
——g f(nrr, )rr,„o (2~)' .=o

(2.44)

where we have omitted the co and, in some cases, Q depen-
dence in I, to make the notations simple. It is certainly
reasonable to expect that the integral of the zero magnetic
field quantity corresponds to

I(co, =0}= lim I(co, )=f dx f(x) . (2.45)
cg ~0

C

(2.44). In elastic scattering,

I'p(Q, co,co, )= 3 Vggd(Q', co, co, )
(2~)

d QI ()(Q,co, co, =0)= Vgg 3 (Q ', co, co, =0),
(2m )

from Eq. (2.43),

(2.51)

(2.52)

" [1+(—1)']
(k+1)! 2

k+1
o) f(k)(0)

, (k+1)! 2

g f'"'(nco, )
n=0

(2.46)

Apart from the oscillation term which has null average ef-
fect, ' the summation in (2.44) and integral in (2.45) are
related by the Euler-MacLaurin formula:

(n+1/2' ) 0
X X X X X X

n=o C

00 c=co, g f (nco, )— f(0)
n=0

r,
A (Q, co, co, =0}=

(co —eg —crp) + I ()/4

Equation (2.48) means

(2.53)

d 3Q 2 ( —1)"e 4L„(2b,')1 pf (2 )3
gg' (F2+I-&/4)2

3 I Io

(2.54)

d Q
3 ~ag(2n. ) (co —eg (Tp—)' +I p/4

Q' 2 e I p co(.
+ & (2 )3

gg' ~2+1 z/4 +

where the second term on the right side is of the order of
co, /EF comparing to the first, so that

In metals, I(co, ) varies considerably with respect to co

only on a scale of Ez. This means
I p(g, co, co, ) =I p(g, co, co, =0)+O(co, /Ep), (2.55)

and

(k) ~ (k —1)

n=0 + n=0

2

(2.47)
as is the meaning of Eq. (2.50).

We point out that the terms in Eqs. (2.34)—(2.36) are
negligible to the transport equation (2.22) because the con-
tributions are of (co, /EF) higher than the lowest-order
terms. This is because

f(0)- g f (nco, ), (2.49)

co, g f(nco, )=f dx f(x)+ f(0)+0
0 2

(2.48}
It was shown' that only the first no —

~
EF/co,

~

terms
are important in the summation of (2A4); the terms with
n &no diminish rapidly with increasing n This gives. a
rough scale on f(0)

Ui(co)+ Ui(co —co, ) =A(Q, co,co, ),
Uq(co)+ U2(co —co, )=ReG",

so that the integrals

Vgg U (Q', co,co, ) = —,I p+O(co, /Ez),
(2n. )3

3 Vgg' U2( Q ', co,co ) = 2 crp+ 0 ( co /Ef )
(2m )3

(2.56)

(2.57)

(2.58)

(2.59)

and thus

I(co, ) =I(co, =0)+O (2.50)
I p(co)+[I p(co —co, )]

are slowly varying with respect to m. Thus
r

2 8[I p(co) rp(co co )]
COc (}co

from Eq. (2.48).
As an illustration of what is meant in the above argu-

ment, we integrate the spectral function A(Q, co, co, ) byfd Q'/[(2n ) ]Vgg to get the electron self-energy
I 0———21m&o, which is a slowly-varying quantity with
respect to co (Ref. 13) as we assumed for I(co, ) in Eq.

l

2

(2.60)
2B I()

Q)6 c
Bco

COc

As a next simplification, in Eq. (2.22) we ignore the Q
dependence 'of I o and crp so that Bl p/BE') and Bo'p/BE'j are
.dropped out; this is usually done in the calculation of met-
als. After all these considerations, we obtain

r,
S~ I 0+~ m

~'

&
BReG'

& & 2 BReG

r

~ ly BA ly ~lx
COc +COcn I 0 Q)c'Q, ' a" Q, 'Q.

BReG'—tgI 3 + ~ ~ I 0
Q (}&j. Q)

(2.61a)
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1 coc Bn
& r BReG"

m Bco Be~

'I

BReG' 2 BReG" &&yIp +~,n~ + Ip~+
Q

'
Q.

'
B&i Qy

rly BA ~l» ~lx—nroA —co, n co, + I 0
y

'
Be&

'
y Q„

(2.61b)

We reemphasize that the simplification from Eqs. (2.22)
to Eqs. (2.61) are based on ignoring terms of the relative
size O(co, /EF) . This is certainly a good approximation
for electrons in metals where the electron density is high.
In fact, this approximation also indicates the range of va-
lidity of the Kubo formula, depending on whether the dia-
thermal current term' is negligible or not. We will return
to this point in Sec. IV.

In Eqs. (2.61), variables labeled by x are integrals of S~
and those by y are integrals of S». All these are assumed
to vary slowly with respect to Q. This assumption is con-
sistent with the solution we find. Since

XP(Q,co)=f, &q
(2m. )

y I [1+n~(co, )]g((Q+ q, co+ coq )

+np(coq)gP (Q+ q, co —coq) I, (2.65)

d3
&P(Q, co) = f Vq tnt(coq)g P (Q+ q, co+coq)

(2m )'

+ [1+na(~q)lg PQ+ q, ~ —~q) j,

BReG"

BEg

2
[ Ui(co) —Ui (co —co, )],

2
[U2 (~ ) U2 (~ coc )]

roc

(2.62)

(2.63)

(2.66)

I ) ——X) +X&~

d3
3 V& g& + q, co+co& —

Q& + q, co —co&

2

all terms with factors of BA/Be& or BReG'/Be~ can be ig-
nored because their contributions are at least an order of
co, /ZF higher than the 2 terms. Thus,

Bn r, r,, r,„+coc —n
Bco m '

Q» Q»

+0
f

co' ri(Q, co')
o )(Q,co) =P

2K N —CO

where we used the identity

g) +g& ——ar O((co, /EF) )——

(2.67)

(2.68)

(2.69)

+r, —n

A coc Bn &iy riy
Sy —— +I p

. I 0+coq m Bco Qy Qy

(2.64a) from Eq. (1.16).
Although Eqs. (2.65)—(2.68) are written in the form of

an electron-phonon interaction, they can be used for other
types of interaction as well. For instance, we should set
the phonon occupation number n~ ——0 for impurity
scattering and coq =0 if the scattering is elastic.

Define

The expressions for I &, cr~, and Xt ' are'

(2.64b) S;=

We can write

Bn

Bco
f;(Q,co), i =x,y . (2.70)

Q;

I );n(co)—
Q;

Bn d'q ) Q (Q+q)f,y', I [ng(coq)+n (co+coq)]f;(Q+ q, co+coq)
(2m)' ' Q'

+[1+n~(coq) n(co coq)]f (Q—+q co coq) j— (2.71)

where we have used the identity

d'q 2 Qc+a d'q-2 Q (Q+ q)
(2~)' ' Q; (2~)' ' Q'

(2.72)

for isotropic integrands. Eliminating the factor of 1/m( Bn/Bco), E—qs. (2.64) become
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I'o+I'0, V, , ( [ng(coq)+n (co+coq)]f, (Q+ q, co+co, }
A d 9 gQ (Q+q)

~o+~c (2n ) Q~

+[1+n~(coq) n(co coq)]f (Q+q co coq) J

+ co,
&

Vq z j[n~(coq)+n(co+coq)]f~(Q+q, co+coq)
d'q zQ (Q+q)

(2m. ) Q

+ [1+ns(coq) n—(co —coq)]fy(Q+ q, co —coq)] (2.73a)

fy =
~ ~

—co —co Vq q [[ng(coq)+n(co+coq)]f (Q+q, co+coq)
A d q zQ (Q+q)

I~0+ co,
'

(2m-)' Q~

+ [1+n&(coq) —n (co —coq)]f„(Q+q, co —
coq) J

+ I 0 Vq j[(ng(coq)+ns(co+coq))fy(Q+q co+coq)
~ Q.(Q+ q)

(2m. )' Q

+ [1+n~(coq) n(co —coq)]—fy(Q+q, co coq)]— (2.73b)

because of the factors —(cin /cico ) in 5; and A (Q, co ) in f; which are sharply peaked at co =p =E~ and
Q~/2m =Qp/2m =co—oo, respectively, we only care for the value of f~ near these regions. Therefore we take
I 0= I 0{QF Ep ) as a constant, and define

6'g ~CO ) EsCO =Eg. 6) (2.74)

For spherical Fermi surfaces, the integral can be done by

g&g=dsg ~
. 2mQF 00 de 2m'

3~ o 2~ ' 3~

where QF ——muz ——[2m (co ciao)]'~ . The—wave-vector integral in Eqs. (2.73) can be approximated by

(2.75)

q +z
. + q q z

~
q g+

(2~)' ' g' (2~)'V, ' 2g,'

for Q, ~
Q+ q ~

—gz, and 1 —q /2Q~ is the cosine of the scattering angle between Q and Q+ q.
Finally, we make use of two McMillan functions, '

2

a F(u)= J V 5(co —u),
(2n ) VF.

2

a,+(u) =J q Vq5(coq —u)
(2m) V~ 2AF

so Eqs. (2.73) can be transformed into two coupled integral equations for F;(co), with i =x,y,
r

F„= z z
I"0+f du[a F(u) —a Q{u)][[nz(u)+n(co+u)][I OF„(co+u)+co,F~(co+u)]I 0+et)

(2.76)

(2.77)

(2.78)

+ [1+n~(u) n(co u)][1—OF„(co u—)+co,Fy(co u—)j—(2.79a)

F~ =
z z

—co, +f du[a F(u) —a&(u)]t [nz(u)+n (co+u)]( co,F„+I+~—)(co+u}
~O+ @a

+ [1+n&(u) —n (co —u)]( co,F„+I oF~)(co —u)—[ (2.79b)
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These two equations can be solved numerically for electri-
cal conductivity. At co, =0, (2.79a) reduces to Holstein's
equation' for dc conductivity, which has been used in

'

quite a number of calculations.
The simplest example is the case of elastic scattering,

where we can gain more insight into the problem. The
lifetime ~p and the transport lifetime ~„are defined by

—=r = v'1 d q
&p (2n) VF

(2n) V~ 2Qp

(2.80)

(2.81)

I„
Fx=

~c+I tr

+tr
2. 2

1+6)contr
(2.83a)

2—Cg)c —Nc Vtr
FX 2 2 22toe+ I tr 1+coc&tr

(2.83b)

Setting coq =0 and n~ ——0, Eqs. (2.79) reduce to a couple
of algebraic equations for F„and F~:

F„= 2 2 [I +(I p
—I „)(IpF„+co,Fy )], (2.82a)

1

I +
Fy= 2 2 [—pi, +(I p —I t, )( piF„+—I+y)] .1

I o+coc

(2.82b)

This 2 X2 matrix equation has the solution of

field. ' ' This gives a gauge on the validity of possible
theoretical explanations to the linear magnetoresistance.

This section proposes an explanation to the linear trans-
verse magnetoresistance of simple metals. This is based
on taking into account of the anisotropic effect caused
by the magnetic field. Phenomenologically, the linear in-
crease is expressed by a Kohler slope S defined as

hp/p=s
I
co,~„I, (3.1)

e-~rp
2 (co —e, —op) +I p/4

(3.2)

where rt, is the transport lifetime. In typical experimental
situations,

I
co, w,„l &100 can be reached so the linear ef-

fect would be very obvious if values of S can be as large
as 10 —10 . To explain this effect, the theory should
be able to give the values of S in that range.

The existence of a magnetic field indicates a special
direction in a three-dimensional space, so anisotropic ef-
fects should exist in the transport equation. However, this
effect is of the order of magnitude of co, /EF. It was ig-
nored in Sec. II, where the summation of Landau levels
was replaced with energy integrals. To include the aniso-
tropic terms, we use the next high-order approximation in
Eq. (2.48), where the second term on the right is anisotro-
pic. As a result, the spectral function in Eq. (2.26) is
equivalent to its zero magnetic field form in Eq. (2.53)
plus a correction term

np ——

3K

the conductivity components are
2n pe wtr

2 2 7

1+cocg tr

2 . 2
n pe doc'Ttr

2 2''
m 1+coc wtr

If we identify the density of electrons to be

(2.84)

(2.85a)

(2.85b)

For co =EF and Q /2m =EF, this term has a bigger mag-
nitude along the z direction. For a qualitative discussion,
we suppose that this gives rise to an anisotropic dispersion
relation for E& in the spectral function

Eg ——Eg[1—Pz(Q.B)d], (3.3)

where P2 is the second-order I.egendre polynomial, and d
is a positive number with the order of magnitude of

I
~. I

/EF.
We assume the solution to transport equation is affect-

ed by

which is regarded as a simple solution to Boltzmann's
equation in semiclassical theory.

f;(Eg,pi)=f; (Eg,co)[1+b +b;Pz(Q B)],
F;(Q,co)=F; (ci))[1+b +b;P2(Q B)],

(3.4)

(3.5)

III. LINEAR MAGNETORESISTANCE
AND HALL COEFFICIENT

The semiclassical galvanomagnetic theory predicts the
transverse magnetoresistance should saturate at high mag-
netic field for simple metals with no open orbits on the
electron Fermi surface. However, experiments indicate
an obvious discrepancy from the theory. Quite a number
of metals exhibit linear-increasing magnetoresistance
without saturating at high field, a well-investigated ex-
ample being potassium. '" Generally, potassium is regard-
ed as one of the simplest metal systems for applying semi-
classical theory, because the electron Fermi surface is
measured to be spherical with less than 10 deviation
and the conduction electrons are believed to be nearly free.
It has also been reported that the Hall coefficient of po-
tassium has no significant dependence on the magnetic

and the components of conductivity are changed by

o~ =o. (1+C„),
0

o„y ——o„y(1+Cy ),
(3.6)

3

F, (1+b,' b, /5) . . — .
mQF

3
(3.7)

where C; is proportional to d and indicates linear depen-
dence in magnetic field.

In the case of a spherical Fermi surface, the integral in

Eq. (2.75) is

f d Q Q2f f dQQ4fp
(2m) P 2m~

X sin 8[1+b +b, Pz( gco)]s
dQ .. 2
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This gives

C;=b —b;/5 . (3.8) f 2m' 1 dP—2
(3.9)

The next step is to solve b; and b in terms of d.
From Eq. (3.3), the spectral function satisfies

In the case of elastic scattering, the following equations
can be derived from Eq. (2.64):

(1+b„'+b„P2)F„= 2 2 rp f 3 . Tgg'[1+b»+b»P2(g 'B)]f»(Eg'&
1 dp2—rp+~, (2~)3 sin8cos

+ Q)~ 3
', ~~ 1+b~ +b~P2 ~ ~ E ~ +~0

(2~)3 sin8 cos

(1+b'+b p )F = —~,f, . Tgg[, 1+b„'+b„p2(Q'.B)]f„(Eg,~)
1 —dp~ rp2+. ~ (2~) Q sln8 cos

f Tgg [1+by +byP2(Q B)]fy(Eg co) co, (3 10b)
(2~)3 sin8 cos

Some remar]cs should be given at this point. First, we still ignore the BA /Be& terms in Eqs. (2.61) because these terms
are isotropic and not interesting to this problem. Secondly, we did not include the anisotropic effect in other quantities
such as rp in writing Eqs. (3.10). It can be shown that this negligence would not change the answer because the solution
in (2.83) does not depend on I p.

The scattering probability T~~ is expanded by

Tgg ——g Ti(g')P(g Q').
I=O

and l )3 terms are neglected. The wave-vector integral is done as

f d Q'(2n) . Tgg [1+b +b;P2(Q'B)]f; (Eg.,co)
sin8 cos

mgF p Pi (cos8)
F; g Ti(QF) . d8'sin 8'Pi'(cos8')[1+b +b;P2(cos8')]=F; (1+b —b;/5)(I —I „),

I

where we have used the identities

f dxPi (x)Pi (x) =5ii

dxP] x P) x P2 x

and

mgF
T1 =ro —rt3'

All these turn Eqs. (3.10) into two linear matrix equations

( 1+b' +b P2)( 1 —
dP2 )F = [rp(rp —I )( 1+b' —b /5)Fi +co (rp —I' )( 1+b' —b /5)Fp —I'p]

+~

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16a)

(1+by +byp2)(1 dP2)Fy 2 ~ [ a), (I p I t )(1+b» b»/5)F»+I'p(I p I t, )(1+by by/5)Fy a), ]12+ 2 (3.16b)

which have the solution of d ~o—lt.b'= ——
5 ~c+~tr

, +r„',
Fy F~

(3.19)

(3.17)
By substituting from Eqs. (2.83),

d ~o—~t.b„'= —— I „+
co + I

(3.18) d r~,'+2r,',—r,l.,',C =—
r„(~,'+r,', )

(3.20)
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d a)c +2Fpr« —F«
5 -,+r,',

In the high-field range
~
co,r„~ &&1,

~

o.„~ &&g„„,

d r, r,C„=— —
~
co,r„~

5 rt, EF

r„
Cy I

~ 'rt
5 EF

(3.21)

(3.22a)

(3.22b)

Oxx
Pxx-

Oxx +Oxy

yx
2

~xx +~xy

xy

~xy

(3.23a)

(3.23b)

We argue that Cx has a much larger magnitude than Cy
in the temperature range of a few kelvins. This is be-
cause, for metals, the electron lifetime wo can be two or
three orders of magnitude smaller than the electron trans-
port lifetime w„. As a numerical example, we again con-
sider the data of potassium. Most experiments on linear
magnetoresistances were carried at the helium tempera-
ture 4.2 K. A typical sample may have residual resistivity
ratio equal to p(293 K)/p(4. 2 K)=5000. By using the
standard data of p(293 K) =7.19X 10 0 m and

no 1.4X 10 ——/cm, ' the, transport lifetime can be es-

timated from

=3)&10 " sec .
noe p(4 2K). (3.24)

ro
2-k,

(3.25)

For very pure samples, TD ——0.3 K for potassium at the
temperature of 1.3 K. For a rough estimation, we can
assume I 0 has a temperature dependence of T . The
quantity I 0/EF has a value of 3&&10 at 4.2 K. This
agrees qualitatively with the experimentally measured
Kohler's slope for the transverse magnetoresistance of po-
tassium. More quantitative discussion is not significant
because both S and TD depend greatly on sample purity
and other external conditions. But we suspect the small

EF might be the reason why the linear rnagnetoresistance
is large in potassium. On summarizing Eqs. (2.85), (3.6),
(3.22), and (3.23), we conclude that the resistivity may ex-
hibit linear magnetoresistance of the form

p = (1+S
~
co,r„~ ),

f208 +tr
(3.26)

which gives an estimate on the Kohler slope S—I 0/EF in
qualitative agreement with experimental observations,
while the Hall coefficient

(3.27)

The Fermi energy of potassium is around 2 eV so the ra-
tio I „/EF is as small as 10 which essentially makes the
effect of C~ negligible. On the other hand, ,I'0 ——1/ro can
be determined from the measurement of the Dingle tem-
perature

IV. THERMAL CONDUCTIVITY
AND THERMOELECTRIC EFFECTS

In this section we give the solution to the transport
equation in a uniform temperature gradient field. We as-
sume the temperature gradient points along the x axis,
which is perpendicular to the magnetic field in the z
direction. As was mentioned before, we only have to con-

In semiclassical theory, both electric field and tempera-
ture gradient appear as the driving terms to Boltzmann
equation, so that the two effects can be treated in a simi-
lar fashion. In quantum theory, the situation is somehow
different because temperature is a macroscopic quantity
which cannot appear in the Hamiltonian as does the elec-
tric field. We related this difference to the diathermal
current effect proposed by Jonson and Girvin. '

The electric Hamiltonian is

H(r, t, p)= p — B)& r
1 e-

2m 2c

'2

(4.1)

which contains no terms relating to temperature. Quite
generally, the effect of local temperature dependence gives
the following functional form for every term in the trans-
port equation

f( p, ~;R, T) =f(Q, ro, P(R)), (4.2)

where Q= p —(e/2c)B&(R is the renormalized wave vec-
tor.

In the sense of linear response, the gradient expansion

shows no notable field dependence within the same range.
Both of these results are in accord with experimental re-
sults. Therefore, we regard this theory as an acceptable
explanation to this phenomenon.

The above results contain a parameter d, which we
have not succeeded in calculating from first principles.
Since it was introduced for describing the relative weight
of the lowest Landau level in the electron's spectral func-
tion, we expect that d is basically temperature-
independent. One way to check the correctness of our ex-
planation is to see the temperature dependence of the
magnetoresistance of simple metals. When the scattering
is phonon limited, ~«roughly has a temperature depen-
dence of T, which indicates a T dependence of the
magnetoresistance at a fixed magnetic field. This estima-
tion is too simple to apply quantitatively, but it does agree
qualitatively with the experiments on copper and gold " in
the temperature range of a few kelvins and up. For potas-
siurn, there exist accurate calculations on the temperature
dependence of phonon-limited resistivity ' which have

an excellent agreement with the experiments. ' Howev-
er, we are not aware of any detailed experimental data on
the temperature dependence of the magnetoresistance of
potassium. Under ideal conditions, we expect that the
magnetoresistance should be proportional to the ratio of
Dingle temperature and the electrical resistivity. This
would be a crucial test to our explanation based on the an-
isotropic effect.
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of KB can be written

V-=VP + BXV
R BP 2c

The equation for the retarded Green's function is
1

+ (BXV-)' g"(Q,~)
2m Sm

(4.3)

which can be solved as in Eq. (2.5):

( —1)"e-'L,„(2a)
x=p ~—6, —(n+ 2 )co, —X' (4.5)

=&+X"(Q,~)g "(Q,~), (4.4)
I

The transport equation is

, VP +,Q)( V g & X&g & X&g&
m Bp mC

+Vp aRg"V X- aX'V Rg BRX"V g.+Bg'V RX
ap e ap a

'
ap & ap e

+ ( V -X"X V -Reg"—V -g (
&( V -ReX') .

c Q Q Q Q
(4.6)

By expansions of the form

g& G(+g&( 8
(4.7)

we can derive an integral equation similar to Eq. (2.16):

Bn Q ~o'p

Bp m Bg„
BReG " ~o'p—1p +co, 1+

x d&l

8 8 (Q. ~g
—

Qy ~g g l'

=I pgl +nial'l —AXl —co, Q„—Q Xl —n Q„—Q crl . (4.8)
BReG' 8 8 ( BA B 8

This equation has fewer terms than Eq. (2.20) because g l
——0 and G is independent of p. By definition in Eq. (4.7), vari-

ables like gl should have been labeled by p since they are not the variables with the same notations in Sec. II.
Define

so that

=Q»S„(gi,g„co)+gySy (Ql. ,g„a)), (4.9)

r a~o p
X'. I l. meG" Xl',

pS» ci), 1+— Sy ——A nA ~c

p p Xly I ly BReG" Xlx BA ol»

y y ~e'l x &l x

After dropping the derivatives of self-energies, as was done in obtaining (2.52),

1 Bn ~o'p

m Bp 5e'l

BReG"
0' a,

(4.10a)

(4.10b)

r1—nr oA
Q

BReG" XPy I ly BA o ly+ co& 2 —I p
—nAco& +neo& 1 p

—co&
Cle'l y

(4.11a)

p 1 Bn ~
& r BReG'

cpm ' a~,
BReG' &i&—co, A —I p +a), nA

x x

O1y 01x2 BReG Xly ~ly BA+ 1 pA+co, —nl"pA co,n-
dEi y BEl

(4.11b)
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where

I2 f dCO

"c)n co —p dn

c)P P c)co
' (4.12)

If we write

it is easy to see

These two equations have a term-to-term correspondence
with the two equations in (2.61). The only difference is
dn /c}P in place of Bn / c} co. Since Bn

(co —EF) =
c)co 3P

(4.18)

SP= S;=—— f;,co —p 1 dn

P
' m c)P

(4.13)
L =f dCO L "(co)=L "(co=EF),

CO

(4.19)

where f; is defined in Eq. (2.70).
There is no need to solve (4.11). All four transport ten-

sors can be discussed using the solution in Sec. II. For
l =X,g,

which gives the definition of L "(co), we can see

m C)L "(co) m c)P(co)L =L
3p c)co ~=&F 3e2p3

P 2n' c)n df 3 Qif;(Q, co), (4.14)
and

(4.20)

12 21 & dt's
xl x1' 2Pm

8pl
(co EF)—

c)co
L22 L 11' -32' (4.21)

d
Xf,Qif;(Q, co),

(2~)
(4.15)

In Eq. (1.6), the thermal conductivity can be approximat-
ed by

f dco — f (co)=f dco
8CO BCO

X [f(EF)+f'(EF)(co EF)—
+ ,' f"(EF)(co EF) + . . —]—

=f(EF)+ 2I2f"(EF)

+O((kgT/EF) ), (4.17)

d3

(4.16)
Equation (4.15) is the Onsager relation which has been

well known in semiclassical theory. In quantum theory,
this relation is also implied in the Kubo expressions for
L' and L '. ' However, the Kubo formula for thermal
response were derived by Luttinger using some assump-
tions which are not valid if a magnetic field is present.
This was discovered by Jonson and Girvin' recently.
They derived some correction terms to L ' and L ' which
violate the Onsager relation. They suggested that this ef-
fect may be important to systems of two dimensional
semiconductors in extremely high fields, where the free
electron density is very small compared to usual metals.
By using the Euler-MacLaurin formula in Eq. (2.48), it is
easy to see their correction term is of the order of magni-
tude of 0((co, /EF) ). Our transport equation was de-
rived without using Luttinger s assumption, and we found
the Onsager relation is true only if the terms of the rela-
tive size 0((co, /EF) ) are negligible [under the approxi-
mation scheme introduced in deriving Eqs. (2.61)]. For
the systems of metals in our consideration, this is certain-
ly a good approximation within the entire range of mag-
netic fields.

Other relations between L'J are obtained by the follow-
ing approximation: '

K=ksp L +O(k~T/EF) ) . (4.22)

To that accuracy, the following relation holds:

m AT2 2

K= 0
3e

(4.23)

which is Wiedemann-Franz Law.
Another quantity which can be derived from the trans-

port coefficients is the thermoelectric power tensor. If
there exists no electric current in the metal, any tempera-
ture gradient has to be canceled away by an electric field.
By definition,

—E=S VT, (4.24)

S= — ( L "
) 'L ' = eke/3 p L '—

e
(4.25)

where p=o. ' is the resistivity tensor. Eliminating L '

by Eq. (4.20), we can write the components explicitly:

—e 12 12
(p~l-xx+pxyl-yx )

AT

21 el.OT ln(~2 +~y2y)
co =EF

e 12 12
2(p I-"+p-yl-yy)

AT

(4.26)

1 BOxy BOyy= —eLOT 2 2
o.

&
c

Oxx +~xy CO

(4.27)

where Lo nkz/3e is the Lo——rentz number.
Experiments are usually performed under the adiabatic

boundary condition. There is no heat flow along y direc-
tion, which is perpendicular to the electric field. This
means
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&y. r}T

Kyy Bx

o'y» d T
CT»» BX

&y» BTS —Sy

The adiabatic thermopower S is defined by

E»— Ey» oy„S= =S~—S»y ~ =S»» —S»y
» xx Oxx

(4.28)

(4.29)

(4.30)

Sg=(2.2+0.2)X10 'T V/K'. (4.35)

The Fermi surface of Al is well known. As an uncom-
pensated metal with no open orbits, the high-field off-
diagonal component of the conductivity tensor is

high magnetic field (to,~«) 10) so that Sd(8 —+ ao ) can be
well defined. Although Sd(8) varies from sample to sam-
ple, the quantity bSd =Sd(8~00) Sd—(8 =0) is approxi-
mately the same for all specimens.

From Eqs. (4.26) and (4.27),

S= eLpT ——, 1n(o.~+o„', )
Bco

~»y ~O»y+ 2 2
O'xx +xy

2
Oxy

2 2
Oxx +Oxy

Blno.xx

Bco
(4.31)

In high magnetic field limit co,r««1, a simplified ex-
pression,

r

(n, nt, —)ec 1
o»y(to) = +0B B2 (4.36)

2yT Blno (8)o (8 =0)
ESd —— +eLoT

~e Bco dip =Ep

(4.37)

where n, and nt, are densities of electrons and holes,
respectively.

From Eqs. (4.32) and (4.36), Averback and Wagner
developed an expression for (4.35),

Bln[o„y
fS=—eLor 2

Bco

Blno.

Bco
(4.32)

where y is the electron specific-heat constant. This ex-
pression can be calculated numerically from semiclassical
theory; they derived a numerical expression

is usually used.
Although Eq. (4.32) is of the same form as derived

from semiclassical theory, its meaning in quantum theory
is quite different. The importance of quantum effects can
be seen from the following discussion on the electron-
phonon mass enhancement effect.

The electron-phonon mass enhancement factor is de-
fined by'3

3o'p

BCO co=E+
(4.33)

S(8)=a (8)T+b (8)T (4.34)

According to this temperature dependence, the first term
is identified as the electron diffusion component Sd by the
Nordheim-Gorter rule. The observed a(B) saturates at

Calculations on this quantity have been done for quite a
number of metals. However, it is not always possible to
see this effect by comparing calculations to experimental
data or thermopower for several reasons. Firstly, the ex-
perimentally measured thermopower consists of two com-
ponents, one from electron diffusion and another from the
phonon drag effect; the latter is not related to the electron
mass enhancement. ' Secondly, the energy-dependent
conductivity may have significant dependence on the in-
trinsic properties of individual samples. Thirdly, theoreti-
cal calculations based on the detailed Fermi-surface
geometry have not been done for all metals so it is not al-
ways possible to make quantitative comparisons between
theory and experiments.

The ambiguities were resolved in the experiment by
Averback and %"agner. They measured both the tem-
perature and magnetic field dependences of the therrno-
power on a number of Al specimens. The data can be fit-
ted into an equation

ASd ——1.6X 10 V/K (4.38)

which is 30% smaller than the experimental value.
Opsal et al. first explained this discrepancy in terms of

the electron-phonon mass enhancement effect. They
used the momentum-dependent relaxation-time assump-
tion from semiclassical theory, and semiempirically ar-
gued that the electron velocity and relaxation time should
be appropriately normalized by the enhancement factor.
As a result, both the energy-dependent conductivity and
the specific-heat constant y should have a normalization
factor 1+A,. Equation (4.37) can be explained with the
value of 1+I,= 1.45, which agrees very well with previous
calculations as well as the experimental measurement
on the effective mass; the results all lie between 1.4 and
1.5. Since then, there have been many discussions on this
topic, but not all of them are consistent with the real situ-
ation. Most calculations were done under the quasiparti-
cle approximation and did not take into account the rnag-
netic field. ' ' There had been some ambiguity about

whether all components of L' should have the same
enhancement factor or not. Lyo predicted that there
should be an enhancement factor to the diagonal com-

ponents of L ', but not to the nondiagonal components. '

This conclusion does not agree with the later experiment

of Thaler et a/. ," where the components of L' were
measured directly. They observed a same enhancement
factor to the semiclassical expression '

L„'y ——
e kg%(Ey)

(4.39)
3eBT

A treatment from quantum theory was given by
Hinsch and Mahan; they solved the electrical conductivi-
ty in the high magnetic field limit and used Eq. (4.32) to
show the presence of the phonon-enhancement factor. In
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this work, we derived, for the first time, the thermal
transport equation, and solved it in the entire range of
magnetic fields. In our solution scheme, we rederived the
well-known relations between thermal transport and elec-

tric transport. L' can be solved directly in terms of the
results in Sec. II. The effect of mass enhancement can be
discussed as follows. For a magnetic field of arbitrary
magnitude, the spectral function is peaked at Eo ——co —oo,
which is different from the 5 function at E& ——co as is the
semiclassical result.

Under the approximation of (2.75), the only notable
difference from semiclassical theory is to substitute co —oo
for co, as is seen from Q~ ——[2m (co —oo)'~ ]. This means
using

in the derivation from (4.24) to (4.32). This effect is negli-
gible in electrical conductivity o. and thermoconductivity

K since o.o~&EF. Ho@&ever, in taking the energy deriva-
tives of (4.31) and (4.32), there should be a correction fac-
tor of

Bcrp
I+A, = I—

BCO co=EF

to the semiclassical results. This effect should exist not
only in the thermopower S, but also in all components of
L' . This explains the experimental result of Thaler
et al. "
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