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Determination of the Hall coefficient by direct generation of ultrasound
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A theoretical study is made of the generation of ultrasound as a function of an applied, static
magnetic field for propagation along a [110] direction in a potassium crystal. For certain orienta-
tions of the incident radio-frequency field the variation of acoustic amplitude with field presents a
cusp. The position of this minimum can be used to determine the departure of the Hall coefficient
from its free-electron value.

I. INTRODUCTION

In a recent paper, Zhu and Overhauser' showed that
one can explain the induced torque anomalies in potassi-
um by assuming an anisotropic Hall coefficient. Direct
evidence of such an anisotropy had been obtained by
Chimenti and Maxfield, who measured the Hall coeffi-
cient RII at high fields by a helicon transmission method.
They found that RIt is larger than the free-electron value,
Ro ———1/nec, and that the deviation from Ro depends on
the crystal orientation. In this paper we propose a dif-
ferent way of obtaining the Hall coefficient, one that
makes use of the direct generation of ultrasound, and
which is sensitive to a deviation of RIt from Ro.

It is well known that a sound wave can be generated
in a crystal by application of an alternating electromag-
netic field. The field penetrates the metal (within a skin
depth) and accelerates the electrons, which transfer their
excess momentum to the positive ions through collisions
(with impurities or phonons). The resulting force on the
positive iona is called the collision-drag force. The com-
bined effect of this force and the direct electric force act-
ing on the positive iona will accelerate them away from
their equilibrium positions and generate a sound wave
that propagates through the crystal. The presence of a
static magnetic field Ho (perpendicular to the sample sur-

face and parallel to the propagation direction) accentuates
this effect since it causes the collision-drag force to be
nonaligned with the direct electric force. Since the angle
between the forces depends on the magnitude of the field,
the amplitude of the ultrasonic wave will likewise depend
on Ho.

Puskorius and Trivisonno have measured the variation
of the ultrasonic amplitude as a function of Ho for the
slow shear mode generated in potassium and propagating
along a [110] direction. Their result, Fig. 1, is not the
monotonic curve predicted by using a free-electron model
and neglecting the difference in velocities of the two shear
modes.

%'e present a calculation which takes into account this
difference in the velocities. The results obtained depend
very strongly on the direction of polarization of the in-
cident rf field with respect to the crystal axis. Fig. 2
shows the geometry of the experiment and Fig. 3 shows
the force components acting on the positive ions along the
slow-shear-mode axis. This figure enables one to under-
stand the variation of the effect with polarization angle.

The collision drag force rotates with increasing Ho
since the Lorentz force is proportional to Ho. For a
specific value of Ho, the electric and collision-drag force
components parallel to the shear-mode polarization axis
will cancel, thereby creating a minimum in the generation
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FIG. 1. Field dependence of the electromagnetic generation
amplitude for the slow shear mode in K at 4.2 K (Puskorius and
Trivisonno, Ref. 8). The orientation of the 10-MHz rf field rel-
ative to the crystal axes was unknown.
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FIG. 2. Schematic illustration of the direct generation experi-
ment described in Ref. 8.
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axis. As expected, from Maxwell's equations, the
Boltzmann transport equation and the elastic wave equa-
tion, one can calculate the amplitudes of the generated
acoustic waves. The calculation is simplified by the fact
that the ionic current is small compared to the electronic
current because the electromechanical coupling is weak.

We have, for the two transverse modes, the following
wave equations:

a'g, a'g,
p 2 =Fy+C44
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FIG. 3. Electric and collision-drag forces relative to the po-
larization vector s of the shear mode. (a) For positive P the
components along e tend to cancel. (b) For negative P the com-
ponents along e add. (If Ho ——0, the forces shown would be
antiparallel. )

F=n eE—
pro

where pro is the zero-field conductivity

(3)

where the z axis is along [110]. F is the force on the ions
(per unit volume):

amplitude. Since the value of Ha for which this occurs
depends on the polarization angle P of the rf electric field,
it follows that the position of the minimum (versus Ho)
will depend dramatically on P. In particular, if P is
changed into —P (which is equivalent to reversing Hp),
the minimum. will disappear since, now, the components
of the forces along the shear-mode polarization axis add
instead of cancel. See Fig. 3(b).

This study of ultrasonic generation assumes specular re-
flection of the electrons at the surface of the metal. In-
clusion of a surface force that would result frotn diffuse
scattering does not change the results significantly. This
insensitivity to boundary conditions has been noted previ-
ously. "

The emphasis of this work is on the location of the
cusp described above, and on how that location can be
used to measure the deviation of RH from Ra. Zhu and
Overhauser' found that some experiments indicate devia-
tions as large as 30%%uo, which could arise only from a high-
ly preferred orientation of the charge-density-wave wave
vector. It seems important to confirm the existence of
such anomalous Hall effects by alternative methods.
Single-crystal samples having the required geometry for
direct generation experiments have been employed by
Penz and Kushida" for helicon resonance studies. Their
results (on samples with very shiny surfaces) indicated
both specular reflection at the surface and a highly orient-
ed charge-density-wave structure.

II. THEORY

Consider a radio-frequency electromagnetic wave in-
cident on a metal surface which is perpendicular to the
[110]direction of propagation. A static magnetic field Ha
is applied parallel to the [110]direction. For a cubic met-
al, two shear acoustic modes are generated: a slow mode
with velocity proportional to (c» —ctz)' and polariza-
tion parallel to the [110]direction, and a fast mode with
velocity proportional to c44 and polarized along the [001]

lie 7
(4)

r is the relaxation time, and n is the number of electrons
(and ions) per unit volume.

Assuming E(z, t) =E(z) exp( —idiot), etc , we . find that
Eqs. (1) and (2) reduce to

d g;(z) + g(z) =- (&)
lz

F;(z)
7

pS;

with

S„=[(ctt—c)2)/2p]'

and

Sy ——(c44/p)' ' .

The solution of Eq. (5) is'

g;(z) = iq, z'—cos(q;z) e ' F;(z')dz'
z

+e ' cos q;z'z' z'

where

q; —co /S; (9)

(10)

For specular reflection F;(z) is even in z, so that

lC'(~)
I
= IF.(q. )

I

pcoSi

where F;(q; ) is the Fourier transform of F;(z)
We need only determine F(z) in Eq. (3). For this we

employ the relation between j and E obtained from the
Boltzmann transport equation' (we shall assume that oo

Then, the amplitude of the sound at the observation point
is (upon neglect of any ultrasonic attenuation)

oo

l g;.( Oo )
l

= I cos(q;z)F, (z)dz
pcoS.
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has cylindrical symmetry about the z axis, since the crys-
tal is cubic),

j+(q-)=~oG +-(q)E (q),
~+

where j =j„+ij~,etc., and

(12)

6 +-(q) = Ply% ie2 k~
dk,

4ir iri o —~F ' 1+i(cow+co, w qu,—r)
(13)

Ci

8

I~

v is the electron velocity, co, =eHolmc is the cyclotron
frequency, and kF is the radius of the Fermi sphere.
Then, we have

F +(q) =n—eE +—(q)[1—G —(q) ] . (14)

E(q) can be obtained from Maxwell's equations (one may
neglect the displacement current)

T

j&(z)e(z)+2H„(0)5(z), (15)
c c

d Ey(z)

dz

d E„(z)
ck

j„(z)e(z) —2', (0)5(z), (16)
C C

where e(z) is the step function. From these equations we
find, for z & 0,

8 E+-(z) ico4m .i( ) 2' H+(0)~( )
dz c

After using Eq. (12) and integrating, we obtain
4

cmq c q

Substitution of this result into Eq. (14) leads to

-+ +negro [1—6 —+(q)]H+-(0)F —
q =

c~q'
1

4~l~ 6+( )
2q 2

We are now prepared to find the amplitude of the
acoustic wave for the slow shear mode, for which Eq. (11)
becomes

FIG. 4. Amplitude of the ultrasonic slow shear wave as a
function of the static magnetic field Ho. (v= 10 MHz. )

tegrated and the result substituted in Eqs. (19) and (20).
Numerical results were obtained for ql =6 and v=10
MHz, values appropriate to the experiments of Puskorius
and Trivisonno. (For ql between 4 and 10 the results do
not change significantly. )

Figure 4 shows the amplitude of the slow shear wave as
a function of the static magnetic field for several orienta-
tions, P, of the rf field. Note the striking variation with

and the asymmetry about Ho ——0, whenever
0(!P! (90. (P is the angle between the rf electric field
E and the [110]axis; positive P corresponds to E rotated
away from [110] in a direction opposite to the cyclotron
rotation. } Figui'e 5 juxtaposes theory 'and experiment.
Since the experimental orientation of the rf field was un-
known, a truly meaningful comparison cannot be made.
We present, however, the theoretical curve for /=20,
which optimizes the qualitative similarity.

It is the sharp, cusplike minimum in the ultrasonic am-
plitude (versus Hp) which is the focus of this paper. Its
location depends strongly on P, as shown in Fig. 6. Also
shown are the corresponding curves that result if the Hall
coefficient exceeds its classical value by a factor i. An
anomalous (and anisotropic} Hall coefficient in K is a
manifestation of the charge-density-wave broken syrnme-

F +(q)+F (q)
2

(20)

Equation (19) involves 6 —+(q), Eq. (13), which can be
evaluated by a tedious integration. H +—(0) is, of course,
the amplitude of the driving rf field at the surface of the
sample.

III. RESULTS AND CONCLUSIONS

In order to evaluate G +—from Eq. (13), we must specify
the electronic energy spectrum. For simplicity we use the
free-electron model. We have also performed calculations
based on a modified E(k) associated with a charge-
density-wave structure. The results obtained did not
differ significantly from the ones presented here using
E(k)=iri k !2m. Equation (13) can be analytically in-

Ho (kG)

FIG. 5. Comparison between free-electron theory and experi-
ment in K at 4.2 K. The orientation angle of the rf field
(/=20' for the theoretical curve) was not measured. (v=10
MHz. )
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FIG. 6. Variation of the field for minimum amplitude, e.g.,
Fig. 4, as a function of the orientation P of the rf field and the
Hall coefficient factor I,. (v=10 MHz. )

FIG. 8. Generation amplitude vs P for Ho 4kG. ——The vari-
ation with ql for m*=m, t =1 is shown. The small change
caused by m =1.25m contrasts with a (eightfold) larger change
arising from a Hall coefficient =1.25RO. (v=10 MHz. ) All
curves are for m =m and t =1 except where indicated.

try. ' It is caused by the multiply connected Fermi surface
arising from the minigaps and heterodyne gaps, which
come into existence from the presence of two incommen-
surate periodic potentials in the Schrodinger equation. '

The effect of an altered Hall coefficient can be incorporat-
ed into the theory given above by replacing co, with tee, in
Eq. (13}. The net effect is that the value of Ho for the
cusplike minimum is reduced by the factor t. This scaling
is i.llustrated in Fig. 6.

An equivalent determination of the Hall coefficient can
also be made by the location of the cusp in the ultrasonic
amplitude versus P (for fixed Hp). Typical theoretical
curves (for t =1) are shown in Fig. 7. If t&1, the general
scaling relation is g(P, H) =go(P, H/t).

It is important to note that changing m to m*, which
also alters co„does not lead to a similar change. The ef-
fective mass also enters oo and v in Eqs. (13) and (19}as
well as co, . But these effects tend to cancel. For the free-
electron model G —(q), Eq. (13) can be written as

G+( )
3 sin ada

(21)
4 o I+i[cur+to, r (qrkhco—sa/m)]

Ho= 6 kG

where v, —:v cosa. If we change m to m', we have

+g sin ada
G +—*(q)=-,

& 1+i [a)r+(eHo~/m*c) (qrkhco—sa/m*)]

(22)

Now, in the expression for I' -+(q), Eq. (19},we note that
in the denominator G —+(q) is multiplied by oo ne r/m'——.
Therefore, for the dominant terms in Eq. (19), the masses
cancel, i.e.,

cro6 +-*(q)

3ne ~ sin ndn
4 o m'+i [corm*+(eHor/c) qrkA cosa]—

(23)

The residual effect of an effective mass is relatively small,
since the last two terms of the denominator are the dom-
inant ones.

In Fig. 8 we illustrate how an increase in effective mass
of 25% leaves the position of the minimum almost un-

changed. In contrast, a 25% change in the Hall coeffi-
cient has a large effect. Also shown is the slight depen-
dence of the minimum on ql.

Since ql can generally be determined from an indepen-
dent experiment, we believe that the cusplike feature
found in direct generation experiments for a "free-
electron" metal (such as K) can be used to probe the Hall
coefficient. We anticipate that results will differ from
specimen to specimen (on account of varying domain tex-
ture of the charge-density wave). Accordingly such stud-
ies can possibly be used as a probe of domain orientation
and its dependence on sample preparation. -
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