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The development of the all-electron full-potential linearized augmented-plane-wave (FLAPW)
method for bulk solids is reported. As in the thin-film FLAPW approach, the bulk FLAPW
method solves the Kohn-Sham equations for a general charge density and potential. The formalism
of Weinert, Wimmer, and Freeman for determining highly accurate total energies of solids within
density-functional theory is implemented with all the necessary terms obtained from the FLAPW
energy-band calculation. The resulting total-energy FLAPW approach is used to obtain highly ac-
curate total-energy curves for bcc and fcc tungsten from which a number of structural properties
(lattice parameters, bulk moduli, etc.) are derived. Calculated total energies have a relative precision
of 0.1 mRy; a difference of 34 mRy is found between the (stable) bcc and fcc phases. The use of a
simple quadratic form near the equilibrium value of the atomic volume is shown to lead to relatively
large errors for the bulk modulus. Finally it is shown that in this all-electron method, all numerical
approximations are controlled in that their effects can be minimized. One can therefore conclude
that the FLAPW method is very well suited for testing the quality of various implementations of
density-functional theory.

I. INTRODUCTION

The advent and application of highly sophisticated ex-
perimental methods for determining the multitudinous,
and often exotic, properties of solids has brought a grow-
ing demand for detailed accurate theoretical information
with which to critically analyze and interpret this rapidly
growing body of information. As a result, considerable
attention has been paid in recent years to quantum-
mechanical theories which describe the dynamics of
many-interacting electrons in an external potential, e.g.,
due to the atomic nuclei. An important breakthrough was
the development of density-functional theory, ' which
states that under certain conditions all ground-state prop-
erties of an interacting electron gas are completely deter-
mined by the charge density of the electrons. In principle,
density-functional theory permits the accurate evaluation
of the electronic part of the total energy and, consequent-
ly, after including the Coulomb interaction between the
nuclei it enables the evaluation of all structural properties.

At present, the most precise way to evaluate the elec-
tronic structure is to solve the Kohn-Sham equations' in
the local-density approximation. However, in the period
of time just after the development of density-functional
theory the numerical methods for solving the Kohn-Sham
equations were so crude that resulting errors completely
obscured the effects of the physical approximations. Only
recently has it become possible, due to enormously in-
creased computer power and sophisticated combined
theoretical and computational approaches, to solve these
equations in a much more exact fashion.

An important advance in all-electron approaches was
the recent development of the full-potential linearized
augmented plane wave (FLAPW) method for thin films.
In this approach, a new technique for solving Poisson's

equation for a general charge density and potential is im-
plemented; thus all contributions to the potential are com-
pletely taken into account in the Hamiltonian matrix ele-
ments. Results obtained for thin metal films and for
nearly free molecules demonstrate the high degree of ac-
curacy possible with this method. '

The development of accurate methods to solve the
local-density equations has brought about increasing in-
terest in using these methods to determine the total energy
and related properties (such as equilibrium phases, lattice
constants, and force constants) since the total energy is a
fundamental quantity in density-functional theory. For
all-electron methods there has been the major problem in
evaluating the total-energy expression which arises from
numerical problems introduced by the necessity of cancel-
ing the very large (positive) kinetic and large (negative)
potential energy contributions. As is well known, this
problem becomes very severe for heavy atoms since the
core electrons are responsible for the largest part of the to-
tal energy. A successful solution of this difficulty has re-
cently been presented in the form of a new formalism for
determining highly accurate total energies of solids within
density-functional theory. In this approach, all necessary
terms are easily obtained from the energy-band calcula-
tion. A major feature of this all-electron method is the
explicit algebraic cancellation of the numerical Coulomb
singularities in the kinetic and potential energy terms
which leads to good numerical stability. As implemented
in the FLAPW film approach, the method allows one to
treat the total energy of an all-electron system to high ac-
curacy without resorting to frozen-core, pseudopotential,
or other approximations.

The success of the FLAPW total-energy approach for
thin films makes it very likely that a similar scheme for
bulk materials would also provide us with reliable
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structural information. In this paper we show that this is
indeed the case. Section II explains some basis details of
our FLAPW method for bulk solids. In Sec. III we apply
our method to fcc and bcc tungsten and show that we are
able to make meaningful comparisons with experiment.
Section IV draws our conclusions. In the Appendix we
elaborate on a number of numerical convergence tests
which were taken in order to establish the precision of our
method.

II. METHOD

By far, a large majority of the accurate electronic struc-
ture calculations for solids is now carried out on the basis
of density-functional theory. ' In this approach, one as-
sumes that it is possible to replace the N-particle equation
describing the behavior of all electrons by a set of single-
particle equations for a noninteracting electron gas in an
external potential. These so-called Kohn-Sham equations'
are

[E+v,rr(n, r)]PJ(r) =ejgz(r),
n ( r) = g ~ P, (r )

~

'+(e, ), (2)

where K is the kinetic energy operator and F(e) is the
Fermi function. Prescriptions for the construction of
v ff(n, r ) are extensively discussed in the literature. For
the evaluation of the Coulomb part of the potential we use
the method developed by Weinert, while for the exchange
and correlation part we use the form of Hedin and
Lundqvist. In a pure material or an ordered alloy, the
density n(r) and, consequently, the potential v,ff(n, r),
have the periodicity of the underlying Bravais lattice. In
that case, the construction of the density n (r) according
to Eq. (2) reduces to integrals over the first Brillouin zone,
which we evaluate by employing the linear tetrahedron
method. The main emphasis of this section is on the
solution of the differential equation (1).

The recognition that the charge density (or the poten-
tial) has a different characteristic behavior in different
parts of the solid was an important step in the history of
band-structure theory. Near the atomic nucleus the core
electrons are dominant and they give rise to an almost
spherical charge density with pronounced features in the
radial dependence. In the regions far from the nucleus the
valence electrons are most important, leading to a charge
density without much detailed structure. As a result, it is
natural to define the so-called muffin-tin spheres, centered
on the nuclei and with radii large enough to confine most
of the core-electron charge density within the muffin-tin
spheres, but restricted in that the muffin-tin spheres do
not overlap each other. The obvious representations of
the charge density (or the potential) in the resulting two
distinct regions of space are

n(r)= gn(G)e'
0

in the interstitial region, and

within the muffin-tin sphere centered on the nucleus at
position R. The suinmation in Eq. (3) is over reciprocal
lattice vectors G. Traditional band-structure methods
truncate one or both series after the first term, the latter
resulting in the so-called muffin-tin approximation. This
is a very reasonable approximation for close-packed met-
als (although for some transition metals like Nb the ef-
fects on the energy eigenvalues can be of the order of 10
mRy), but it breaks down severely for open structures and
for materials with directed covalent bonds. Therefore, we
have developed computer algorithms which are based on
the full-potential linearized augmented plane wave
method and which are similar in spirit to our existing film
codes. ' Our programs to solve the differential equation
(1) do not contain any uncontrolled numerical approxima-
tions, and all series expansions and integrations are
checked for sufficiently accurate convergence by increas-
ing the number of functions or integration points (see the
Appendix). As a result, the only approximations influenc-
ing our final results are connected to the use of local-
density theory.

An important concept implemented in our approach to
a full-potential (and fully relativistic) treatment is the in-
troduction of a second variation. Given a (possibly spin-
dependent) potential we first perform a semirelativistic,
warped muffin-tin (WMT) self-consistent calculation
which includes the full potential in the interstitial region
but omits all nonspherical terms inside the muffin-tin
spheres as well as spin-orbit coupling. The resulting wave
functions are used as basis functions for a second varia-
tional calculation which includes all contributions to the
potential which were left out in the first calculation.
These contributions are only important inside the
muffin-tin spheres and are of the form given by Eq. (4).
Therefore, the main characteristic of the second variation
is a linear transformation to an ( l, m) representation of the
wave functions:

g( n, k;R+ r ) = g [a (n, k; l, m)Ri(Ei, r)
l, m

+b (n, k;I, m)Ri(Ei, r) I Y(~(r),

which is valid inside the muffin-tin sphere centered about
R. This is readily done in the spirit of the linearized
augmented-plane-wave (LAPW) approach, where the
functions Ri and Ri are the radial solutions to the semire-
lativistic Dirac equation and the energy derivative of this
radial solution, respectively. ' The coefficients a and b
are obtained by a linear transformation from the coeffi-
cients C of the plane waves. In the interstitial region we
have

P(n k'r)= QC(n, k G)e'"+ &''
G

and the a(n, k;I, m) and b(n, k;l, m) are obtained by a
reduction of the form

n(r)= gnat (
~

r —R~ )E'g ((r —R)/~ r —R~ )
l, m

(4) a (n, k;l, m) = g C(n, k;G)A (G, k;l, m ), (7)
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where the matrices A can be expressed in terms of well-
known analytic functions. The important aspect of this
transformation is the resultant enormous increase in speed
for the LAPW method. It is possible to include the l&0
terms of Eq. (4) in the augmented-plane-wave (APW)
basis, but this leads to a bilinear transformation between

the G and the ( l, m) representations, and becomes prohibi-
tively slow for a large number of plane waves.

Since the additional terms are relatively small the Ham-
iltonian matrix for the second variation is already close to
diagonal, implying that we do not have to incorporate
many unoccupied states in our second variation. The ex-
act number of these states is, of course, system dependent
and has to be determined by standard convergence tests.
It is good practice in the linearized APW method to
choose the values of the energy parameters to lie at the
center of the occupied bands, weighted according to angu-
lar decomposition inside the muffin-tin spheres. If the
number of basis functions in the first variation is large
enough the choice of these values for the energy parame-
ters is not very critical and one easily obtains eigenvalues
which are converged within 1 mRy for the whole range of
the occupied bands. The unoccupied levels, on the other
hand, are often located at larger distances from the
energy-parameter values and are hence less well con-
verged. However, this is of no concern, since the corre-
sponding wave functions are only included in order to im-
prove the quality of the occupied states in the second vari-
ational calculation and in this way they are folded back to
energy levels in the vicinity of the parameter values where
their description of the radial functions is optimal.

The concept of a second variation is even more power-
ful than presently used in our programs. First, the core
and valence electrons are treated separately, resulting in a
small nonorthogonality between their wave functions.
Generally, this overlap is very small and can be neglected.
However, in some surface calculations, a possible conse-
quence of this enlarged variational freedom for the basis
functions describing the valence band is an overestimation
of the size of the work function, because the valence elec-
trons are overbound. Second, the core electrons are treat-
ed fully relativistically using the spherical part of the po-
tential only. Although this approach is very accurate for
most levels, it sometimes leads to small deviations for
some core electrons close to the valence band (like the Sp
electrons in elements like" Cs) because these electrons
have an appreciable density near the muffin-tin boundary
and are therefore influenced by the nonspherical com-
ponents of the potential. In addition, the overlap with
neighboring electrons of the same type induces a disper-
sion of the energy levels involved. All effects mentioned
in this paragraph can be incorporated in the second varia-
tion by including appropriate terms in the Hamiltonian
and the overlap matrix.

Another way of treating the problematic energy core
levels which lie close to the valence electrons is to evaluate
them in the same way the valence electrons are treated.
However, as is especially true for p electrons, such a
semirelativistic treatment introduces an error due to the
neglect of spin-orbit coupling. Fortunately, for a com-
pletely filled band the average effect of the spin-orbit in-

teraction is very small and often less important than the
contributions to the total energy due to the energy disper-
sion in these higher-lying core levels. On the other hand,
the nature of the calculation becomes more complicated
when one treats such levels with their own set of energy
parameters; this results in a division of the valence bands
into two (or more) distinct energy windows.

III. TOTAL ENERGY STUDIES OF BCC
AND FCC TUNGSTEN

In this section we focus primarily on the total energy
(E«, ) and related quantities determined for bcc and fcc
tungsten, because E«, is an extremely sensitive measure of
the accuracy of the calculation and hence will reflect the
accuracy of our results most strongly. For reference, we
also give electronic band structures, densities of states,
and Fermi surfaces (Figs. 1—6). Our results reflect the
typical structures found in bcc and fcc materials. A not-
able feature in the Fermi surface of bcc tungsten is the ap-
pearance of two small electron lenses along the symmetry
line from I to H and from H to N. The shape of the
first lens will change after the inclusion of the spin-orbit
interaction because this lens is derived from bands which
cross along the symmetry line from I" to H in a semirela-
tivistic treatment, but do not do so with spin-orbit cou-
pling present. The resulting frequency in a de Haas —van
Alphen measurement will be very small, on the order of 1

MG. The electron lens along the symmetry line from H
to N is much less affected by the inclusion of the spin-
orbit interaction and hence its response should be at a fre-
quency of several MG.

Consider the more sensitive details of our calculations
as embodied in E„,. Figure 7 exhibits the electronic part
of the E„,as a function of the atomic volume. The upper
two curves pertain to the fcc phase while the lower two
curves refer to bcc tungsten. The dots represent our cal-
culated values; the solid curves are parabolic fits to these
data points. Note that there is a 25-mRy break in the en-
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FIG. 1. Electronic energy band structure of bcc tungsten for
a=5.95 a.u.
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FIG. 2. Density of states of bcc tungsten for a=5.95 a.u. (in
states/Ry atom).

FIG. 4. Electron energy band structure of fcc tungsten for
a =7.55 a.u.

ergy scale. For each phase the top (bottom) curve is

evaluated using 30 (90) k points in the irreducible wedge
of the Brillouin zone (IBZ). The change in E„,due to the

change in the number of k points is different for fcc and
bcc tungsten because of the different topology of the Fer-
mi surface for these two structures. Tables I and II list
the numerical results for our data points; Table III
displays the minimal values of the total energy for the in-

terpolating parabola. After extrapolating our results to an

infinite number of k points (see the Appendix) we find an

energy difference between fcc and bcc tungsten of 0.46
eV.

The equilibrium values of the lattice constants and the
bulk moduli are listed in Table IV. These numbers are de-
rived from the parabolic fits through the five data points;
the results in the lines marked with an asterisk are ob-
tained from a four-point fit, and omit the value at
a=6.10 a.u. The values for the lattice constant are in

good agreement with experiment; the error is less than
0.5%. Our results are smaller than the experimental
values because we have neglected the slight overlap of the

5p core states in our calculation.
By contrast, the numbers for the bulk modulus scatter

more widely around the experimental value, with a typical
error ranging from 5% to 15%. However, the rms error
of all our fits is less than 0.1 mRy, which corresponds to
an uncertainty in the extracted values of the bulk modulus
on the order of 1%. The large difference between the re-
sults of the four- and the five-point fit indicates that a
parabolic form for the total-energy curve as a function of
atomic volume is insufficient in the range of the lattice
constants under consideration. Indeed, a careful analysis
of the data shows a systematic deviation from the as-
sumed quadratic dependence; at larger volumes the in-
crease in the total energy is smaller than predicted by the
quadratic formula and levels off towards the asymptotic
atomic value. Therefore, we attribute the large discrepan-
cies in the theoretical values of the bulk moduli compared
to experiment to the use of an approximate form for the
relation between the total energy and the atomic volume
and not to an inaccuracy inherent in the FLAPW method
or local-density theory.
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FIG. 3. Fermi surface of bcc tungsten for a =5.05 a.u.
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FIG. 5. Density of states of fcc tungsten for a=7.55 a.u. (in
states/Ry atom).
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TABLE I. Total energy for bcc tungsten, in Rydberg atomic
units.

5.90
5.95
6.00
6.05
6.10

102.6895
105.3224
108.0000
110.7226
113.4905

E„,(30)

—32 313.0131
—32 313.0141
—32 313.0135
—32 313.0115
—32 313.0083

Etot(90

—32 313.0172
—32 313.0180
—32 313.0173
—32 313.0149
—32 313.0118

FIG. 6. Fermi surface of fcc tungsten for a =7.55 a.u.
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There appear to be two different ways to improve upon
the present situation: First, one can restrict oneself to a
smaller range of atomic volumes where a second order in-
terpolation is valid. However, in this case, the corre-
sponding energy range also becomes smaller and our rela-
tive error of 0.1 mRy in the total energy is no longer in-
significant. Many data points are then needed in order to
obtain an accurate value of the bulk modulus, because this
quantity is a second-order derivative of the total energy
and hence is very sensitive to numerical noise. A second,
and much more promising way to handle the problem is
to use a more realistic form of the total energy as a func-
tion of volume and to extend the range to larger atomic
volumes. Our results show that this approach is feasible.
The data point at a=6.10 a.u. already deviates from a
simple quadratic form near the equilibrium lattice con-

stant. This indicates that even at a lattice expansion of
only 3%, higher-order terms in the polynomial relation
between total energy and atomic volume are important.
In order to determine the parameters describing these
higher-order terms one does not need to perform calcula-
tions for values of the lattice constant which are substan-

tially different from the equilibrium value (e.g., expan-
sions on the order of 50%), in which case the computa-
tional effort would increase enormously. Now a 1%
change in the lattice constant does not affect the charge
density in a dramatic way and so only a few iterations are
needed to arrive at the self-consistent density for the new

value of the lattice constant. However, a 10% increase is

large in the sense that starting from the previous charge
density (or from a charge density constructed from over-

lapping atomic densities) essentially requires the same
large number of iterations to obtain a self-consistent solu-

tion as was required originally.
In these sets of calculations we neglected the dispersion

of the Sp electrons by treating them as core electrons.
Therefore, we also performed a series of calculations in
which these electrons were treated on the same footing as
the valence electrons, that is including nonspherical terms
and overlap but neglecting spin-orbit coupling. The re-

sulting values of the lattice constant and the bulk modulus

were the same within the errors of 0.5% and 15%, respec-
tively, indicating that the cohesive effects of these elec-
trons are small at the equilibrium lattice constant. Of
course, for smaller values of the lattice constant the 5p
electrons will start to add an important repulsive term to
the total energy. The width of the 5p band is about 80
mRy and the nonspherical terms change the energy eigen-
values by less than 0.1 mRy. The wave functions of these
states are very localized and a large number of plane
waves are needed for an accurate description. This re-

quirement of a large number of plane waves is also reflect-
ed in the extreme sensitivity of the total energy with

respect to the choice of the value of the energy parameter
describing the 5p band. Even in our case where we use

many basis functions (on the other of 140), a change of 5

mRy in the Sp energy parameter (which is small com-

TABLE II. Total energy for fcc tungsten, in Rydberg atomic
units.

0.0 20
IOO

I

I05 I IO I I 5
V E...(30) E„,(90)

~atom (a (j.~

FIG. 7. Total energy versus atomic volume for bcc and fcc
tungsten. The two curves in each case are for Brillouin-zone in-

tegrations using 30 on 90 points in the irreducible wedge. All

values are in atomic units.

7.45
7.50
7.55
7.60
7.65

103.3734
105.4687
107.5922
109.7440
111.9243

—32 312.9704
—32 312.9717
—32 312.9720
—32 312.9714
—32 312.9700

—32 312.9814
—32 312.9826
—32 312.9826
—32 312.9821
—32 312.9807
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TABLE III. Equilibrium values of the total energy in Ryd-

berg atomic units.

bcc (30)
bcc (90)
bcc (~)

—32 313.0140
—32 313.0179
—32 313.0186

fcc (30)
fcc (90)
fcc (oo)

—32 312.9720
—32 312.9827
—32 312.9847

IV. CONCLUSIONS

We have shown that very accurate total-energy calcula-
tions using the full-potential linearized augmented-plane-
wave method are feasible and lead to predictions which
can be compared directly with experiment. As further
spelled out in the Appendix, our method controls the ef-
fect of all numerical approximations and truncations.
Consequently, our results reflect the accuracy of the
theoretical approximations to the exchange and correla-
tion energy which are used in the calculation. Compared
to calculations which only aim at providing a description
of electronic band properties like the Fermi surface, the
evaluation of reliable values of the total energy requires a
larger computational effort because of the increase in nu-

TABLE IV. Comparison of equilibrium lattice constants and

bulk moduli (in atomic units). The lines marked with an aster-

isk are results obtained from a four-point fit and omitting the

value at a=6.10 a.u.

pared to the bandwidth) can cause a change in E„,of the
same order of magnitude because in the process, the whole

5p band shifts up or down. On the other hand, a change
of 0.2 Ry in the energy parameters describing the valence
band changes E„, by less than 0.1 mRy, indicating that
the range of accuracy of the linearized method is large
enough to describe the ~hole occupied part of the valence
band. For systems with spatially localized electrons in
completely filled bands which are treated like valence
bands it thus appears to be a general feature that the total
energy is very sensitive to the precise position of these
bands. Hence, greater care must be taken in arriving at a
consistent description in such a situation.

merical accuracy. For example, the size of the secular
matrix has to be enlarged by at least a factor of 2.

The total-energy FLAPW approach enables the predic-
tion of structural properties. Lattice parameters are quite
accurately predicted. Calculated total energies have a rel-
ative precision of 0.1 mRy, which is equivalent to a tem-

perature of 16 K. In many cases, this is a small number
compared to the energy difference between several crystal
phases. For tungsten, we found a difference of 34 mRy
between the (stable) bcc and fcc phases.

Finally, we have found that this approach allows one to
calculate the value of the electronic part of the total ener-

gy as a function of the volume with sufficient accuracy to
investigate the validity of different models used to
describe this dependence. In the case of tungsten, we have
shown that the use of a simple quadratic form near the
equilibrium value of the atomic volume can lead to rela-

tively large errors for the bulk modulus. An improved
model description of this relation for larger values of the
atomic volumes should also lead to accurate predictions
concerning the cohesive energy, which by definition is

equal to the difference in total energy between the equili-
brium configuration and the system at infinite volume. A
reliable value of the cohesive energy is certainly possible
within the framework of our total-energy FLAPW ap-

proach provided an equally accurate local-spin-density
calculation is obtainable for the isolated atom.

Rote added in proof. Since submitting this paper, we

completed an accurate computer program for the evalua-

tion of the electronic structure of spin-polarized atoms in

which the orbitals are treated either fully- or semi-

relativistically. The calculated values for the total energy
of a tungsten atom in the local-density approximation
were (i) —32312.218 Ry for a fully-relativistic atom, (ii)
—32 312.086 Ry for a calculation in which the valence Sd
and 6s orbitals were treated semi-relativistically and were

nonpolarized, and (iii) —32 312.300 Ry when allowing the
semi-relativistic 5d and 6s electrons to fully polarize into
a d s ' configuration. Use of the last number resulted in a
value of the cohesive energy of 9.76 eV/atom, which is
about 10% larger than the experimental value, 8.90
eV/atom. As in other accurate local-density approxima-
tion underestimates the contribution to the total energy of
the valence electrons in the atom, which become more
strongly localized and have low-density tails far from the
nucleus.

bcc (30)
bcc (90)
bcc (ap)
bcc (30)*
bcc (90)*
bcc (op)*
(Ref. 12)
(Ref. 13)
Experimental

ao

5.957
5.949
5.947
5.958
5.952
5.951
5.975
5.996
5.973

2.00X 10
1.92 X 10-'
1.90X 10-'
2.20 X 10-'
2.33 X 10-'
2.35X10-
2.02 X 10
2.35 X 10-'
2.20 X 10-'
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fcc (30)
fcc (90)
fcc (~ )

7.545
7.539
7.538

2.13X 10-'
1.90X 10-'
1.86X 10—'

APPENDIX

One very important aspect of the FLAPW method for
solving the Kohn-Sham equations is the absence of uncon-
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TABLE V. Change in energy eigenvalues in mRy for bcc Nb
due to nonspherical terms; RAPW represents the relativistic
augmented plane wave.

I )

I os

Ii2
Hi2
H2s

This work

+ 0.5

—9.0

+ 8.5
+ 8.0

I +

tr+
Lr+
r,+
H+
H.

'-

H7+

RAPW (Ref. 14)

+ 0.1
—5.3

.—5.4
+ 5.2
+ 5.1

—1.2
—1.3

trolled numerical parameters. In essence, this means that
we are always able to calculate the accuracy of our results
and that we know how to make improvements when the
errors are too large. In a numerical irnplernentation of
any algorithm one always has to replace infinite series and
continuous integrations by finite sums, which leads to nu-
rnerical errors. By increasing the number of terms the de-
viations become smaller, very often according to known
analytical laws. This is especially important in cases
where limits on computational time actually inhibit calcu-
lations of sufficient accuracy; one then uses the analytic
convergence laws to predict well-converged results. Of
course, the foregoing discussion only applies to numerical
errors and does not pertain to the effect of physical ap-
proximations, like the use of local-density functionals.
Therefore, the FLAPW method is very well suited for
testing the quality of various implementations of density-
functional theory, exactly because it minimizes all numer-
ical errors.

In this appendix we make a distinction between the ef-
fects of the nonspherical terms inside the muffin tins and
all other numerical truncations, because the full-potential
capability is a new aspect of our approach. The effects of
the introduction of nonspherical terms on the eigenvalues
is shown in Table V for a typical case of bcc Nb. Our re-
sults are consistent with this earlier work of Elyashar and
Koelling. ' Of course the change in eigenvalues becomes
larger for systems with lower symmetry; on the other
hand, for fcc W which is a system of very high symmetry
the changes in the eigenvalues are only of the order of 1

mRy. In this last case the first nonspherical term in the
density and in the potential has l=4.

The total energy of the electronic system is a much
more sensitive parameter and in most cases it is the irn-
portant quantity to monitor. Even in fcc W the total en-

ergy pertaining to the self-consistent density changes by 5

mRy after introducing the 1=4 terms. Although this
difference does not seem very large, it is comparable to
the size of energy differences of physical interest and
hence the inclusion of these terms is important. The com-
bined effects of the I=6 and 8 terms on the total energy is
less than 0.5 mRy. Since the high-/ terms typically scale
like ( r IRMT) we see that the effect of higher-order terms
rapidly becomes smaller. Hence, including nonspherical
terins up to 1=8 is sufficient for most simple systems
with cubic symmetry. Finally, our experiences with
several cubic systems with one atom per unit cell shows

that the matrix of the second variation is already nearly
diagonal. In these cases we only have to incorporate a
small number of unoccupied states to obtain a well-
converged result for the total energy. Typically, we in-
clude states up to 1—2 Ry above the Fermi level, leading
to matrix sizes between 10 and 20 for transition metals.
Of course for more complicated systems one has to
reassess this question.

We now focus on the numerical parameters which enter
into any LAPW calculation. A quantity inherent to the
linear methods is the energy parameter; this gives the
value at which the radial integrations are performed. The
accuracy of the description of the valence band decreases
when the corresponding energy eigenvalues deviate more
and more from the value of the energy parameters. Since
the energy parameters are 1 dependent, different subbands
can have different ranges of high accuracy. The error re-
sulting from the linearization is easily found: changing
the values of the energy parameters will immediately
show the sensitivity of the results with respect to this
choice. Formally, the way to improve the quality of the
energy bands is to incorporate second-order energy deriva-
tives into the description of the wave functions inside the
muffin tins. But this changes the nature of the programs
completely. However, since the LAPW method is varia-
tional in nature, one can also minimize the error by in-
creasing the number of basis functions. It is our experi-
ence that for transition metals with one atom per unit cell
a basis set with approximately 100 augmented plane
waves is sufficiently large to yield a total energy which
changes by less than 0.1 mRy when varying the value of
the energy parameter over the entire range of the occupied
d band.

Two parameters which are easy to control by making
their values large enough are the number of plane waves
(needed for the description of the charge density and the
potential in the interstitial region) and the maximum l
value (used for the augmentation of the plane waves inside
the muffin tin). The first parameter is chosen in such a
way that all combinations of reciprocal lattice vectors
used in the set of basis functions are incorporated into the
expansions in the interstitial region. For the second, a
value of I,„=8 turned out to be sufficient for an accu-
rate representation of the radial functions of transition
metals. Changing this value to 12 in tungsten caused a
systematic shift of the total energy by 0.2 mRy. However,
in an insulating material like SrS the corresponding
change was 3.4 mRy because the whole valence band was
shifted down in energy due to the increased accuracy of
the basis functions.

Another pair of numerical parameters which can be
chosen large enough to ensure sufficient accuracy pertain
to the radial mesh employed in the radial integrations;
however, some care is required. In our programs we gen-
erally use a radial mesh with a logarithmic step of 0.03
and 361 mesh points. The resulting error in the total en-

ergy due to inaccuracies in the valence band is of order 0.1

mRy, as was easily tested by performing calculations for
metallic hydrogen and lithium. However, a problem
arises because of the extreme localization of the 1s core
levels in heavy materials like tungsten. Their wave func-
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FIG. 8. Numerical error in the total energy resulting from
the use of a finite basis for bcc tungsten (Q) and a mercury
monolayer (~).

FIG. 9. Numerical error in the total energy resulting from
the use of a finite number of points in the Brillouin-zone in-

tegrations for bcc tungsten (Q), a mercury monolayer (), and
simple cubic hydrogen (O ).

tions extend only over a small number of mesh points, in-
ducing errors in the total energy in the mRy range. On
the other hand, the 1s core levels are chemically complete-
ly inactive and do not change under a structural transfor-
mation. Therefore, as long as one retains the saxne radial
mesh in all the calculations, the error in the total energy
as dictated by the changes in the valence electrons be-
comes systematic and energy differences are then accurate
to within 0.1 rnRy.

Finally, we turn to the numerical parameters on which
the most extensive tests have to be performed repeatedly
for every new system. These are the number of basis
functions and the number of k points in the irreducible
wedge of the Brillouin zone. The number of basis func-
tions is conventionally determined by the quantity rk, „,
which is the product of an average value of the muffin-tin
radius and a sphere radius k in reciprocal space. For a
given point k our basis set includes all reciprocal lattice
vectors G with

~

k —G
~

& k . In Fig. 8 we plot the loga-
rithm of the error in the total energy versus the logarithm
of rk, „ for a monolayer of mercury and for bcc
tungsten. In the case of W reciprocal lattice vectors were
determined by 6 &k, which leads to a more discontinu-
ous behavior since some shells of reciprocal lattice vectors
contribute less than others. Emerging from this plot is a
power-law behavior for the error as a function of rk
with a rather large value of the exponent, roughly —14.
We have checked that a fit to an exponential form leads to
a larger RMS error of the data points. We do not know
the analytical basis for this power law for the error; it will
be interesting to see if a theoretical deviation will indeed
lead to large exponents. Also it follows that the number
of' plane waves necessary to obtain an absolute error in the
total energy of less than 1 mRy is of order 100 (for a one
atom per unit-cell calculation), although the relative er-
rors are much smaller. The precise number will depend
on the ratio of the interstitial volume and the total unit-
cell volume, but it is already clear that in order to obtain a
well-converged value of the total energy one requires

many more basis functions than is required to obtain a
well-converged Fermi surface, which requires about
30—40 augmented plane waves per atom. Of course, a
large number of basis functions is only needed in the final
iterations when one is close to self-consistency.

The last quantity we consider is the number of k points
in the irreducible wedge of the Brillouin zone. This pa-
rameter enters because we employ the linearized tetrahed-
ron method for the integrals in reciprocal space which
enter into the construction of the charge density and the
total energy. The number of k points becomes a numeri-
cally important parameter especially when we want to (i)
compare the total energies of different structures with dif-
ferent Fermi-surface topologies or (ii) trace the value of
the total energy through a metal-insulator transition. In
the linearized tetrahedron method, the error in the total
energy scales with L, where L is a typical dimension of a
tetrahedron. This behavior is beautifully confirmed in
Fig. 9 where we plot results for metallic hydrogen,
tungsten, and a mercury monolayer' (in the last case we
use triangles instead of tetrahedrons since its reciprocal
space is two dimensional). In tungsten, the data points for
a low number of k points deviate from the straight line
due to a Fermi-surface effect; there is a small electron lens
on the symmetry line from I to H, and only when we

have enough k points to properly describe this lens does
the total energy follow its asymptotic behavior. The actu-
al number of k points needed to obtain an error in the to-
tal energy of less than 1 mRy is about 200 for bcc
tungsten and about 3000 for metallic hydrogen. (In the
latter case the number is very large because there are no
compensating effects between electron and hole sheets in
the almost spherical electron Fermi surface. ) One clearly
sees that the knowledge of the error law greatly facilitates
the calculations, although a careful analysis of the Fermi
surface is required.

Because of the numerical integrations over the Brillouin
zone appearing in the construction of the charge density,
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the output density is not neutral up to machine precision.
Depending on the system studied, the total charge inside a
Wj.gner-Seitz cell will be somewhere between 10 and
10 ' . Deviations from charge neutrality larger than
10 result in a noticeable error in the total energy of
more than 1 mRy. It therefore becomes necessary to
make the output density neutral up to machine precision
by adding or subtracting the excess charge. Since the er-

ror in the charge normalization is strictly due to the
valence electrons, the excess charge will be distributed al-
most uniformly over the unit cell. Hence, restoring
charge neutrality can be done homogeneously because the
remaining effects which are related to the neglect of all
structure of the excess charge have a much smaller magni-
tude.
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