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Theory of light scattering from a rough surface with an inhomogeneous dielectric permittivity
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First-order perturbation theory is applied to calculate scattering of a plane wave from a plane-
bounded, semi-infinite medium where the boundary surface has a roughness perturbation and the
scattering medium consists of an isotropic perturbation of the dielectric permittivity. The dielectric
perturbation is assumed to fluctuate randomly in the plane parallel to the surface and decay ex-

ponentially with depth into the surface. Both the roughness and dielectric permittivity perturba-
tions, which are treated as random variables, can independently cause scattering, and there is gen-

erally interference between the two scattered fields. The scattered fields generally depend on the au-
tocovariance functions of the surface roughness and dielectric fluctuations and on the cross-
correlation properties between them. For this reason, the polarization ratio of the p- and s-
polarized scattered light fields depends on the autocovariance and cross-correlation statistical prop-
erties. This result is unlike the calculation of scattered fields caused by roughness or dielectric per-
turbations alone, since in this case the polarization ratios of the scattered fields do not depend on the
statistical properties of the perturbation. The numerical results of this work are consistent with ex-

perimental measurements where the polarization ratio of light scattered from nominally identical
silver films varies widely from surface to surface.

I. INTRODUCTION

Encouraging agreement has been obtained between an-
gular scattering from slightly rough optical surfaces
predicted by a vector scattering theory and that measured
directly. ' The agreement has been particularly good for
dielectric multilayers and for p-polarized scattering from
opaque metal films. However, in many cases the mea-
sured s-polarized scattered light is considerably higher in
the retroscattering direction than predicted. Possible ex-
planations are that the optical constants of the metal films
are inhomogeneous in the vicinity of the surface, or that
there is an additional thin surface film (tarnish) that is
producing scattering anomalies. This paper addresses the
question of inhomogeneous optical parameters (dielectric
permittivity) which could represent inhomogeneities in the
metal films, and shows that if these are assumed the po-
larization ratio in the scattered fields can be a variable
dependent on surface statistical properties. This result is
not possible if roughness-induced scattering is the only ef-
fect considered. The effect of scattering produced by thin
tarnish films will also be discussed.

The experimental measurements which prompted the
theoretical consideration of inhomogeneous optical con-
stants have been briefly discussed in one published paper,
and in two unpublished presentations. Further experi-
mental data will be presented here. Figure 1, reproduced
from the published paper, shows a typical measurement
of angle-resolved scattering (ARS) from a polished,
silver-coated, dense flint sample. The substrate surface
roughness is uniform and isotropic, and scattering is mea-
sured in the plane of incidence at the retroscattering angle
for an angle of incidence of 60' as shown in Fig. 2. The
high-purity silver film, —1000 A thick, was evaporated in
a vacuum of approximately 10 Torr. Other experimen-

tal details are not available, although this figure illustrates
a typical result that has been observed in this laboratory
and elsewhere for both evaporated and sputtered films
deposited under a variety of conditions. In Fig. 1 the
solid and dashed theoretical curves are calculated for ARS
resulting from surface roughness. The surfaces are
plane-bounded, slightly rough, semi-infinite surfaces
where the scattering medium has a homogeneous and iso-
tropic scalar dielectric constant (see Sec. II). In the calcu-
lations, the roughness of the film, measured using a Talys-
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FIG. 1. Experimental (circles and squares) and predicted
(solid and dashed curves) of angular scattering from a Ag-
coated, dense flint sample for p- and s-polarized incident and
scattered light, 60 angle of incidence, and A, =0.6328 pm. The
predicted curves are for roughness-only scattering in the plane
of incidence.
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FIG. 2. Schematic diagram of retroscattering polarization ra-
tio measurements for 60' incidence and A, =0.6328 pm. The
data in Table I were measured in this configuration.

tep surface-profiling instrument, has been slightly adjust-
ed to make the theoretical curve for p polarization agree
with the measured data (circles). No further adjustments
can be made, i.e., the theoretical curve for s polarization is
then fixed.

The deviation between theory and experiment for s-
polarized scattered light increases as the backscattering
angle increases, becoming a maximum for 90' backscatter-
ing. Different silver films have ARS curves of approxi-
mately the same shapes, with most of the variation occur-
ring in the shape of the backscattering curve for s polari-
zation. For this reason we have chosen to use as an indi-
cation of agreement between theory and experiment the
retroscattering ratio (p ~p)/(s ~s) for 60' incidence.
(The agreement between theory and experiment is better
for smaller angles of incidence. ') As will be shown in Sec.
II, this ratio is independent of the surface roughness if
roughness-only scattering theory is used. In addition, all
first-order scattering theories predict no cross-polarized
scattered light in the plane of incidence, i.e., no p- (s-) po-
larized incident and s- (p-) polarized scattered light.

Table I lists experimental measurements of the
(p ~p)/(s —+s) retroscattering ratio for several silver
films deposited onto commercially polished, fused-quartz
substrates. Some of the films were subsequently baked in
vacuum for 2 h at the temperatures indicated in the table.
Cross-polarized scattering ratios (s~p)/(s~s) were also
measured. These results are typical of measurements

made at Michelson Laboratory on over 30 evaporated and
sputtered silver films. A variety of cleaning procedures
were tried, as were different roughness substrates, but
there was relatively little effect on the results. In all cases
the polarization ratio was measured within a few hours or
at most a few days after the silver films had been deposit-
ed. (When there was going to be a delay before the retros-
cattering measurement could be made, the samples were
stored in a nitrogen-filled dry box. ) As shown in Table I,
the polarization ratios are quite low, generally under 10,
and vary from sample to sample; variations were also not-
ed from place to place on a given sample. When a notice-
abl'e roughening of the film was produced by baking, the
magnitude of both s- and p-polarized scattered light in-
crease and the polarization ratio for retroscattered light
also increased. The increase in roughening was shown, by
electron microscopy, to be directly correlated with the
growth of silver grains in the film.

At the start of the study, retroscattering ratios were
measured on silver- and aluminum-coated samples as well
as on polished and diamond-turned copper samples.

. Some of these samples had remained in laboratory air for
as long as several months, and were presumably covered
with tarnish films. Silver sulfide tarnish films grow slow-
ly as an open-pored structure, and do not reach a max-
imum thickness as long as there is silver remaining.
Aluminum oxide, on the other hand, grows as a closed-
qore film until it reaches a maximum thickness of 25—30
A. Both silver- and aluminum-coated, tarnished samples
exhibited anomalies in the retroscattering ratios —large
variations (3 to 80) from sample to sample, as well as
variations from point to point on an individual sample.
Additionally, some rougher silver-coated substrates con-
taining large scratches and other macrodefects had quite
large polarization ratios. These large values could have
been caused by the macrodefects or by surface films. In
the initial measurements, there may also have been small
experimental uncertainties caused by optical misalign-
ment, orientation of the polarizer, analyzer, or half-wave
plate, etc. Typically the retroscattering measurements
were good to about 10%. Before each measurement was

TABLE I. Measured polarization ratios for evaporated and sputtered silver films that are subse-
quently baked in vacuum for 2 h at the temperatures indicated. The first five samples are sputtered
silver films and the last five samples are evaporated silver films. The notations p —+p and s ~s refer to
the polarization of the incident and scattered light, respectively, all measured relative to the plane of in-
cidence. The angle of incidence was 60', and 60 retroscattering was measured in the plane of incidence,
all for a wavelength of 6328 A.

Film
No.

17
19
3
16
11
3
4
36
5
9

Temperature
(C)

Unbaked
50
100
200
250

Unbaked
50
100
200
250

rms roughness
(A)

4.2
6.3
3.8
5.1

10.3
5.9
4.5
6.6

11.0
7.8

(p ~p)/(s ~s)
3.9
3.3
1.3
3.5

13.7
10.4
3.6
9.1
3.2

19.7

(s p)/(s s)

0.2
0.2
0.2
0.25
0.3
0.25
0.3
0.3
0.1

0.4
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made, the sample was translated until a low scatter spot
was observed (laser-beam size was —1 mm), to avoid ef-
fects of particulates and defects in the film or on the
underlying substrate.

The question of what optical constants to use in the cal-
culation of the retroscattering polarization ratio has also
been considered. There was found to be almost no effect
on the retroscattering polarization ratio even when calcu-
lations were made using the most widely differing pub-
lished optical constants for silver. In fact, the difference
between the retroscattering polarization ratios for silver,
aluminum, and copper is also small: 39.7 for silver, 29.5
for aluminum, and 33.6 for copper at a wavelength of
6328 A and a 60' angle of incidence. In the limit of a per-
fect conductor, e~ ao, the ratio approaches 49. Since the
60' retroscattering polarization ratios were under 10 for
all well-documented silver films except for baked (and
roughened) ones, we can conclude that the choice of the
average value of e is not important.

Although no well-controlled experiments have been
made on silver samples covered with known thicknesses of
silver sulfide tarnish films, a few isolated measurements
have been made. In one case, a retroscattering polariza-
tion ratio changed from about 35 (for a baked evaporated
silver film) to 16 in a period of about three weeks.

In summary, the experimental data indicate the follow-
ing. (1) There are large unexplained variations in the
(p —+p)/(s~s) retroscattering polarization ratio for silver
films (a) from sample to sample, and (b) for different
places on the same sample. (2) All retroscattering ratios
measured on freshly prepared evaporated or sputtered
films are much lower than theoretically predicted values
due to surface roughness alone, and (3) these ratios are too
low to be explained by an incorrect choice of optical con-
stants of silver. (4) The low ratios cannot be explained by
surface-plasmon effects in silver because they also occur.
for aluminum films and diamond-turned and polished
copper, neither of which have significant surface-plasmon
resonances in the visible portion of the spectrum. (5) The
presence of macrodefects on substrates are then contoured
by the films probably affects the ratio; also, the presence
of a thin, naturally occurring tarnish film can have an ef-
fect.

In this paper we will consider three different aspects of
ARS perturbation theory: (1) ARS from slightly rough
surface perturbations on semi-infinite surfaces where the
scattering medium has a homogeneous, isotropic, scalar,
and constant dielectric permittivity, (2) ARS from
smooth, semi-infinite surfaces where the scattering medi-
um consists of statistically isotropic but spatially variable
scalar dielectric permittivity perturbations, and (3) ARS
from plane-bounded media having both roughness and
dielectric perturbations.

Since we are working in the framework of first-order
perturbation theory, the calculations for cases (1) and (2)
are independent and can be done separately. Thus, the fi-
nal solution (3), which incorporates the effects of both
roughness and dielectric fluctuations, is simply a linear
superposition of both solutions. To give the reader per-
tinent background material and clarify the motivation for
this calculation, we first discuss scattering from surface

roughness, as in case (1) above.
There have been numerous first-order calculations of

light scattering from slightly rough, semi-infinite surfaces
(excluding surfaces covered with multilayer dielectric
films) where the vector properties of the scattering field
are retained. ' These and other calculations have made
use of various methods to arrive at a common result for
the predicted ARS. For completeness, one such calcula-
tion will be outlined here and will be compared with
scattering calculated from a theory taking into account
dielectric permittivity fluctuations. The ARS formulas
for scattering from slightly rough surfaces are proportion-
al to the power spectral density of the surface roughness.
Furthermore, these scattering formulas predict no cross-
polarization ARS in the plane of incidence. In other
words, for a p- (s-) polarized incident beam [electric vec-
tor parallel (perpendicular) to the plane of incidence],
there will be only p- (s-) polarized scattered light in the
plane of incidence. However, for directions out of the
plane of incidence, there will generally be a mixture of s-
and p-polarized scattered light (measured relative to the
scattering plane). Although the formulas derived here are
valid for arbitrary scattering directions and complex
dielectric constants, the numerical results only consider
scattering in the plane of incidence. Because there is no
predicted cross polarization and the scattering should be
proportional to the power spectral density of the surface
roughness, it is straightforward to predict a polarization
ratio of p- to s-polarized scattered light in the plane of in-
cidence. This polarization ratio is determined from the
theoretical expressions for p-polarized incident to p-
polarized scattered and s-polarized incident to s-polarized
scattered light. The theoretical polarization ratio should
be independent of the statistical properties of the surface
roughness (because the power —spectral-density function
cancels out in the ratio) and dependent only on the dielec-
tric properties of the material and angles of incidence and
scattering. In other words, for given angles of incidence
and scattering, the polarization ratio is predicted to be a
constant for different samples of the same material. This
theoretical ratio will be given explicitly in Sec. II. Howev-
er, as discussed above, experimental values of the 60' re-
troscattering polarization ratio for opaque evaporated
silver films are quite variable from one sample to another,
and even at different places on the same sample. Since
these samples are of high quality, first-order scattering
theory would be expected to apply. Thus we conclude
that there may be an additional scattering mechanism oth-
er than surface roughness. The additional mechanism
which is considered here is case (2) mentioned above,
where the spatially variable dielectric permittivity is as-
sumed to fluctuate randomly about a constant background
value. This subject has been briefly discussed previous-

2, 8

The paper is organized in the following manner. In
Sec. II we outline the calculation of ARS from surface
roughness. In Sec. III we describe the calculation of ARS
from dielectric fluctuations. In Sec. IV we show the com-
bined effect of roughness and dielectric fluctuations, while
numerical results are given in Sec. V. Finally, in Sec. VI
we summarize the results and give some conclusions.
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II. SCATTERING FROM SURFACE ROUGHNESS

Bbz (x,y)n=z —x
Bx

Bbz (x,y)
By

where x, y, and z are Cartesian unit vectors. In order to
match boundary conditions at the surface, the electric
field in medium 1 or 2 may be expanded about the z =0
plane to approximate the electric field at z =bz(p); this
is given by

EJ (p, bz (p') )= EJ~ (p, 0) + bz( p ) E ( p, z)
Bz

A. Boundary conditions

Here we calculate ARS from surface roughness for the
case where the root-mean-square roughness g, is much
less than the incident wavelength A, . The rough surface is
described by z =bz(x,y) and g„=([bz(x,y)] }, where
( ) denotes an ensemble average. The mean surface is
z=0 since (bz(x,y)}=0. The method of calculation,
based on satisfying the boundary conditions to first order
across the rough interface, has been called the equivalent-
surface-current model. Physically, the rough surface is
replaced by an equivalent plane sheet of surface currents
which are proportional to the Dirac 5 function and the
surface height bz(x,y). As discussed by Jackson and
Kroger and Kretschmann, the Dirac 5-function surface
currents require discontinuities in the tangential com-
ponents of the electric and magnetic fields across the sur-
faces. The method used here, matching boundary condi-
tions, is now outlined.

As shown in Fig. 3, the rough interface between medi-
um 1 and medium 2 has a unit vector normal given to
first order by

where p =(x,y) and the medium is denoted by j= 1 or 2
(see Fig. 3). The E' ' is the zeroth-order field, i.e., that
field which could be calculated for a perfectly smooth sur-

face for which bz(p)=0. E"' is the first-order correc-
tion to the field which arises as a result of the rough inter-
face. Consider first the boundary condition that the
tangential components of the electric field given in Eq. (2)
be continuous across the interface:

n &bE(p, bz(p)}=0 .

where

(3)

gE(&)
' BE(0)Mz(P ) b (0) ~ x

Bx ' Bx

and

BE(0)dbz(p) bE(0) b (-)b
By Bz

(4b)

for discontinuities of the x and y components of E'".
The fields in Eqs. (4) have been evaluated at z =0. Let
the first- and zeroth-order fields have the form

E"'(p z)= f d k e"'(k,z)e'"'~ (Sa)

and

E'"(p,z) = e "'(k„z)e' '", (5b)

respectively, whereby the field discontinuities at z =0 are
given by

b, E(p, bz(p)) =E2(p, bz(p) } Ei(p—, bz(p))

is the difference of the electric fields evaluated across the
z=bz(p) boundary. Using Eqs. (1) and (2) in Eq. (3)
yields

+E,'"(p, o},
and

bE"'(p, o)= f d kbe"'(k, o)e'"'~ (6a)

SPECULAR
BEAM

POlARIZED INCIDENT
PLANE WAVE

b.E' '(p, O) =b, e ' '(ko, o)e

respectively. An exp( i cot) time depen—dence has been as-
sumed, but it is not explicitly shown. Multiplying both
sides of Eqs. (4) by exp( ik' p)d—p and integrating
yields

(2m ) be„'"(k)= ik„be,' '(ko, o)bz(k—o —k) (7a)

aIld

2~) be~ '(k)= —ik~be,' '(ko, o)

where

(7b)

MEDIUM 1

z = z(xy)

FIG. 3. Schematic diagram of nomenclature representing
scattering from a plane-bounded, semi-infinite medium charac-
terized by a homogeneous dielectric constant where the surface
boundary is perturbed about the z =0 plane according to
z =z(x,y). The plane wave is incident at an angle 00 measured
from the normal.

bz(ko —k)= f d kbz(p)e

Equation (8) is the Fourier transform of the interface pro-
file. Similar equations hold for the tangential components
of the magnetic field:

(2m. ) bh„"'(k) =i (a)lc)bz(ko k)be' '(ko, o)—,

(2~)2bhy(i)(k) = —l. (m/c)b (ko —k)bd(0)(k0, 0) .
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/

The displacement vector D ' '( p, z) =eE ( '( p, z}, where
e=e( for medium 1 and e= 1 for medium 2 (see Fig. 3).
It follows that

~ (o) ~(o)
b, D (p, O) =b, d (kp, O)exp(ikpx)

is the difference of the zeroth-order displacement vector
across the interface. To evaluate the right-hand sides of
Eqs. (7) and (9), the zeroth-order fields are needed.

B. Zeroth-order field

The zeroth-order —field calculation is quite straightfor-
ward and only the results are presented here. Referring to
Fig. 3, we consider the case of a plane wave incident at
angle Oo relative to the z direction. In the incident and
scattered fields, both p and s polarizations are considered.
The zeroth-order solutions are written as

E2 '(p, z)= I [(x cos8p+z sin8p)coscr+y sino. ]e ' +[Rz(x cos8p —z sin8p)+yR, ]e ' Ie (10a)

and

E( '(p, z)=[(x+zkp/q)T~+yT, ]e

where

(1+R~)cos8p= T~,

1+Rs =Ts

(10b)

(1 la)

(1 lb)

I

The projection of the incident wave vector onto the (x,y)
plane is kp ——xkp, where kp ——(co/c)sin8p and co/c =2~/A, .
The wave numbers are qp

——(co/c)cos8p and

q =[(~/c)~e& —kp]'i2. The angle o is the polarization
angle measured relative to the plane of incidence defined

by (x,z). For o=O(n/. 2), the incident wave is p polarized

(s polarized). The R, R„Tz, and T, are reflection and
transmission amplitudes for p- and s-polarized incident
waves, respectively. Referring to Eqs. (6b), (10), and (11),
we see that

'
Rp —— q —qo&&

q +qoEi
coso (1 lc) (p)

—(1 e()k p Tp-
~e,"'(k„o)=

q

—2kp(1 e()cos(T cos8—p

q +qot-&

(12a)

Rs= qo —q
sino. ,

qo+q
(1 ld)

2q(1 —e()cos(T cos8p
b, d„' '(kp, O) =(1 e()Tq —— —

q+qo&i
(12b)

2q cosOo

q+qo~i
coso (1 le)

Ts—
2( cp /c) cos8p

sino. .
q+qo

2(co/c)(1 —e& )sino cos8p
iI(,dy '(kp, O) =(1 e()T, =—

q+qo

(12c)

C. First-order fields

To use the boundary conditions given in Eqs. (7) and (9) along with Eqs. (12) we assume the following explicit forms
for the first-order fields in media 1 and 2, respectively:

EI'„'(p,z) = — f d k M(kp —k)[(kq(+zk)p&„—(k Xz)(co/c)s(„]e
(2~)

(13a)

E z'„'(p, z) = — f d k M(kp —k)[(kq2 k}pz—2(k Xz)((o/c)s2„]e
(2~)

(13b)

A
where k is a unit vector, such that k =kk. The r subscript refers to roughness. Furthermore, the magnetic fields may be
derived from Eqs. (13) by applying 7 XE= i (co/c)H to—yield

HI'„'(p, z)= f d kM(kp —k)[(kq&+zk)s&„+(kXz)e&(cp/c)p»]e
(2m. )

(14a)

Hz'„'(p, z)= f d k M(kp —k)[(kqz —zk)s2„+(k Xz}((p/c)p2„]e(2'�)
(14b)
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2 cosOo
P1r =

Ci+92&r

(qq2cosg+ kk p )cosa.

0+Qo~i

2 cosOp
P2r =

9'1+V2&i

(co/c)q2 sing sino
+

9' +9'o

(qq ~ cosP —
kkp E& )coso

e' +e'o&].

(co/c)q
&
sing sino.

+
e+Vo

(15a)

(15b)

2(co/c)cos8p (co/c)cosp since'
S]r=$2r =

9'i +02 e' +e'o

q sing coso.

0 +9'o~i
(15c)

The p&„and p2„coefficients refer to P-polarized scattered
light [light polarized parallel to the plane of scattering,
which is defined by the (k,z) plane]. The s&„and s2„
coefficients refer to s-polarized scattering light (light po-
larized perpendicular to the scattering plane). The angle

is the azimuthal scattering angle such that
k =k(x cosP+y sing) and k =kk, where k =x cosP
+y sing. Again, the angle o refers to the polarization of
the incident beam. Equations (15a)—(15c) may be written
in terms of Eqs. (lie) and (1 lf) as

1 kko Tp
Plr= qz ( T~ cosP+ T,sing ) +

Ci+92~i g

kkpF. )T»
P2r = q & ( icos/+ T,sing)—

91+92&&
s

CO/C
S )r =$2r = (T,cosg —T»sing) .

9i+92

(15d)

(15e)

(.1 Sf)

This form of p~„p2„, s~„, and s2„will be easier to com-
pare directly to the corresponding terms for scattering
from dielectric fluctuations.

The components of the wave vector of the scattered light

is given by (k, —q~) for Eqs. (13a) and (14a), and (k, q&)
for Eqs. (13b) and (14b), where

q) [——(co/c) e, k—]'~ and qz=[(co/c) —k ]'~

The vector k is the projection of the scattered~light wave

vector onto the (x,y) plane where k=xk„+yk». Using
Eqs. (13) and (14) in Eqs. (7) and (9) with Eqs. (12) yields
the following solutions for the scattering coefficients p~„,
p2„s)r, and $2, .

first-order power radiated away from the surface, we cal-
culate

P~ Jd pS2 z, (17a)

where the integration is over the surface and the subscript
r refers to roughness scattering. This yields

I d k q2 I
bz(kp —k)

I4(2~)
Pr=

X [ IP2. I

'+
I
&~.

I

']c

dP„

o d

(co/c)
I

1 —e&
I

cos28
[ I

s'2.
I

'+
I ». I

']
2% cos8p

I
M(kp —k)

Ix
L

(18a)

This equation represents the fraction of the incident
power scattered into direction (8,$) per unit solid angle
dQ. The power spectral density of the surface roughness
is given by'

I
M(kp —k)

I
/L . In this paper only ran-

dom, nondeternunistic surfaces are considered. Thus, Eq.
(18a) needs to be ensemble-averaged to provide an average
fractional scattered power. The ensemble average acts
only on

I
M( kp —k )

I
/L, yielding

1 dP„(~/c)
I

1 —e,
I

'cos'8
P dII 2 z 8

[ IP2~ I
+ I &2r I

']

Xg„(kp —k), (18b)

Note that

q2=[(co/c) —k ]'

If k &co/c, the exponential term of Eq. (17b) is unity, but
if k & co/c, the exponential term does not allow energy to
radiate into medium 2. Thus, as far as scattered light is
concerned, we are only interested in situations where
k = (co/c)sin8 & co/c, with 8 being the polar scattering an-

gle measured relative to the z direction. Since k„=k cosP
and k» =k sing, it is straightforward to show that

d k =(co/c) cos8dQ ,

where dQ=sin8d8dg. In addition, the total power in-
cident on the surface may be shown from Eq. (10a) to be
Pp ——(c/8~)L cos8p, where L is the area of the il-
luminated beam. Thus, Eq. (17b) may be written in dif-
ferential form and normalized with respect to the incident
power as

S 2"—— Re( E 2 X H z" ),
8m

(16)

where the e denotes complex conjugate. To obtain the

D. Angle-resolved scattering

To obtain the expression for the ARS into medium 2,
consider the time-averaged Poynting vector of the first-
order fields,

where the average power spectral density of the surface
roughness is denoted by

( Iw(k, —k) I'}
g„(kp —k) =

L 2 (19a)

The area L is assumed to approach infinity. The term

g„(kp —k) is the two-dimensional Fourier transform of
the autocovariance function of the surface roughness
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G„(r)= (~(p)~(p+ &)),

E. Polarization ratio

As mentioned in Sec. I, the expected polarization ratio
for the scattered light may be calculated from Eq. (18b).
Considering only the plane of incidence, we set P =0 or ~
depending on whether the scattering is the forward qua-
drant (quadrant containing the specular beam) or back-
ward quadrant (quadrant containing the incident beam).
For normal incidence, this distinction does not apply.
Consider first a=0, or p-polarized incident light. For
scattering into medium 2, we have, from Eq. (15b),

2 cos8o(qq ~ cosP —kkoe~ )

1+q2el)(q +qoel)
(20a)

where cosp=+I, as discussed above. The s2„coefficient
vanishes, indicating that only p-polarized scattered light is
predicted for p-polarized incident light. Letting 0 =m/2
for s-polarized incident light yields p2„——0, and

or

g, (K)= f d rG„(P)e' (19b)

where G (0)=g, is the mean-square roughness and. has di-
mensions of length squared.

Equations (18) are proportional to (co/c) or A, . This
is characteristic of Rayleigh scattering. Physically, this
occurs in the perturbation calculation because the Born
approximation is used, which is valid when the ratio
g„/k, «1. In other words, the average vertical deviation
from the z =0 plane is much smaller than the wavelength
of illuminating light. Rayleigh scattering occurs when the
roughness height is much smaller than A, and the shape of
the scatterer is unimportant. The parameter g, is influen-
tial in the amplitude of the scattered fields. However, the
angular distribution of power scattered from the surface
requires a knowledge of the lateral properties of the sur-

face roughness. This information is implicit in g„(K) and

G„(r) and appear's only in the ARS formula. Note that
the fractional scattered power in Eq. (18b) is proportional

to the power spectral density of the roughness g, (ko —k)
and the square of the dielectric mismatch

l

1 —e&
l

g, (ko —k), since this quantity cancels out. The ratio does
depend on parameters such as the angle of incidence 00,
the angles of scattering (8,$), wavelength, and dielectric
constant e~. The interesting prediction of this result is
that for roughness scattering from surfaces which have
g„«A, , the polarization ratio should be a constant for
samples of different roughness. However, as discussed in
Sec. I, this is contrary to experimental observations. The
experimentally measured polarization ratio is only close to
the value predicted by roughness scattering theory for a
few silver films which have been baked in vacuum and
considerably roughened.

III. SCATTERING FROM DIELECTRIC
FLUCTUATIONS

A. Wave equation

Computationally and physically, this calculation is sig-
nificantly different from that of Sec. II. Physically, the
polarization scattering currents are located in the bulk
rather than on the surface of the material. Surface rough-
ness is not considered in this section. Referring to Fig. 4,
we see that the medium from which the scattering occurs
(medium 1, z &0) is assumed to consist of a scalar dielec-
tric permittivity of the form

e( p, z) =e&+.de(p, z), (22a)

where e& is a constant independent of position, and Ae is a
random variable which fluctuates around the background
value e&. By analogy to the random fluctuations of M(p)
for the surface-roughness calculation, we assume
(b,e(p, z)) =0. To further simplify matters, we further
assume an analytical z dependence where

he(p, z)=he(p)e, z&0.
Thus, the random part of e(p, z) depends only on p, and
the z dependence is exponential with a decay constant a.
With these assumptions, the dielectric fluctuations may be
thought of as columnar in nature since there is no statisti-

2(co/c) cos8ocosg

(qi+q2)(q+'qo)
(20b)

Using Eqs. (20) in Eq. (18b) yields the differential scat-
tered power for each incident polarization. Thus, we may
calculate the ratio g„of p-polarized to s-polarized scat-
tered power, which yields

d~~
0,=(„,)= le~, &~z, l'

SPECULAR
BEAM

I

I

SCATTERED I

I

POLAR I Z ED INC IDENT
PLANE WAVE

l
(qi+q2)(q +qo)(qqicos0 —kkoe»

l

'
(~/c)'

I (q i+q2ei)(q+qoei)
l

'

Note that the ratio in Eq. (21) does not depend on the
surface-roughness statistics, which are embodied in

IVIEDIUIVI 1 ~ = e) + Ae(pg)

FIG. 4. Schematic diagram of nomenclature concerning
scattering from a smooth, plane-bounded semi-infinite medium
characterized by an inhomogeneous dielectric permittivity
e(p, z). The plane wave is incident at an angle 00 measured
from the normal.
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Considering Maxwell's equations,

V XH= '
i (co/—c)eE,

V XE=i(co/c)H,

(24a)

(24b)

the wave equation may be written in the following two
forms'

V X V XE (co/c—) eE =0 (25a)

or

V E+(co/c) eE= V(V E) . (25b)

In the case of a homogeneous dielectric medium, the V.E
term is typically set equal to zero and Eq. (25b) is often
used as a starting point. However, in this paper V.E&0
in medium 1; to avoid having to initially specify the de-

tailed form of V E, Eq. (25a) is taken as the starting
point. Using the e given in Eq. (22a) in Eq. (25a), the
fields Ei(p, z) and E2(p, z) satisfy the equations

V X V XEi(p, z) —(co/c) eiEi(p, z)

(a)/c) he(p)e E,(p,z) (26a)

and

V X V XEz(p, z) —(co/c) E2(p, z) =0 (26b)

for regions 1 and 2, respectively. In Eqs. (26) the field Ei
is generated by the source term on the right-hand side of
Eq. (26a) and the field E2 is also generated by the same
source term, except that E2 is in a source-free region.

cal variation in the z direction. The parameter a controls
the effective depth of the columnar structure and, conse-
quently, of the scattering volume. The mean-square value
of the magnitude of he( p ) is

(23)

E(p,z)=(co/c) f d p'dz'he(p ',z')G(r, r ')Ei(p ',z'),

(27a)

and the integration is over the volume of medium 1. The
question of whether E(p,z) is Ei(p, z) or Ez(p, z) depends
on the Green's-function matrix G(r, r '). This will be dis-
cussed in more detail below.

At this point no size limits on the ratio g~/
~
ei

~

have
been set since there is no analogy to the Born-
approximation calculation. As shown below, a perturba-
tion method will be used to obtain a closed-form solution,
which means that the effect of he(p) on the zero-order
field must be small. From Eq. (26a) it follows that the
perturbation method requires the magnitude of the source
term, which is proportional to b,e(p), to be small com-
pared to the ei term. It follows that gq/~ ei

~

&&1 will
satisfy these requirements.

Equation (27a) is an integral equation and as such it is
not easy to solve analytically. However, as discussed
above, an analytical solution is straightforward when a

+ +
pperturbation expansion E=E' '+E' ' is assumed where

E ' ' and E ' " are the zeroth- and first-order solutions,
respectively. From Eq. (27a), we have

E'"(p,z)=(co/c) f d p'dz'he(p', z')G(r, r')EI '(p', z'),

(27b)

and since all quantities on the right-hand side can be cal-
culated, the solutions to Eq. (27b), E i"(p,z) and
E2"(p,z), can be obtained. To obtain these solutions the
following approach is used.

Following Maradudin and Mills, ' we write the opera-
tor VX VXE in matrix fo'rm so that Eq. (26a) may be
written

B. First-order fields
LE'"=(co/c) Ae(p)e E' ' (28)

The solutions to Eqs. (26) are obtained by a Green's-
function approach where

where E'" and E' ' are three-component column vectors,
and L is a matrix operator written as

a2

By

82

Bx

a2 —(CO/C) Ei'
Bz

a2

Bx By

a2

Bx Bz

BP Bx

B2 —(co/c)'ei
Bz2

a2

By Bz

a2

By

82

Bz Bx

By Bz

a2 —(co/c) ei
Bx

(29)

To solve Eq. (28) we need to calculate the 3 X 3 Green's matrix G( r, r '), which satisfies the relation

L G(r, r ') =l6 ( r —r '), (30)

where I is the 3X3 identity matrix. The vectors r and r are the observation and source locations, respectively. If we
further let

'2

G(r, r ')=
2~ f d k g(z, z')e' " '

(31a)
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and

5 (r —r ')=5(z —z') 2'
2

d2k ik (p —p') (31b)

Eq. (30) may be solved for G( r, r '). The solutions have been published elsewhere. " However, for completeness they are
reproduced in Appendix A. As mentioned above, the particular solutions to Eqs. (26) are given in two parts. These in-
clude scattering from the dielectric fluctuations into mediums 1 and 2. With Eq. (31a) in Eq. (27b), these two solutions
may be written as

(1) ~E ig(p, z) = f d kd p'dz'g""(z, z')E| '(p', z')he(p', z')e'"'~ (32a)

and

E~'(p, z) =
2S'c

'2

f d kd p'dz'g' "(z,z')EP'(p', z')Ae(p ',z')e'"'~ (32b)

where the d subscript refers to dielectric fluctuation. If we let

k
he(ko —k)= f d p'be(p')e

and assume zeroth-order fields as in Eq. (Sb), Eqs. (32) may be simplified to

(33)

(1) ~E |d(p,z) = f d k dz'g""(z, z')e P'(ko, z')be(ko —k)e e' (34a)

and

E(1)(~ z)
27Tc

d kdz'g' "(z,z')e |'(ko, z')he(ko —k)e 'e'"'~ .2 I
~

~

t ~

I ~
(I
~ )

p t
I

~~

0~ ~ a2 I tI
~
k I ~

~ (34b)

With the aid of the Green's functions as given in Appendix A, the dz' integration may be performed. Equation (32a)
yieMs

E Ig'(p, z) =

where

f d k t[A (k)+A, (k)]e ' —[B (k)+B,(k)]e '~+' 'Ie'" ~
2n ei [q i

—(q + ia)2]
(3Sa)

(kq&+zk) z kkoT~(q+q2e, +ia)
A~(k, a)= [(0+ ia)qz&t+9 t ](Tpcosg+ T,si Pn) +

02~i+9i
kkp T~

Bz(k,a)=[kq&+zk(q+ia)](T&cosg+T, sing)+ [k(q+ia)+zk],

(35b)

(35c)

and

A, (k,a) = [(co/c) e&(q+qz+ia)(T&sing Tc oPs)], —
Vi+92

(35d)

B,(k) =(k &(z)(co/c) e&(T&sing —T,cosg) .

For the upper medium, Eq. (32b) yields

2
Ae(ko k) i(k p+q, ~)

E2g(p, z) =- d k . [(kq2 zk)p2d (k Xz)(co—/c)szd]e—
2K g +pi+10!

where

P2d=
1

[q&(T~cosg+ T,sing) kkoT~/q]—
92~i+ 9'].

aI1d

(35e)

(36a)

(36b)

CO C
s2~= (T,cosg —Tzsing) .

Ii+92
(36c)
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The expressions for Tz and T, are given by Eqs. (1 le) and (1 lf). The magnetic field in medium 2 is given by
T 2~ (i) 1 Ae(ko —k) i( k ~ p+q2z)

Hqd(p, z)= d k . [(kqq zk—)s2~+(k Xz)(cole)p2d]e
2m' q +q &

+i cx
(36d)

Note that the scattered field in medium 2 [Eqs. (36)] is proportional to (q+qi+ia) . This term is related to the effec-
tive depth of the scattering volume with regard to a and the skin depth of the zeroth- and first-order fields. The units of

~ ~ ~ ~ (&) (&)kE(ko'—k)/(q+qi+ia) are identical to M(ko —k). In the limit as a~ oo, the first-order fields E id and E2d both ap-
proach zero as 1/a. This result is expected since the volume of dielectric fluctuations vanishes in this limit. In addition,
the background dielectric constant ei may be unity. In this case, the scattering medium may be thought of as air with
density fluctuations. Letting ei~ 1 in the surface-roughness calculation causes the fields to vanish, whereas this does not
happen for the dielectric fluctuation calculation.

In the special case where a=O in Eqs. (35) and (36), the particular solution for the first-order field in medium 1

reduces to

E id'(p, z) =

where

2

f d k 2 2 I [Az(k, O)+ A, (k,O)]e ' —[Bz(k,O)+B,(k)]e
2m e& ko2—

(37a)

kqi+z%
AE(k, o) =

q2&]+q1

kko Tp (q +q2ei )
(q i+qqze, )(icos/+ T,sing)+ (37b)

B&(k, O) = (kq i +zkq)( T&cosp+ T,sing)+ (kkq +zko),
q

(37c)

A, (k,O)= [(~/c) e&(q+q2)(T~sing —T,cosg)],
qi+q2

and B,( k) is unchanged since it does not depend on a. The corresponding solution for medium 2 is

2
(i) 1 2 ke(ko —k) i( k. p+q2z)

Ezd(p, z) =- d k [(kq2 —zk)p2d —(k Xz)(~/c)szd]e
2m. q+q&

(37d)

(38)

In Eq (37a) there appears to be a singularity at k =ko. However, a careful comparison of Eqs. (37b)—(37d) with Eq
(35e) reveals that

and

lim [A~(k, O)e —B~(k,O)e ''i']=0
k~ko

(39a)

lim [A, (k, O)e ' —B,(k)e '&']=0.
k~ko

(39b)

(40)

Thus, it may be shown that the integral in Eq. (37a) is well behaved as k~ko.
The case where a =0 may be of interest for dielectric fluctuations which are not damped with distance into medium l.

This situation may occur for surfaces exhibiting infinite columnar structure.
Since Eqs (35) and (36) are the Particular solutions to the inhomogeneous dielectric scattering problem, we may inves

tigate them directly to see that the proper divergence conditions are satisfied. We see from Eq. (36a) that
& 'E 2d (p,z) =0. From Eqs. (35) the divergence may be shown to be

&'EIj~(p,z)= —— f d k be(ko k) k(T&cosp+T—,sing) — ~ (q+ia) e'("'~ «+'~~')
2m q

To check the accuracy of these divergence expressions, we
consider the induced polarization charge density, as dis-
cussed in the next section.

and

V [E,(p,z)be(p)e ']
V E)——— (41a)

C. Induced polarization charge density
in the inhomogeneous medium

Note from Eqs. (26) that

V E2——0 (41b)

may be obtained by simply taking the divergence of both
sides. Applying a perturbation expansion to Eq. (4la) as
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in Eq. (27b) yields V E(,"=-4~V-P(,", (4Sa)

(] )P.E )
V [E'i '(p, z)hei(p)e ]

(41c)

These results may be obtained by another approach as fol-
lows. In general, for a linear dielectric medium,

V.E=4n&& (total charge density),

V.(E+4irP)= V.D=4ir)&(free charge density),

(42a)

V.
I [e'i+&e(p, z)](E i '+E'i")

J =0 (43)

Separating out the zeroth- and first-order terms and

equating each to zero yields

V.E', '=0,

where 0=eE is a displacement vector and P is a polari-
zation vector. In medium 1 (Fig. 4), there are no free
charges and Eq. (42b) is equal to zero. Thus, from Eq.
(42b), we may write, to first order,

and therefore,

V.[E', '(p, z)be(p, z)]
ps= —~ Pi =

4m')
(4sb)

where pz is the induced polarization charge density. Use
of Eqs. (5b) and (22b) in Eqs. (41c) or (44b) yields exact
agreement with Eq. (40).

D. Boundary conditions

The solutions given in Eqs. (35)—(38) are particular
solutions to Eqs. (26). However, the solutions must satis-
fy the boundary conditions across the interface including
the fluctuating dielectric permittivity. To calculate these
boundary conditions to first order, by analogy with the
surface-roughness calculation, we first consider as an ex-
ample the continuity of the normal component of the dis-
placement vector across the interface. Since the surface is
smooth, the continuity condition at z =0 may be writteri
as

P.E (].) V [E i '(p, z)b,e(p, z)]
(44b) e(p, o)E),(p, o) —E2,(p, o) =0 . (46a)

the latter of which agrees with Eq. (41c). From Eq. (42b),
Expanding the electric fields Ei,(p, o) and E2,(p, o) about
e=e~ yields, at z =0,

[a)+be(p, o)] E'i, '+ Et),")+DE(p,o)
BE(0) (0)

E2, +E2, +he(p, o)~0) () ) 2z
(46b)

Separating out the zeroth- and first-order terms and
neglecting those of higher order yields

(o) (0)

Ep„E)„b,e(p,—o)——(].) (])
B6 BE

—:0, (46f)

E2z f]E )z =(()) (0) (46c)

E2" E'i" he( p—,o)—— BEp„'
(46g)

(0) (0)

E2, —eiE iz
——b e(p, o) Ei — +E )g

&1) Iz M (0)
BE' BE'

H', „"—H",„'=~~(p, o)

H,',"—H'„"=a~( p, o)

BH(o)

BE'

BH"'
ly

BE

—:0,

Ba,",) =—0,

(46h)

(46i)

E2z —FiEiz =0 .(1) (1) (46e)

The remaining boundary conditions may be computed and
the equations analogous to Eq. (46d) are

Equation (46c) is simply the standard zeroth-order result.
However, Eq. (46d) implies a discontinuity in the first-
order field to account for the fluctuating dielectric per-
mittivity at the z=0 interface. Using the zeroth-order
fields given in Eqs. (10) and (11), the right-hand side of
Eq. (46d) may be evaluated explicitly. The result is zero.
In other words, Eq. (46d) is identically zero and thus there
is no discontinuity in the normal component of the dis-
placement vector for the first-order fields. Equation (46d)
reduces to

H",' H'„"=Ae( p,o)—
B6

Ba,",)

BE'
=0. (46j)

These results are not surprising since the scattering
currents in this calculation are bulk currents, not surface
currents. - Thus, the continuity conditions of the first-
order fields satisfy the same boundary conditions as the
zeroth-order fields. In fact, all higher-order terms in ex-
panding the fields about e=e& result in the expansion
coefficients of the [he(p, o)]" terms vanishing identically.
Once again, this is expected since we are merely satisfying
boundary conditions at a particular point regardless of the
value of e(p, o) at that point. This is in contrast to the
calculation for the case of scattering from surface rough-
ness. The conclusion of this section is that Eqs. (35) and
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(36) are the complete solution to the scattered field in that
they satisfy the appropriate wave equation and the boun
dary conditions. That the solutions in Eqs. (35) and (36)
satisfy the boundary conditions can be seen from Eqs. (37)
or (39), along with Appendix A, where the continuity con-
ditions on g""e '&

' and g' "e
~

' are discussed, or from
Eqs. (35) and (36) directly.

E. Angle-resolved scattering

dPa I qqicosP —kkp
I I qi+q2 I I q+qp I

dPd (co/c)
I qzei+qi I

'lq+qpei
I

(50)

where the superscripts p and s refer to p or s polarization.
Note that this ratio depends on the polar angle 8 as well
as on ei. The ratio gd is different than the corresponding
surface roughness ratio g, of Eq. (21). The ratio g„/ga is

This section closely . parallels Sec. II D. Again the
time-averaged Poynting vector is calculated and integra-
tion as in Eq. (17a) is performed. The result analogous to
Eq. (17b) is

I qq, cosP kkpe—l
I

I qq&cosP kkp I—
(51)

—2z Im(q2)Xe (47)

I
Ae(kp —k)

I

3 I d k q2 . , (
I p2d I

+
I ~2d I

)
4(2n. )'

I q+q, +ia
I

For normal incidence (kp ——0) or if kp&0, for scattering
normal to the surface ( k =0), the ratio in Eq. (51) is uni-
ty.

and the differential fractional scattered power may be
written as

ol

1 dPa (co/c) cos 8
I: I»2dl'+ I~2d I'3

( I
be(kp —k)

I
)

X I '
I
q+qi+i~

I

'

1 dPd (co/c) cos 8
I: I p~a I

'I +1»d I'3

gd( kp —k)
X

I
q+qi+i~ I

'

(48a)

(48b)

where the subscript d refers to dielectric fluctuation
scattering. The first and second terms in the square
brackets of Eqs. (48) refer to scattering which is p and s
polarized, respectively, relative to the plane of scattering.
Note again that the scattering is proportional to (co/c) or

As discussed earlier, this is characteristic of Ray-
leigh scattering. The ensemble average acts only on

I
b,e(kp —k) I, and by analogy with Eq. . (19), we have let

(
I
he(kp —k)

I
)

ga(kp —k) =
L 2 (49a)

By analogy with Sec. IIE, for /==0 or vr, the p-
polarized to s-polarized ratio in the scattered field can be
written from Eqs. (48), (lie), and (1 lf) as

where ga( kp —k ) is the two-dimensional Fourier
transform of the autocovariance function of dielectric
fluctuations Ga(r) = (b,e(p)b, e(p+ r) ), or

ga(K) = I d ~ Gd( r )e' (49b)

where Gd(0)=pa is the mean-square deviation of the
dielectric perturbation about e&.

F. Polarization ratio

G. Physical differences between roughness
and dielectric scattering

As mentioned above, in the event kp vanishes (normal
incidence), the scattering coefficients p2„and p2d for
roughness and dielectric scattering become identical. This
is evident in Eqs. (36b) and (15e). The scattering coeffi-
cients sz„and s2d are identical regardless of the value of
ko. However, this is not to say that the scattering intensi-
ties are the same for both types of scattering. When kp
vanishes, this is equivalent to the z component of the in-
cident electric field being zero. Since the source currents
responsible for scattered light for both roughness and
dielectric .scattering are proportional to the direction of
the inciderlt electric field vector, it follows that the z com-
ponents of the source currents generate scattering in a
physically different manner for the roughness and dielec-
tric scattei~ng processes. This physical difference lies in
the fact that for dielectric scattering the source currents
are in the lower medium, and to be observed in the upper
medium, the radiation emanating from these currents
must pass from the lower medium, through the boundary,
into the upper medium. In the case of roughness scatter-
ing, a Green's-function approach may also be used which
would make this calculation more arialogous to the dielec-
tric scatte|i.ng calculation done here. As discussed more
extensively elsewhere, for the case of roughness scattering
the scattering currents are located at the interface between
media 1 and 2. These currents are proportional to a Dirac
6 function which constrains the currents to be at the z =0
boundary. This is in contrast to the dielectric scattering
case where the scattering currents are throughout the bulk
of medium 1. Since the roughness currents are at the
boundary, there is an ambiguity in the placement and
strength of: the scattering currents. The ambiguity comes
in how to approach the boundary, i.e., from the lower or
upper medium, and whether to use the z component of the
electric field from medium 1 or 2 since they are discon-
tinuous across the boundary. It turns out that when using
the Green's function calculated in the manner described in
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this work and in Ref. 11, it is necessary to use source
currents which are proportional to the incident electric
field in medium 1 (evaluated at z =0), but which are
placed in and approach the boundary from the medium-2
side. With this in mind, it is clear that both roughness

and dielectric scattering dipole currents are driven by the
electric field in medium 1, but the difference lies in the
fact that the dielectric currents radiate through the boun-
dary and the roughness currents radiate from the boun-
dary. This leads to the differences in pz„and pzd.

IV. SCATTERING FROM SURFACE ROUGHNESS PLUS DIELECTRIC FLUCTUATIONS

Consider now a linear superposition of Eqs. (13b) and (36a) to yield the first-order electric field caused by scattering
from surface roughness plus dielectric fluctuations. The electric field solution may be written as

E())( )

2

f d k[(kqz —zk)M(kp —k)+(k &&z)(cole)N(kp —k)]e
277

(52a)

whereas the magnetic field is

H z (p z) = — f d k[(kqp —z)t )N(kp —k )—(k Xz)( c/pc)M(kp —k )]e
28-

(52b)

where

«(kp —k)
M(kp —k)=t (1 e))pyre(k—p

—k)+ppd q+q~+ia
(52c)

and

b,e(kp —k)
N( kp —k ) =t ( 1 —e) )sqrM( kp —k ) +szd q+q~+in

(52d)

This superposition shows that the fields scattered from roughness and dielectric fluctuations have similar forms. Calcu-
lation of the energy flow away from the interface in the positive z direction yields

Pry= 3 f d kqz[ iM(kp —k)
i + IN(kp —k)

i ],
4(2m )

and for the ensemble average of the fractional scattered power, we have

(53a)

[( iM(kp —k)
i )+( iN(kp —k

i )] .
(2n) cos8pL

(53b)

The terms in the square brackets represent p- and s-polarized scattered power, respectively. As was done previously, the
p-polarized to s-polarized ratio is

( M(kp —k)
i )

( IN(k, —k) I')
(54)

The major difference of g„d as compared to g„and gd is that g„d depends on the statistical properties of the random

variables M(p) and Ae(p). This is seen clearly in expanding (
I
M(kp —k)

I
) and ( N(kp —k)

I
). We find that

, (
I
M(kp —k) ') Ippd I

'(
I
«(kp —k) I')

+I 2
I q +q) + ia

I

'L '

i(1 e))pz,p~d (M(kp —k)b—e'(kp —k))
+ 2Re

(q +q) +i a)' 2
(55a)

or, with Eqs. (19a) and (49a),

2
I pzd I

t ( 1 e) )p harp pdgrd ( k p
—k—)

( IM(kp —k)
I

') =
I

1 —e)
I

'
I p2r I

'g'(kp —k)+ . , gd(kp —k)+2«
I q+q) +ia (q +q) +ia)*

(55b)
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2
where e denotes complex conjugate. The (

~

N(ko —k)
~

)
term is identical to Eqs. (55) with pz„and pzd replaced by

s2„and s2d, respectively. There are several interesting
new features regarding (dP„d /d Q ) /Po with these expres-

sions for (
~

M(ko —k)
~

) and (
~

N(ko —k)
~

}. First,
there is the term

Gd ( r ) =Gdl. , ~ ) +Gds ( r ) =gdl. exp
2

+4sexp2

OdS

2

(58b)

(M(ko —k)he*(ko —k) )
gpd ( ko —k ) =

which describes the cross-power spectral density associat-
ed with the cross correlation between the random vari-

ables bz(p) and b,e(p). This term would be zero if the
random variables in question were statistically indepen-
dent (uncorrelated). On the other hand, if there is a con-
nection between the surface roughness M(p) variations
and the dielectric permittivity fluctuations b,e(p), then
the cross correlation will not vanish. By analogy with

Eqs. (19b) and (49b), we write

g~(K)= f d rG„d(r)e' (57)

where

G,d(r")= &~(p)«(p+r) &

is the cross-correlation function. Since the «(p) is a
dielectric permittivity, which may be complex, it follows

that g„d(ko —k) and G„d(~) may be complex. General
properties of cross-correlation and cross-power-spectral-
density functions are given by Bendat and Piersol. '

The effect of the interference term in Eqs. (55) depends
on several factors. These include the choice for g,d and
th'e magnitude and sign of the real part of the expression
in the large parentheses. Since g„d can be complex, the
choice with regard to its real and imaginary parts can be
an important one as to the effect on the overall scattering.

It is not possible to measure G~(r ) and G„d(r ), but ex-

perimental measurements of the roughness factor G„(r)
have been made. In this paper, we will make reasonable

guesses for Gd(r) and G„d(r) in order to generate numer-

ical results.

V. NUMERICAL RESULTS

A. Autocovariance, cross covariance, and power
spectral-density functions

In order to obtain numerical results and get some feel-
ing for the potential importance of including dielectric
fluctuations as a scattering mechanism, we will make the
following assumptions regarding the autocovariance and
cross-correlation functions. We have used two-part auto-
covariance functions' for G„(~), Gd(~), and G„d(r).
G„(r) and Gd(r), we assume a combination of exponen-
tial and Gaussian forms as

G„(r)=G„I.(r)+G„s(~)=(,L, exp

where the subscripts I. and S refer to long- and short-
range parameters, respectively. The long-range o. values
are correlation lengths greater than A, and mainly contri-
bute to scattering in the near-specular direction. The
short-range values are correlation lengths less than A, and
contribute to large-angle scattering. Note that the autoco-
variance functions are isotropic since they do not depend
on the direction of r, where r =

~

r
~

. As before, r and d
refer to roughness and dielectric contributions, respective-
ly. The g refers to rms values. The form of Eq. (58a) is
chosen because of physical reasons and previous success in
fitting scattering data and theory. ' The physical basis of
Eqs. (58) is as follows. Since the short-range parameters
describe the correlation properties for small r values, the
short-range autocovariance function must have a zero
slope as r~0. This is to avoid an unphysical infinite
mean-square slope of the surface roughness which occurs
for autocovariance functions which have nonzero slopes at
the origin. Thus, a Gaussian form is chosen for the
short-range autocovariance function. An exponential
form is chosen for the long-range autocovariance function
because exponential autocovariance functions have been
measured many times for surface roughness. ' Even
though exponential autocovariance functions have
nonzero slopes for ~=0, the experimental measurements
can easily be physically realistic since the lateral resolu-
tion of surface-profiling instruments is on the order of 0.1

pm or greater. Thus the profiling instrument cannot ad-
dress the region where ~~0. Finally, experience has
shown that the short-range rms parameter g„s is dominant
over the long-range parameter g„l in the vicinity of r—+0,
so that the effect of the exponential autocovariance func-
tion is minimized.

Considering the cross-correlation properties of the sta-
tistical variables, we assume four different situations
which will be called cases 1, 2, 3, and 4. Separating be
into its real and imaginary parts, the general form of the
cross-correlation function is written here as

Gd(r ) = (M(p)Re[DE'(p+1 )] }

+l (M(p)lm[ «'(p+1 )])=
~
G„g(7 )

~

e

(58c)

where ( . ) denotes an ensemble average. The term 5„d
is an average phase which depends on the cross correla-
tion between M(p ) and b e(p ) as

(M(p)lm[«(p+ r)] }
(M(p)Re[be(p+ r)] )

+0rsexp

2

(58a)
The phase of M(p) is 0 or vr, depending on the sign of
M(p). «(p+r), which is complex, has a phase which
ranges from 0 for «(p+r) real and positive to m. for
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be'(p+ w) real and negative. Phase values between 0 and
indicate a nonzero, positive imaginary part of

b,e(p+w). With these possible phase values for M(p)
and b,e(p+ r), the term 5,d may take on values ranging
from 0 to 2'. For simplicity, Eq. (58c) is assumed to
have the analytic form

Gpd ( & ) C ' gpI. /dr. exp
2

1+ 1

&rL

1 1+ giskdsexp —
p +

2 ~rS OdS
(58e)

and

C =(0,0) (case 1),
C=(0, 1)=i (case 2),
C =(—1,0) (case 3),

(59a)

(59b)

(59c)

C=(1,0) (case 4), (59d)

Case 1 assumes that the cross correlation is zero, which
implies that the variables M(p) and Ae(p) are indepen-

I

where the coefficient C represents exp(i5„d ) in Eqs. (58c).
This expression assumes that the long- and short-range
parts of the cross-correlation functions are a phenomeno-
logical blend of the autocovariance functions G,(r) and

Gd ( 7), and have functional forms proportional to
[G„L(r)GdI (r)]' and [G„s(~)Gds(P)]', respectively.
We assume four different choices for the complex value of
C=a +ib, which are called cases 1, 2, 3, and 4. The coef-
ficients (a,b) are

dent, and thus there is no statistical connection between
the roughness and the dielectric variations. This is
equivalent to saying that the phase 5,d fluctuates in such a
way that the ensemble average vanishes. Cases 2, 3, and 4
consider nonvanishing cross correlation. Case 2 assumes
that the variables M(p) and b,e(p+~) are, on the aver-
age, out of phase by 5,d ——m!2. From Eq. (58d), this im-
plies that the denominator (M(p)Re[A, e(p+ ~)]) van-
ishes. In other words, there is no correlation between the
M(p) and the real part of b,e(p), but there is correlation
between M(p ) and the imaginary part of b,e(p ). It seems
unlikely that the real and imaginary parts of AE(p ) would
be independent unless one of the two parts were negligible.
Thus it is likely that, for case 2, b,e( p ) is essentially a
pure imaginary number and models an absorptive pertur-
bation. Case 2 is inspired as a result of experimental evi-
dence of increased absorption (in the form of decreased re-
flectance) at Ag interfaces as compared to bulk absorp-
tion. ' Case 3 assumes that the phase angle is ~. There-
fore, (M(p )1m[be(p )] ) vanishes (or at least is negligible
compared to (M(p)Re[be(p)])), and signwise the
Re(he) fluctuates oppositely to that of M(p). It follows
that if b,e is essentially real, then when M is positive, he
is negative and vice versa. Finally, case 4 assumes that
the phase angle 5„d is zero. Thus, the major difference be-
tween case 4 and case 3 is that the variables lL and Ae
fluctuate with the same sign for case 4. Therefore it may
be said that M and he are anticorrelated and positively
correlated for cases 3 and 4, respectively. These four
cases will provide some indication of the relative impor-
tance of the cross-correlation properties of the surface.

The power —spectral-density functions associated with
the autocovariance functions in Eqs. (58a) and (58b) are

(1+
I

ko —k
I

o,L,
)'~

(60a)

and
+2 2

2&ydL OdL 2 2 & 2
gd(ko k)=

. +~kds(rdsexp[ —
4 (

I

k ko
I

~ds)1
(1+

I
ko —k

I
'o'dL, )'"

(60b)

respectively. The cross-power —spectral-density function associated with Eq. (58e) is

g„d(ko —k) =C* +1Tkrds(rrdsexp[ —v'(
I

k ko
I

~rds )]
(1+

I
ko —k

I
'~rdL )'"

(60c)

where

C~L, =(C.L, GL, )'"
k.ds =(k.sos)' ',

2~rL +dL
&rdL =

~rL+&dL

and

(60d)

(60e)

(60f)

~rS~dS

[~(' s+~ d)s~2]'"
(60g)

Note that in Eq. (60c) the C coefficient is its complex conjugate, to be consistent with Eq. (56). Since both the surface-
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roughness and dielectric fluctuations are assumed to be isotropic, the power —spectral-density functions in Eqs.
(60a)—(60c) are independent of the direction of ko —k, where ko —k

I
=ko+k —2kkocosg.

B. Numerical analysis of theoretical results

The numerical results in this section have been obtained from Eqs. (18b), (48b), and (53b) using the various
power —spectral-density functions described above. In all the numerical examples, the inhomogeneous medium is as-
sumed to be silver with e&

——( —16.4,0.53) at A, =0.6328 pm; the angle of incidence Oo ——60', and scattering is confined to
the plane of incidence. Table II summarizes various statistical parameters g and o which have been used in the calcula-
tions. The correlation lengths for the roughness and dielectric fluctuations are assumed to be identical, and the rms
roughness values, which are typical of measured values, are assumed to be the same for all the numerical examples. The
parameters which were varied in the analysis were the rms values of the dielectric fluctuations. Except for case 1, the
cross-correlation parameters were calculated from Eqs. (60d)—(60g) and are given in Table II.

The polarization ratio of the scattered light is, from Eq. (54),

IP2d I

' i (1 E1)P'2—rP 2dgrd( ko —k )
I

1 —&i
I

'
I p2. I

'g. (ko —k)+ . , gd(ko k)+2 Re
I q+q~+ia I

(q+q&+ia)'

2 i (1—e) )sz,s 2dg„d ( ko —k )
I

1 —e'&
I I

szr
I g (ko —k)+ . 2gd(ko —k)+2Re

I
q+qg+ia

I

'
(q +q~+ia)*

(61)

For case 1, the g,d term vanishes and the interference
term is omitted. For cases 2, 3, and 4, the g,d term is
nonzero and the interference term is not omitted. In Eq.
(61) it is evident that the ratio g„d generally depends on
the statistical properties of the roughness and dielectric
fluctuations with or without cross correlation between the
random variables.

If the perturbation ratios are set equal so that
g, /A, =g~/

I e&, then the roughness scattering is several
orders of magnitude greater than the dielectric scattering
and the latter can be neglected. Thus, it is clear that the
magnitudes of the rms dielectric values must be consider-
ably larger than the corresponding rms roughness values
in order for dielectric scattering to contribute. In the fol-

lowing numerical results, the rms dielectric values have
been chosen such that the gd/

I
e&

I

ratio is 1 to 2 orders
of magnitude larger than the g„/A, ratio. Even with such
increased rms dielectric parameters, -it will be seen that the
magnitude of the dielectric scattering is still much smaller
than that of the corresponding roughness scattering.
However, interferences between the two fields, using the
types of cross-correlation functions chosen here, leads to
significant differences between the scattering intensity
predicted by roughness alone and roughness plus dielectric
fluctuations.

Figure 5 pertains to data set 1. The rms dielectric
values are (dr ——0.2 and wads

——1.0, which yields a ratio

Statistical
parameter

rL

g.s
g„/X

dL

dS

4/1&~
I

OdL.

ods
grdL

grds

~rdi
O rds

Data set 1

0.001 pm
0.003 pm

0.005
2.0 pm
0.1 pm

0.2
1.0

0.062
2.0 pm
0.1 pm

0.014 (pm)'/
0.055 (pm)'/

2.0 pm
0.1 pm

Data set 2

0.001 pm
0.003 pm

0.005
2.0 pm
0.1 pm

0.5
2.5

0.155
2.0 pm
0.1 pm

0.022 (pm)'"
0.087 (pm)'

2.0 pm
0.1 pm

TABLE II. Summary of the two different sets of data for the
various statistical parameters used in the numerical analysis.
Note that the rms roughnesses and all correlation lengths are
constant for all two data sets. The quantities g„and gd are de-
fined by (g„L, +g,s)' and (gql +gds)', respectively The pe.r-
tinent perturbation ratios g„/A, and gd /

I
e&

I

are also shown.
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FIG. 5. Comparison of p to s polarization ratio in the plane

of incidence, versus polar angle of scattering, for roughness-
only, dielectric-only, a,nd roughness plus dielectric scattering for
cases 1—4. The angle of incidence is 60 and the scattering
medium is Ag with ej ——( —16.4,0.53) at X=0.6328 pm. These
data were generated with data set 1.
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FIG. 6. Same as Fig. 5, except that data set 2 was used.

gd/~ e&
~

=0.06 and the parameter a=0.5 pm '. The p
to s polarization ratio is shown versus polar scattering an-
gle 8 for scattering due to roughness only, dielectric only,
and roughness plus dielectric scattering for cases 1—4.
Thus there are six plots in all. Note that the ratios for
roughness only and dielectric only are quite different in
character. The case-1 and -2 curves are essentially coin-
cident with the roughness-only curve. Since these C
values are (0,0) and (0,1), respectively, this indicates that
the p to s ratio for roughness plus dielectric curves is in-
sensitive to the imaginary part of the autocovariance
function G„d(r) compared to the roughness-only curve.
Thus, for these C values there are no predicted differences
in the p to s ratio between different sample measurements.
The reason for this is that the dielectric direct scattering
and the interference terms [the last two terms of Eq. (61)
for cases 1 and 2, respectively, in the numerator and
denominator] are negligible compared to the roughness
direct scattering term [first term of Eq. (61), in the
numerator and denominator]. On the other hand, the
case-3 and -4 curves do deviate from the roughness-only
curve. For case 3, C=( —1,0), and the p to s ratio is
greater and lower than the ratio of the roughness-only
curve in the forward scattering and retroscattering re-
gions, respectively. For case 4, where C = (1,0), the
preceding pattern is reversed. In cases 3 and 4, the real
part of C goes from —1 to 1. For cases where the. real
part of C is nonzero, the interference term can be non-
trivial compared to the roughness term and therefore con-

- tribute significantly to the overall scattering. It follows
that compared to the roughness only p to s ratio in the re-
troscattering region, the ratio due to roughness plus
dielectric scattering is decreased when the real part of
G„d(r ) is negative and increased when the real part is pos-
itive. This conclusion is, of course, to some degree based
on the analytic form chosen for the cross-correlation
function. As seen in Table I, the (p~p)/(s —&s) ratios are
generally less than the roughness only ratio is 36.2. This
would imply that the real part of G,d(r) is negative or
that the M and b,e variables are anticorrelated or fluctu-
ate with opposite sign.

Figure 6 parallels Fig. 5, except that data set 2 is used. ~ID —3-
D]~

-l~
ID

O

I I I

P—POLARIZED INCIDENCE

ROUGHNESS----- DIELECTRIC
ROUGHNESS PLUS DIELECTRIC
~e ~~~ ~~ (~] 0)——(1, 0)

~~ ~ ~ ~ ~+%o» ~ ~~~

60 INCIDENCE

—5- I

I I I I

60 30 0 —30 —60
ANGLE OF SCATTERING (deg~

—90

FIG. 7. Comparison of angle-resolved scattering from
roughness-only, dielectric-only, and roughness plus dielectric
scattering for cases 1—4. The plots are angle-resolved scatter-
ing, in the plane of incidence, versus polar scattering angle 0.
The incident plane wave is p polarized at polar angle 80——60'
measured from the normal. The scattering medium is Ag with

e~ ——( —16.4,0.53) at A, =0.6328 pm. These data pertain to data
set 1.

For these data, g~r
——0.5 and /de

——2.5, which yields a ra-
tio gd/~ e~

~

=0.16. Discussions of Fig. 6 is quite analo-
gous to Fig. 5, except that the increased dielectric parame-
ters accentuate the effect of dielectric perturbations. The
increased rms dielectric values cause the case-3 and -4
curves to be further deviated from the roughness-only
curve, whereas the case-1 and -2 curves are again coin-
cident with the roughness-only curve.

Figure 7 and 8 pertain to data set 1. These plots are the
predicted angle-resolved scattering in the plane of in-
cidence versus polar angle of scattering. These figures
have plots for roughness only, dielectric only, and rough-
ness plus dielectric scattering for cases 1—4. Considering
first Fig. 7, which is for p-polarized incident and scattered
light, the plots for cases 1 and 2 are coincident with the
roughness-only curve. Note that the dielectric-only
scattering intensity is generally much less than the
roughness-only intensity. Since cases 1 and 2 are essen-
tially identical to the roughness plot, this again says that
if the real part of the cross-correlation function G„d aver-

ages to zero, then Ae(p) has very little effect on the
scattering intensity. Furthermore, case 3 indicates that
when the real part of the cross-correlation function is neg-
ative [which, for the assumptions in this work, implies an-

ticorrelation between M(p) and b,e(p), as discussed ear-
lier in connection with case 3], the intensity for roughness
plus dielectric scattering is increased over roughness-only
scattering. In addition, case 4 indicates that when the real
part of the cross-correlation function is positive [which
implies positive correlation between M(p) and he(p)],
the resultant intensity is less than that of roughness-only
theory. Note that for case 4 a trough appears between
scattering angles at 60' and O'. In addition, the specular
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FIG. 8. Same as Fig. 7, except the incident and scattered
fields are s polarized.
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FIG. 9. Same as Fig. 7, except that data set 2 was used.

scattering is considerably depressed around the specular
region, compared to the roughness-only plot. Figure 8

parallels Fig. 7, except that the incident and scattered
light are s polarized. The trend of these data is mostly
analogous to the p polarized data of Fig. 7. The
dielectric-only scattering is about 1 order of magnitude
less than the roughness-only scattering. Cases 1 and 2 are
coincident with the roughness-only curve. Cases 3 and 4
are elevated and depressed, respectively, compared to the
roughness-only curve.

Figures 9 and 10 pertain to data set 2 and, analogous to
Figs. 7 and 8, show the predicted angle-resolved scattering
versus angle of scattering. In many respects, these plots
are similar to Figs. 7 and 8, and, in fact, the roughness-
only curves are unchanged. . The dielectric-only curves are
elevated by a factor of 6.25, compared to Figs. 7 and 8,
due to the increased rms dielectric parameters. In both
Figs. 9 and 10, cases 1 and 2 are again coincident with the
roughness-only curve. . In Fig. 9, for p-polarized incident
and scattered. light, the case-3 curve greatly resembles the

FIG. 10. Same as Fig. 8, except that data set 2 was used.

correspondling curve in Fig. 7. However, the case-4 curve
of Fig. 9 is much different than the corresponding curve
of Fig. 7. This is because the "trough, "mentioned in con-
nection with Fig. 7, is very much accentuated in Fig. 9.
This trough is an artifact of the choice of cross-
correlation function associated with case 4 and may not be
an effect which would be seen experimentally. Further-
more, the experimental evidence of Table I seems to favor
case 3. For this case, the trough does not materialize. In
Fig. 10, for s-polarized incident and scattered light, the
pattern is somewhat similar to Fig. 8. However, the case-
4 curve is now lower, in the retroscattering region, than
the dielectric-only curve. Note that there are no trough
associated with the case-4 curves for s-polarized light in
Figs. 8 ancI 10,

VI. CONCLUSIONS

Based on the autocovariance functions and four types
of cross-correlation functions chosen in this paper and on
the type of dielectric perturbation model used here, the
following conclusions. can be drawn.

When compared to the theoretical roughness-only p to
s ratio, the polarization ratio of the scattered field due to
roughness plus dielectric perturbations may or may not be
sensitive to the nature of the cross correlation between the
roughness and dielectric perturbations. In the numerical
analysis of this work, the theory of scattering due to
roughness plus dielectric perturbations is essentially the
same as the roughness-only theory when the real part of
the cross-correlation function G,d, and consequently, the
cross-power spectral density g„~, is negligible. This comIi-
tion could occur even though the real part of Ae(p ) is not
negligible, provided there is no correlation between M(p)
and Re[A,e(p)]. However, in that case, it is most likely
that the b,e(p ) is pure imaginary in nature. When
Re(G,&), and consequently Re(g&), is not negligible, it is
seen that the p to s ratio may vary considerably from that
predicted by roughness-only theory. %'hen the sign of
Re(G,d ) is positive (negative), the p to s ratio in the retro
scattering region is increased (decreased) relative to
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roughness-only theory. On the other hand, when the sign
of Re(G„d) is positive (negative), the overall scattering is
decreased (increased) relative to the prediction of
roughness-only scattering theory.

The intensity and shape of the angle-resolved scattered
field due to (1) roughness, (2) dielectric, or (3) roughness
plus dielectric perturbations can be very different. For
the rms parameters chosen in this work, the intensity of
angular scattering due to dielectric perturbations is seen to
be at least an order of magnitude less than scattering due
to roughness perturbations. When scattering due to
roughness plus. dielectric perturbations is considered, the
resultant scattering intensity is seen to be greater than, the
same as, or less than that due to roughness perturbation
alone. The deciding factor lies in the choice of cross
correlation and the phase relationship between the
roughnesss and dielectric perturbations.

Of particular interest is the prediction that the ARS
and the polarization ratio can be much different for
scattering from roughness plus dielectric perturbations as
compared to roughness scattering alone. This can be im-

portant when comparing theory and experiment in cases
where dielectric fluctuation scattering is in effect. In ad-
dition, the polarization ratio can be dependent on the sur-
face and dielectric perturbations statistics, whereas when
roughness alone is considered, the polarization ratio is in-
dependent of roughness statistics. When comparing ARS
data with a roughness-only scattering theory, erroneous
conclusions could be drawn if there is dielectric perturba-
tion scattering in effect. This statement applies if the real
part of the cross-correlation function G„d is non-
neghgible. As mentioned above, the sign of the real part
is important; for certain assumptions of cross correlation,
the overall scattering intensity can be increased or de-
creased compared to roughness-only theory. Not only
could the rms roughness be misinterpreted, but the shape
of the ARS curve could also lead to false conclusions re-
garding the correlation length. On the other hand, if the
cross correlation G,d is primarily imaginary in nature,
then the results of this work indicate that the roughness-

only theory will suffice since the dielectric scattering is
negligible.

The roughriess-only theory predicts all of the p to s ra-
tio (p~p)/(s~s) (shown in the fourth column of Table
I) to be 36.2, but the measured ratios are considerably less
than this value. The theory considered in this work
predicts that the polarization ratio can vary from mirror
sample to mirror sample, or spot to spot on the same mir-
ror. This is consistent with experimental ARS measure-
ments from Ag mirrors where the mirrors are produced in
an apparently identical fashion. On the assumption that
both roughness and dielectric perturbations are in effect,
this study can predict some of the salient features of such
measurements. For example, since the measured polariza-
tion ratios in Table I are less than 36.2, this indicates that
the real part of G„d is negative, or that M and he fluctu-
ate with opposite sign.

The present work, however, does not predict any cross
polarization to occur. Experimentally, cross polarization
does occur in varying degrees. The amount of measured
cross polarization can vary from sample to sample or
from point to point on the same sample, as shown in the
last column of Table I. In the context of the present
study, one possibility of theoretically predicting cross po-
larization is to let the he(p ) perturbation be a tensor. Op-
tical properties of films of germanium having voids,
where the effective dielectric constant of the composite
medium is a tensor, have been discussed elsewhere. ' A
calculation considering the effect of a tensor dielectric
perturbation is currently in progress by the author.
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APPENDIX A

The Green s-function~atrix satisfies the equation

L G(r, r ')=ID (r r'), — (Al)

- where r and r are the observation and source-location vectors, respectively. The J operator is given in the text by Eq.
(29). Letting Eqs. (31) be substituted into Eq. (Al) yields

l g(z,z') =I5(z —z'),
where I is the identity matrix, and

(A2)

k —(co/c) e—

—k„ky

ik

—k„ky

i' a
Bz

ik„
a
Z

i' a
~ az

k„+ky —(co/c) e

(A3)
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The solution to the coupled system of equations given by

Eq. (A2) yields

I I

2e1(co/c)

g ' (z,z')=
z

(2, 1) e
l (q2z —qgz )

(co/c) (qze, +q, )
~ 2

(2, 1)r lk i (q2z —q&z')
gzz (Z,z J=

2
e

(co/c) (q2e, +q, )

(A14)

(A15)

I I

2q1
I

g„", "(z,z') = [sgn(z —z')e
2e((co/c)

—iq &(z+z') ~+Rpe j,
I

g~ "(z,z') = [sgn(z —z')e
2E.,( co /c )

lql(z+z )]—R eP

(A5)

(A7)

where the source is in medium 1 and observation in medi-
um 2. For this matrix, the radiative wave vector is
(k, o,q2), and use of the similarity transformation men-
tioned above yields a radiative wave vector (k„,k», qz ).

Equations (A4)—(A8) and (All) —(A15) have been de-
rived subject to the condition that the tangential corn-
ponents of the electric and magnetic fields produced by
the Dirac 5-function source are continuous across the
boundary z =0. In other words,

(A16)

g ' (z,z')=—(1,1) i 5(z Z )

el(co/c)ik, iql ~

z —z'
~

—iql(z+z')+ je +Rze
2e, (co/c)

gzz' (O,z') =gzz' (O,z'),

e,g" "(O,z') =g" "(O,z'),
elg""(O,z')=g' ' '(O, z') .

(A17)

(A18)

(A19)

(A20)

where

and

92~1—91
Rp

92~1+q1

(A8)

(A9)

Equations (A16)—(A20), along with the continuity condi-
tions on the zero'th-order fields, ensure that the first-order
fields, as in Eqs. (41) and (42), are continuous in the same
fashion as the zeroth-order fields.

APPENDIX B

R, = 91 —92

q1+q2
(A 10)

(2, 1)r ix l9 1/2 i(qpz —q)z )
gxx e

(co/c) (q2e(+ql )
(A 1 1)

01+9'2
(A12)

for the case where z and z' are both in medium 1; in other
words, when the source and observation points are both in
the lower medium. In Eq. (A8), the term proportional to
the 5(z —z') is dropped as it does not contribute to the
scattered field. The subscripts of the matrix elements of g
as given in Eqs. (A4)—(A8) refer to the directions of the
field at the observation point z due to a given component
of the source vector at z'. For example, the g~ "matrix
element is the x component of the field radiated by a
source-vector component in the z direction. Equations
(A4)—(A8) are calculated for the special case where k„=k
and k» ——0. For Eqs. (A4)—(A8), the wave vector of the
radiated field is ( k, o, —q 1 ). However, to convert this ma-
trix to correspond to a general scattering direction
(k„,k», —ql), a similarity transformation can be used. "
The superscript (1,1) refers to the observation medium
and source-location medium, respectively. For the other
solution pertinent to this calculation, we find

t

To obtain a rough estimate of a reasonable value of gd
[see Eq. (23)], and to justify the gd values used in this
work (1.02 and 2.55), we proceed as follows. For the per-
mittivity of medium 1, assume that the spatial variation is
in the plane parallel to the boundary between media 1 and
2 (there is no z variation). For purposes of this estimate,
assume a model dielectric permittivity given by

1V

e(P)=el+(0 e)) XH(IP —P —
I
»

where el is a constant background permittivity of the host
medium. The Heaviside step function H(x) is unity for
x (R and zero for x ~R, where R is the radius of a
dielectric perturbation. All dielectric perturbations are as-
sumed to have the same radius and are nonoverlapping.
The summation is over the N sites of dielectric perturba-
tions which are randomly located at p;. This model fur-
ther assumes that all dielectric perturbations have the
same permittivity g. Thus, when

I p —p; I
(i =1,N) is

less that R, e becomes g. When
I p —p; I

is greater than
R, e becomes e1. In other words, this model is a host ma-
terial of e1 with randomly distributed nonoverlapping
columns of radius R with permittivity g.

To calculate gd for this model dielectric function, the
average value of e is needed. This is obtained by averag-
ing e over area L in the x-y plane as

'1
1)

—lkg2 i (q2z —q&z')
g„,' (z,z')= e

(co/c) (q2&1+q) )
(A13)

(e) =
2 I d(t pdp e(p),

which yields

(B2)
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(e) =e&+(g e—, )~XR /L

To find an estimate for gd, we calculate

(83)

gd=([e(p) —(e)]')= f dPpdp[e(p) (—e)]'.

This integral is easily evaluated and yields

4=(0 &i)'f—(1 f»—
where

.(84)

(85)

f=7TAR /L (86)

is the fraction of the total area of the dielectric perturba-
tions, mXR, to the total area of the surface L . Values

of gd may be inserted in Eq. (85), and f may be calculat-
ed. There &vill be two solntions, and the smaller is chosen.
As an example, the value of g may be chosen to be that of
AgS2, which yields. g=(8.76,2.49), and e~ for Ag at
A, =0.6328 pm is taken to be ( —16.4,0.53). Omitting
their imaginary parts, this yields (g—e~) =633.03. With
this it may be shown that f=0.00165 for gd ——1.02 and
f =0.00257 for g~ ——2.55. These values off indicate that
the fractional coverage of the surface area for the dielec-
tric perturbations is quite small and that this would ap-
pear to be a physically reasonable possibility. If, instead
of a g value based on AgS2, a g value of unity were chosen
to be representative of voids, the f values would be
0.000 67 and 0.00096, respectively. Because of these
small f values, the g~ values chosen in this work are taken
to be physically realistic.
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