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Static response of a jellium surface: The image potential
and indirect interaction between two charges
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We present detailed numerical results for the energy of interaction between a static charge and a
jellium surface and for the total energy of interaction between two static charges placed in the sur-

face region. In the latter case we obtain some novel results showing the disappearance of the bulk
oscillatory behavior in the total interaction energy as the two charges are brought from inside the
metal surface and placed outside the jellium edge. Both response calculations are performed by first
computing the static electron-density response function in the random-phase approximation. The
response function for noninteracting electrons (the irreducible part of the linear response) is obtained
on the basis of a computational method that renders the eigenfunctions ij'j„(x}of the Kohn-Sham
equations of a jellium slab in semianalytical form. This method consists of expanding the depen-

dence of f„(x) on the coordinate normal to the jellium surfaces in a sine series and solving a non-

linear matrix version of the Kohn-Sham self-consistent problem.

I. INTRODUCTION

v V' &v—&v'

&&tPv(x ')P*„(x'), (1.2)

In this expression f =2B(EF e„), where E~ is the F—er-
mi energy and B(x) is the unit step function. The wave
functions tP„(x) and the effective potential V,tt(x) are re-
lated through the self-consistent Kohn-Sham equation

2' 7 + V,tt(x) f„(x)=e„g„(x), (1.3)

f

Veff(x)=v(x)+e f d x' + V„,(x)
f

x —x'/
(1.4)

This paper is part of an ongoing effort dedicated to the
study of the response of metal surfaces to probes such as
external charges placed near the surface, or the phonon
field associated with the vibrations of the outer atomic
layers. In such problems a central role is played by the
static density response function X(x,x') defined by the
equation

n;„d(x)= I d x'X(x, x ') U,„,(x '),
where n;„e(x) is the electron number density induced by
an external longitudinal field U,„„(x ).

A basic ingredient in the integral equation' satisfied by
X(x,x ') is the response function for noninteracting elec-
trons confined by an effective potential V,ff( x ),
X' '( x, x '), given at the absolute zero of temperature by

In Eq. (1.4) v (x) is the potential for the interaction with
the ionic background, n (x ) is the electron number densi-
ty, given at the absolute zero of temperature by

n(x)= g f„~@„(x)
~

2, (1.5)

and the exchange and correlation potential V„,(x) is de-
fined by the equation

5E„,[n]
5n (x)

(1.6)

where E„,[n] is the exchange and correlation energy func-
tional [it embodies all the many-body effects in Eq. (1.3)].

The point of view adopted in the present work is that
the complexity of earlier calculations of the surface
response' ' stems to a large extent from the fact that the
wave functions g„(x) have traditionally been obtained en-
tirely numerically. It seems clear that if we had a repre-
sentation for these wave functions in a simple basis set,
the computation of X' '(x, x ') and thus of X( x, x '), and
ultimately of any surface response properties obtained
from the latter would be greatly facilitated.

In this paper we present a computational scheme that,
for the case of a metal film and in the jellium model for
the periodic background, renders the electron wave func-
tions P„(x) in semianalytical form. Our method consists
of expanding the dependence of g (x) on the coordinate
normal to the jelliurn surfaces in a sine series. The coeffi-
cients of such an expansion are obtained by solving a non-
linear matrix version of the above self-consistent problem.
(The local-density approximation for the functional
E„,[n] is used. ) The details of our procedure are given in
Sec. II.

Having obtained a simple representation for the wave
functions g (x), in Sec. III we illustrate the simplicity of
the calculation of the surface response afforded by our
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method by presenting- detailed numerical results for two
physically interesting surface response problems. The
first is the determination of the energy of interaction be-
tween a static charge and a jellium surface. In particular,
we obtain the position of the effective image plane, '

which is shown to depend sensitively on the details of the
electron-density profile at the surface. The second is the
calculation of the total energy of interaction between two
static charges placed in the vicinity of the surface. This
energy includes -the indirect interaction between the
charges mediated by the polarization of the surface. We
show that for values of the lateral separation between the
charges representative of adatom-adatom distances in
chemisorption, the total interaction energy decays mono-
tonically with distance when the charges are at the surface
(jellium edge) or outside it. As the charges are moved into
the metal interior, Friedel oscillations in the total interac-
tion energy rapidly build up. The key ingredient in both
calculations is the density response function X(x,x'),
which in this work is obtained in the random-phase ap-
proximation (RPA). The application of our formalism to
the study of lattice dynamical properties of a metal sur-
face will be the subject of a forthcoming publication.

We close this introduction by noting that although the
formalism developed in this paper makes essential use of
the assumption of a finite (in practice, rather small) film
thickness, it nonetheless proves useful for the study of the
response of a semi infinite m-edium. The reason for this is
that the static electron screening length is, at metallic den-
sities, of the order of a few angstroms.

II. THE EIGENVALUE PROBLEM
FOR THE GROUND STATE

A. Statement of the problem

In this section we are concerned with solving Eq. (1.3)
for a metal slab with the use of the jelliurn model for the
periodic background. The physical situation we consider
is depicted in Fig. 1. The two parallel faces of a jellium

(2.1)

where x~~ and kI~ are, respectively, position and wave vec-
tors in the x-y plane. Making use of Eq. (2.1) in Eq. (1.5)
we have that

n ( x)—:no(z) = g e(EF et)(E~ Et)—gt(z), —(2.2)

where the Fermi energy EF is determined by the condition

(2.3)

slab of thickness a and constant charge density p+ ——en+
are assumed to be normal to the z axis. (We denote by e
the magnitude of the electron charge. ) Periodic boundary
conditions are imposed on the slab in the x and y direc-
tions. The normalization area in the x-y plane is A. Now
the electrons, whose total number is N =aAn+, distribute
themselves in such a way that the total energy of the sys-
tem is minimized. From the Lang-Kohn solution of the
self-consistent ground-state problem for the semi-infinite
medium we know that outside the jellium edge the
electron-density profile no(z) decays rapidly from its bulk
value n+. [It decays by several orders of magnitude for a
distance from the jellium z-A~ ——2m. /kz, where kF is the
Fermi wave vector, of 0 (1 A '). ] It is then convenient to
render the electronic system strictly finite in the z direc-
tion by assuming that No(z) actually vanishes at a finite
distance (denoted by zo) from the jellium edge. From the
point of view of the Schrodinger equation (1.3) this as-
sumption implies the introduction of infinite potential
walls at a distance z0 from each jellium edge. ' The ex-
pectation is that for sufficiently large values of zo any
physical observables calculated on the basis of our model
are independent of the precise choice of zo.

In the jellium model, the wave functions P,(x) can be
written in the form
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SLAB

l

l

I

I

I

l

I

I

I

l

I

I

I

Z

d
2m dz2

+ V ff(z) Pt(z) —et//(z) (2.&)

where the energy eigenvalues et are defined by

fi k
+ „ I =&,2

2m
E =E'

I, kII
(2.5)

The effective potential V,ff(z) is given by the equation

V ff(z) = V (z) + VH(z) + V„,(z) (2.6)

Equation (2.2) shows explicitly that the ground-state
electron-density profile no(z) is a function of the z coordi-
nate only. Equation (1.3) reduces then to a one-
dimensional Schrodinger equation for the wave functions
Pt(z), namely

Z=O Z-ZQ Z=d —ZQ Z=d

FIG. 1. Physical system considered in the present work.

where V (z) is the potential for the above-mentioned in-
finite well, and the total electrostatic potential VIt(z) is
given by the equation

d
VIt(z) = —2me I dz'[no(z') —n+(z') j

~

z —z' ~, (2.7)
0
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with

n+, zo &z &d —zo
"+ 0, otherwise . (2.8)

I

In this work we adopt the local-density approximation
for V„,(z). For the exchange potential we use the local
Slater approximation reduced by a factor of —', , and for
the correlation potential we use the local Wigner interpo-
lation approximation.

Equations (2.2)—(2.8) define the self-consistent problem
to be solved, a path well trodden by density functional
practitioners. As indicated in the Introduction, our pur-
pose in this work is to present an alternative solution to
the conventional numerical integration of Eq. (2.4), a solu-
tion that renders the wave functions P~(z) in semianalyti-
cal form.

B. Matrix form of the eigenvalue problem
and numerical solution

In view of the limited range of variation of the variable
z, namely 0&z &d, and the infinite potential barrier at
each end point of this interval, we choose to expand the
wave functions P~(z) in a Fourier sine series,

1/2

$1(z)= — g a,' 'sin z
2 (i) . $7T

(2.9)

Substituting Eq. (2.9) in (2.4), multiplying the latter
equation on the left by (2/d)'~ sin(pmz/d), and integrat-
ing over z, we obtain the following matrix version of Eq.
(2.4):

(I) (I)
Mpp ap ——@lap, p =1,2, 3, . . . .

p'=1
(2.10)

The matrix Mzz is defined in Appendix A.
Equation (2.10) has to be solved self-consistently be-

cause the eigenvector I a,'"I being sought appears in the
elements of the matrix Mzz. As is well known, the self-
consistent solution by iteration is plagued by instabilities.
We have followed a standard "attenuated mixing"
scheme, more sophisticated versions of which have been
given recently by Kerker and by Ho et al. ' In general,
the thicker the film, the smaller the mixing parameter.
For example, in the case of aluminum, for a five-layer
film we added 20% of the "new" eigenvector to 80% of
the "old" eigenvector (or a mixing parameter of 20%) to
give the next eigenvector in the iteration scheme. For a
20-layer film we used a mixing parameter of 1%. In the
latter case, the number of iterations required is on the or-
der of 100.

Another aid to speeding convergence is a "stretching"
procedure similar to the one used, for example, by Feibel-
man et al. " In the case of a high-density metal such as
aluminum, it is found that for a film thickness as small as
three atomic layers the electron-density profile is, in the
neighborhood of each jellium edge, remarkably close to
that for the semi-infinite medium (or the I.ang-Kohn pro-
file). Thus one can "prepare" an initial guess for the
electron-density profile no(z) for a thicker film (for exam-
ple, 15 layers thick) by adding to the profile obtained for a
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FIG. 2. Dependence of the electron-density profile no(z)/n+
for sodium on the number of sines (—=s,„)used in Eq. (2.9) and
on the film thickness. The profile obtained for a nine-layer film
remains unchanged for thicker films. In this figure we have
used zo ——1.5ao (see text).

thinner film (for example, 5 layers thick) a flat central
piece with the bulk value of the electron density. With
this "stretched" profile as our initial guess, we evaluate
the integrals in Eqs. (A2) and (A3) numerically, and the
matrix Mzz so generated is diagonalized for the first time.

Two significant parameters in our model are the dis-
tance zo from the jellium edge to the point where no(z) is
taken to vanish, and the number of sines (

—=s,„)kept in
the expansion (2.9) of the electron wave functions. We
find that in order to reproduce the Lang-Kohn density
profile to better than 1% accuracy zo& 1.5ao is needed,
where ao is the lattice constant of the metal. The value ofs,„depends on the film thickness and on zo (the bigger
zo, the larger s,„). It is to be noted that the rank of the
matrix Mpp equals s,„. Thus $,„has to be at least
equal to the number of occupied electron states (:—lM ). In
practice s „is substantially greater than lM. This au-
tomatically provides us with the wave functions for a
number of the unoccupied states (which are used in the
computation of the electron-gas response).

In Figs. 2—4 we illustrate the dependence of our numer-
ical results for no(z) on the parameters zo and s~,„and
on the film thickness. These results supersede those given
for sodium in a preliminary report, in which full conver-
gence was not achieved. In Fig. 2 we show results for
no(z) for a five-layer sodium film, obtained for s,„=10,
20, and 30, respectively, with zo ——1.5ao. Note that the
profiles obtained for s,„=20 and 30 are indistinguish-
able on the scale of the figure. We also show the profile
obtained for a nine-layer film. Note that the converged
profiles for five and nine layers differ mainly in the
Friedel-oscillation region. Further increase in the film
thickness (beyond nine layers) leaves no(z) unchanged on
the scale of the figure. In Figs. 3 and 4 we show the
electron-density profile no(z) for nine-layer aluminum and
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FIG. 3. Dependence of the electron-density profile no(z)/n+
for aluminum on the value of zo giving the position of the effec-
tive infinite potential walls. For zo ——1.5ao(=6.075 A) the pro-
file agrees with the Lang-Kohn profile throughout the surface
region to better than 1%. For zo ——3m/8k~(=0. 673 A), we show
both the IBM profile (dotted line) and the profile obtained keep-
ing the full Hamiltonian matrix M~~ in Eq. (2.10) (dashed line).

sodium films obtained for zo ——1.5ao, and s,„=40 and
30, respectively. In each case the profile is identical, on
the scale of the figure, to the Lang-Kohn profile. In both
Figs. 3 and 4 we also show the profiles obtained for a
smaller value of zo. For illustrative purposes we took
zo ——3m. /8kF, which is the value that obtains (for a thick
film) in the infinite-barrier model (IBM).' ' In the IBM
there are no electron-electron interactions in the ground
state and the wave functions Pi(z) are given by Eq. (2.9)
with a,'"=5,l. For this value of zo we show the profile
obtained by the self-consistent solution of Eq. (2.10) and
also the IBM profile. ' Note that although we find that
for this small value of zo the coefficients a,'" are nearly
equal to 5t, [that is, the wave functions Pi(z) are nearly
sines], the corresponding profiles differ appreciably.

III. APPLICATION TO THE STUDY
OF THE SURFACE RESPONSE

OF THE ELECTRON GAS

2m'e —
q)) ~~) —~p )

v(q,
~

Iz„z,)= e (3.3)

is the two-dimensional Fourier transform of the Coulomb
potential energy and X' '(q~~ I z,z') is the two-dimensional
Fourier transform of the density response function for
noninteracting electrons defined in Eq. (1.2). An explicit
result for X' '(q~~

I
z,z') can be found in Ref. 15.

The solution of Eq. (3.2) has recently been given by
Eguiluz, ' and we refer the reader to his work for a de-
tailed discussion. Here we shall simply note that we in-
troduce a double-cosine Fourier representation for the
response function' ' defined by the equation

In this section we illustrate the application of the
method developed in Sec. II to the study of linear-
response properties of the electron gas at the surface of a
nearly-free-electron metal.

In the jellium model for the periodic background the
relevant density response function is the two-dimensional
Fourier transform X(q~~ I

z,z') of the full response function
X( x, x ') defined in Eq. (1.1). We have that

X(x, x ')= f e II "II . II X(qll Iz,z') . (3.1)
(2~)

In this work we evaluate 7 within the random-phase
approximation (RPA). In the RPA, X(q~~ I

z,z') obeys the
integral equation' '
X(q~~ I

z,z') =X'0'(q~~
I
z,z')

+ f dz, f dz, X"'(q~~lz, z, )

Xv(q~~ lzi, z2)X(q(( lzz, z ),
(3.2)

where
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OD IUM
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FICx. 4. Same as Fig. 3, but for a sodium film. In this case
1.5ao ——6.337 A and 3m/8k~ ——1.278 A.

P7l & Pl&
X cos z cos z', (3.4)

with similar expansions for X' '(q~~ I z,z') and v (q~~ I zi, z2),
and transform Eq. (3.2) into a matrix equation for the
coefficients X „(q~~) that is solved numerically. The key
ingredient of that matrix equation is the matrix of the
coefficients X~„'(q~~ ) of X' '(q~~ I

z,z'), which is directly ob-
tainable by algebraic means from the wave functions Pi(z)
through their coefficients a,' ' defined in Eq. (2.9). This is
the reason for the simplicity of our response calculation.

From a knowledge of the coefficients X~„(q~~) of the
density response function we can proceed to study the in-
teraction of the surface with various longitudinal probes.
In this paper we consider two simple examples.



30 STATIC RESPONSE OF A JELLIUM SURFACE: THE IMAGE. . . 5453

A. Energy of interaction between a static charge
and a jellium surface

In the present case the external potential U,„,(x;RI)
[cf. Eq. (1.1)] is

U,„,(x;RI}=-
/x —RI/

(3.5)

where RI denotes the (fixed) position of the external parti-
cle and QI its charge. From Eqs. (3.5), (1.1), and (3.1)
and the solution of Eq. (3.2), we obtain the induced charge
density —en;„d(x), and from it the screening (induced)
field, given by the equation

E;„g(x)=eV J d x'
f
x —x'i

(3.6)

For x =RI Eq. (3.6) gives the screening field at the po-
sition of the external charge. The work required to bring

the charge from infinity to the point Rt ——(0,0,zI) against
this field is the so-ca11ed image potential U (zI ). We ob-
tain the result that

UIm(zl } J (3.7)

The matrix A „(q~~ ~zI) is given in Appendix B. Equa-
tion (3.7) generalizes the classical image potential

2

(3.8)
4(zI —z; )

U,I(zI) =—

where z; is the position of the effective image plane. ' '
The result given by Eq. (3.7) reduces the evaluation of

the image potential to carrying out matrix algebra on the

computer [on the basis of the knowledge of the matrix
X „(q~~ )] followed by an integration over all wave-vector
transfers. It is noteworthy that all spatial integrals have
been performed analytically. This is particularly useful in
view of the fact that the Friedel oscillations in no(z) lead
to oscillatory intqgrands in surface response calculations.

In Fig. 5 we show results for the image potential

throughout the surface region for both sodium and alumi-
num surfaces. Here we have set QI ——e. Note that Eq.
(3.7) has strict meaning for a quantum-mechanical parti-
cle only in the limit of an infinitely heavy mass. It is,
however, a reasonable approximation for the case of a
heavy impurity placed near the surface, or for an adsorbed
atom. Even in the case of an electron the concept of a lo-
cal image potential has proved useful in surface physics
[for example, in the analysis of electron-energy-loss spec-
troscopy (EELS) experiments' ].

From Fig. 5 we have that the magnitude of U; (zt) in-
creases smoothly in the surface region from its asymptotic
classical limit (-z, ) at large distance from the surface
until it reaches its bulk value for zI -2 A (zI -4 A),in-
side the jellium in the case of aluminum (sodium}. The
physical reason for the smooth saturation of the image
potential at the surface [classically it blows up at the im-
age plane, cf. Eq. (3.8}] is the finite screening length
(~k~ '} characterizing the electron-gas response in the
RPA.

The solid curves shown in Fig. 5 were obtained using
the self-consistent electron wave functions P~(z) (obtained
by the method of Sec. II} in the computation of X' „'(q~~ ).
For purposes of comparison we have also computed
UI~(zI ) using the IBM in which, we recall, a,' '=5,

~ and
zo ——3m./8kF. The corresponding results are shown by
dashes in Fig. 5. It is seen that the main difference be-
tween both sets of results occurs outside the jellium. This
was to be expected since the IBM electron-density profile
is a rather poor approximation to the Lang-Kohn profile
for zI &0. For example, for zI ——1.5 A the IBM underes-
timates U; (zI ) by about 41% in the case of aluminum
and by about 25% in the case of sodium. Note that this
value of zI is representative of atom or molecule-surface
distances in chemisorption [e.g., for CO chemisorbed on
Cu (100)]. Our results thus indicate that the use of the
IBM in such a case' is not quantitatively reliable.

Now the total energy of interaction between the exter-
nal charge (assumed in what follows to be a proton) and
the surface is given by

U„,(zI ) = U; (zI )+ U,I(zI ), (3.9)

0.00 s I s
I where U,I(zI ) is the energy of the electrostatic interaction

with the dipolar layer at the "bare" surface, given by
0 —2.00
CP

UeI(zI ) = —VH(zI ), (3.10)
—4.00

—6.00
I-
O

—8.00
UJ
(3

—
I 0.00

SOD I

I 2 00 i I i I i I i I i I s I i I

—5.00 —2.50 0.00
z (A)

2.50 5.00

FIG. 5. Image potential U; (z~) for sodium and aluminum
surfaces for a charge QI ——e. The coordinate zI is measured
from the jellium edge, z& &0 being the metal interior (solid
curves). We show by the dashed lines the corresponding results
for U; (zj) in the IBM.

V~(zI ) being given by Eq. (2.7). Note that while UI~(zI )
corresponds to an attractive interaction for charges of ei-
ther sign, U,I(zI) corresponds to a repulsion for the
present case in which the external charge is positive and
to an attraction for a negative charge. Note also that
U,I(zt) vanishes identically for a classical model of the
surface [in which no(z) coincides with the jellium profile
(2.8)].

In Fig. 6 we show U«, (zI) for an aluminum surface as
a function of the distance between the proton and the sur-
face, measured from the jellium edge. As a consequence
of the competition between attractive ( U; ) and repulsive
( U,I) interactions, U„,(zI ) develops a potential well with
a minimum at zi-=0.36 A and a depth of 5.15 eV
measured from the vacuum level.
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2

4x&

ba+2 +''
2x i

(3.12)

where we have made the definition

A similar linear-response calculation of U„,(zt) was
performed some years ago by Ying et al. in their density
functional theory of chemisorption. However, whereas
Ying et al. used an extended Thomas-Fermi treatment of
the kinetic-energy functional, the RPA response function
used in the present work places no restrictive assumptions
on the kinetic energy of the electrons. The other differ-
ence between the work of Ref. 4 and the present one is
that the former includes local exchange and correlation ef-
fects, and these are absent in the RPA. Now the equilibri-
um position of the proton obtained by Ying et al. is
z~ —-0.57 A, which happens to be in good quantitative
agreement with the value obtained in more elaborate,
nonlinear-response calculations. ' ' The interesting ques-
tion then arises of whether the difference between the
values z&

——0.36 and 0.57 A for the proton equilibrium site
is due to exchange-correlation effects or to kinetic-energy
effects, or both. We have recently included local ex-
change and correlation in the kernel of Eq. (3.2), and have
recomputed U«, (z~). We find that the new equilibrium
site is shifted further away from the result obtained in the
nonlinear theories (we obtain zt—-0.31). This is so be-
cause the effect of exchange and correlation is to make the
attractive part of the well shown in Fig. 6 (the image po-
tential) somewhat deeper. Thus, as asserted by Gun-
narsson et al. , the approximations of linearity and gra-
dient expansion of the kinetic energy must give the
"correct" value of the proton equilibrium site by cancella-
tion of errors.

Now a quantity of interest in, for example, the analysis
of large-angle, high-resolution EELS,' and in physisorp-
tion studies, is the location of the effective image plane,
z; . It is known ' that z; gives the position of the
center of mass of the charge induced at the surface by a
point charge placed infinitely far from the surface. In our
theory the value of z; can be extracted directly from Eq.
(3.7). For z»&d the exponential in Eq. (Bl) acts as an
effective cutoff. Thus in this limit we rewrite Eq. (3.7) as

002

U; (zt)= — dq~~e
' (a+bq~~+ . )

2
(3.11)

0.0
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FIG. 6. Total proton-surface interaction energy U„,(z&), for
an aluminum substrate. Also shown are the attractive (image
potential) and repulsive (dipole barrier) contributions to U„,(z& ).

an 11-layer —film calculation, remain unchanged when the
computation is performed for thicker films. Thus, the
values of z;~ given in Table I represent the semi-infinite
medium results.

In Table I we first give z; (measured from the jellium
edge) obtained using the wave functions P~(z) associated
with the Lang-Kohn profile obtained as described in Sec.
II (full RPA results). We also give the results obtained
using the IBM. The comparison of both sets of calcula-
tions highlights the inadequacy of the IBM: Whereas for
the correct no(z) the center of mass of the induced charge
lies in the tail of the electron-density profile, in the IBM it
lies inside the jellium. This feature of the IBM is shared
by the even coarser approximation known as the semiclas-
sical IBM, ' in which no(z) exactly replicates the jellium
background. (In that case z; lies even deeper into the jel-
lium. )

For purposes of comparison, in Table I we quote the re-
sults obtained by Lang and Kohn for r, =2.0 and 4.0 (for
aluminum and sodium the corresponding values of r, are
2.07 and 3.93). The difference between the results of
Lang and Kohn and the RPA results obtained in this
work (note that their results place the image plane farther
out in the tail) must be attributed to the presence of (local)
exchange and correlation effects in the response calcula-
tion of Ref. 3. This conclusion, supported by very recent
results of Rasolt and Perrot within the IBM, has been

x] —Z$ d I (3.13)

From our numerical solution for X „(q~~ ) for ql~ ~0 we
have [using Eqs. (3.7) and (B1)) that a= 1 to six signifi-
cant figures; this serves as a check of our numerical pro-
cedure, Comparing Eq. (3.12) with a similar expansion of
the classical result (3.8) in inverse powers of x t, we con-
clude that

TABLE I. Position of the effective image plane z;, mea-
sured from the jellium edge. We compare the results of the full
RPA calculation performed using the self-consistent electron
wave functions Pq(z) with those obtained using the IBM for
these wave functions. Also shown are the density functional re-
sults of Lang and Kohn.

b
xim =zim d =

2
(3.14)

Aluminum
z; (A)

Sodium
z; (A)

In Table I we give the results obtained for z; via the
numerical evaluation of the coefficient b for aluminum
and sodium surfaces. These results, obtained carrying out

RPA
IBM
Lang-Kohn

0.65
—0.32

0.85

0.32
—0.36

0.69
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verified explicitly by including local exchange and correla-
tion in the kernel of Eq. (3.2). It would be of interest to
include nonlocal exchange and correlation effects in the
computation of z; . (This may yield a smaller value for
z;m. }

B. Total energy of interaction between two charges
placed near a metal surface

When two charges Qi and Qz are placed at positions

Ri and Rz in the vicinity of a metal surface, in addition
to the direct (free-space} Coulomb interaction between
them there is an indirect interaction mediated by the po-
larization of the surface: The screening charge induced by
the presence of one of the charges interacts with the
second charge (and vice versa).

Now, the subject of lateral interactions between charges,
e.g., adsorbed atoms and molecules, near a metal surface
has received a great deal of attention in recent
years. ' Various models of different degrees of so-
phistication have been used in treating the substrate sur-
face response ' ' and the quantum-mechanical nature of
the adsorbed species. ' Furthermore, experimental evi-
dence of the importance of the electronic mechanism for
lateral interactions between adsorbed atoms has been
given. Here our objective is twofold. First, as was done
above in the evaluation of the image potential, we wish to
illustrate the usefulness of the method introduced in Sec.
II. Second, we believe a calculation of the energy of the
lateral interaction of two (classical) charges in which the
surface response is obtained by the full solution to a well-
defined microscopic model, such as the RPA, to be of
considerable interest in itself.

The indirect energy of interaction 8"(Ri',R2) equals

the potential energy of the charge at Rz due to its interac-
tion with the charge density induced at the surface by the

charge at Ri (or vice versa). Thus

W&'((R, ;R,)= f d'x f d'x'U, „,(x;R, )X(x;x')

where RII is the distance between the two charges in the
x-y plane,

cos(2kFR (()
W"(R((

~
z,z) W(z)

II

(3.19)

for large values of R(( and for z in the vicinity of the jelli-
um edge, where ~ (z) is a function of z.

It is then of interest to display the contribution to Eq.
(3.17) from the interval 2kF(q((( oo. This is done in
Fig. 8. The oscillatory contribution to W" is indeed
present. Furthermore, the period of the oscillations is
vrlkF, which immediately implies the existence of a singu-

(3.18)

and Jo(x} is the Bessel function of order 0. The matrix
B „(q(( ~

zi, z2) is given in Appendix C.
Figure 7 shows the result of computing W" for an

aluminum surface. We have set Q &
——Qz ——e and

z& ——z2 ——z, i.e., we placed both charges (e.g. , protons) on
the same plane parallel to the surface, at a distance z from
the jellium edge. The four solid curves are labeled by the
corresponding value of z. We note that the curve for
z = —1 A is indistinguishable, on the scale of the figure,
from the results obtained for values of z deeper inside the
medium.

Now, the results shown in Fig. 7 appear to be in con-
flict with the result of Lau and Kohn regarding the ex-
istence of a long-range oscilkttory indirect interaction be-
tween two charges placed near a metal surface. However
the result of Lau and Kohn (derived for noninteracting
electrons) refers only to the contribution to W"(Ri', Rz)
from a very weak singularity in the integrand for

q((
——2kF. More precisely, the fourth derivative of the in-

tegrand of Lau and Kohn's expression for 8"(R&,R2)
has a square-root singularity for q((~2kF from above.
From this result they obtain the following asymptotic
behavior:

&& Ue„,(x ';R2), (3.15}

W('((Ri, Rp) = W('((R ((',z i,z2 ) (3.16)

= f dq((~o(q((R(() g Bmn(q(( I
zi»z}

where U,„,(x;R& z) is defined by Eq. (3.5). Alternatively,
Eq. (3.15) may be viewed as giving the work done in

bringing the charge Qz from infinity to R2 agairist the
field of the charge density —en;„z(x) induced at the sur-

face by the charge at Ri (classically, by the fixed image of
Qi ).

By introducing the two-dimensional Fourier transforms
of X(x,x ') and of the Coulomb potential, and the repre-
sentation (3.4) for X(q(( ~zz'), the integrals in Eq. (3.15)
are performed analytically. We are thus led to the result
that

0.00

Z =5A

—0.50

C9
K —0.60

LLI

+ —o.eo
O
LLI

—1.20

—1.50
0.00 I.OO 2.00 5.00 4.00 5.00 6.00

O

R„(A)

mn

+Xmn(q(() !

(3.17)

FIG. 7. Indirect energy of interaction 8""(RII,'zz) between
two protons placed at a distance z from an aluminum surface as
a function of their lateral separation R

II
(z is measured from the

jellium edge). We show by the dashed line the IBM result for
z=1.5 A.
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FIG. 8. Oscillatory contribution to the indirect interaction
W"(Rii

I
zz) shown in Fig. 7.
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FIG. 9. Total energy of interaction 8'"(Rii
i
zz) between two

protons placed at a distance z from an aluminum surface as a
function of their lateral separation R ii. Note that the period of
the oscillations that obtain for negative values of z (i.e., inside
the jellium) equals m/kF ——1.79 A.

larity in the integrand of Eq. (3.17) [that is, in X „(qadi)] at

qadi
2kF. (T——he singularity is too weak to be apparent in a

plot of the integrand. ) However, for the range of values
of z for which we have computed 8", the amplitude of
the oscillations decays slower than the fifth power
predicted by Eq. (3.19) (the decay rate is closer to Rii ).
Thus the fifth-power decay law must take hold at dis-
tances larger than typical adatom-adatom separations. Fi-
nally note the rapid decrease in the amplitude of the oscil-
lations as the charges are moved outside the jellium (the
curve for z| ——1.0 A has been multiplied by a factor
of 10).

The above conclusions are consistent with the approxi-
mate analytical results of Johansson concerning the na-
ture of the long-range Friedel oscillations around an ada-
tom. Using the IBM this author finds three distinct re-
gions (if the "adatom" is far from the surface there is a
fourth region as well). For R

ii
(kz ' one has the

preasymptotic region. For Rii )k~ and Rii comparable
to the adatom-surface distance, an asymptotic expansion
is possible, but no simple decay rate of the amplitude of
the oscillations in powers of Rii is found. For even
larger values of Rii (Rii) 10 a.u. for r, =2.07, according
to Fig. 2 of Ref. 25), the decay rate is given by Eq. (3.19).
A detailed analysis of the Friedel oscillations in the
charge density induced by a surface impurity will be given
elsewhere.

We emphasize that the oscillatory indirect interaction
depicted in Fig. 8, whose amplitude is of the order of a
few millirydbergs, is completely obscured by the much
larger, monotonically-decaying interaction (of the order of
a rydberg) that arises from the contribution to Eq. (3.17)
from the interval 0&qi~ &2kF, which on the scale of the
figure is practically the same as the full 8"' shown in
Fig. 7. For large values of R~i the behavior of the mono-
tonic interaction (-Rii ) is determined by the behavior
of the integrand for

qadi
—+0 (it behaves like a +bqii, with

a+0).
Now, in addition to the indirect interaction given by

Eq. (3.17), the two charges interact directly through the
free-space Coulomb interaction

(3.20)

Note that the two interactions are of opposite sign [for
charges of equal sign Eq. (3.17) leads to an attraction and
Eq. (3.20) to a repulsion]. Furthermore, they are of the
same order of magnitude (fraction of a rydberg). Thus
the question arises of whether the total energy of interac-
tion

W'"(Ri', R2) = 8"'(R|,'R2) + 8' '(Ri,'R2), (3.21)

20.00

C9

16.00
Z',
UJ

I 2.00
O

~ 0 8.00
E

4.00—

I- o.oo
OI-

'I (f)
Z= —IA (IBM)

400
l. 50 4.50 7.50

R„ (A)
10.50

FIG. 10. Same as Fig. 9, but for a sodium surface. The
period of the oscillations present for negative values of z equals
m./kF ——3.40 A.

shows a long-range oscillatory behavior by virtue of the
large cancellation that obtains upon adding Eqs. (3.17)
and (3.20).

Figure 9 shows results for 8""(Rii
~

z,z) for an alumi-
num surface. For completeness, we show in Fig. 10 the
corresponding results for a sodium surface. We notice
that 8'"(Rii,z,z) does show long-range oscillations (of
period m/k~) for values of z inside the jellium. However,
outside the jellium the oscillations are simply too small in
magnitude to be of significance.

A point worth noting in the results given in Figs. 9 and
10 is the relatively slow convergence of the total interac-
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tion energy as a function of the depth z into the jellium.
(In the case of sodium the convergence is oscillatory in
nature, cf. Fig. 10.) These results suggest that the effect
of the surface on vibrational frequencies near the surface
could be rather long ranged.

From our results we conclude that the mechanism con-
sidered here (coupling of two charges by the polarization
of the electron gas at the surface) does not lead to an
overall long-range oscillatory interaction of two charges
placed outside the jellium ("adatoms") as is the case when
the charges are inside the jellium. This conclusion ap-
pears to be contrary to current thinking in the field. Of
course the coupling mechanism first proposed by Grim-
ley, by which two chemisorbed atoms are coupled by
electron tunneling through the substrate, does lead to an
oscillatory indirect interaction between the adatoms. This
mechanism is outside the scope of the present work.
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APPENDIX A: THE MATRIX M~p

The Hamiltonian inatrix Mpp is defined by the equa-
tion and

—2 cos (p +p'}—z (A5)

Ip ~ (z) =5pp z —zd + +(1 5pp )—PP 2( )2i1+( —1)P P —2 cos (p —p') —z (A6)

We note that the integral that defines the matrix Mpp" can only be evaluated numerically. On the other hand, the ma-
trix Mpp

' can be obtained in closed form. Substituting Eq. (2.9) in Eq. (2.2) and this in Eq. (A2}, and carrying out the re-
quired (rather lengthy) algebra, we are led to the following explicit alternative result for the matrix Mpp '.

(~) 8d' 2&zoEl +d e zo zo——5PP Up— 1 —3 +2~2a

2d 4n+d[8 —(1—5 )8 ]-
77 Qg

2

pp

In Eq. (A7) we have made the following definitions

I I

U() ——g e(EF el)(EF El) g o—, a, [1+—( —1)' '] —(1—5„)
(4 )2 [ 2

( i)2]2

and

(I) (I)Bp +p 2 g e(EF el )(EF El } g —' [5 —',p+p'+ 5 —', —(p+p') 5 + ',p+p' 5 + ', —(p p')]
P —7 $$

(A9)

r

sin[n. (p +p')zpld] sin[a.(p p')zpfd]—
App =[1+(—1}P P ]

(p +p')' (p —p')' (A10)
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Both Eqs. (A2) and (A7) are used in our numerical pro-
cedure. We note that in establi. shing the result given by
Eq. (A7) we have used the result

(Al 1)

z 2 —~Ill )
—+ [(—1) —e 'I ]

mn(qII I zt ) =~e 0 le
[ql, +(mm/d)']

(B1)

which guarantees the overall charge neutrality of the sys-
tem.

APPENDIX B: THE MATRIX Am„(qll i zi )

In this appendix we give the matrix A „(qll ~
z~ ) expli-

citly. This matrix was introduced in the result for the im-
age potential U; (z&) given by Eq. (3.7). Our result
adopts a different form depending on whether the external
charge is outside or inside the electron gas. (Recall that in
this paper the origin of coordinates has been placed on the
left-hand infinite barrier. )

(i) External charge is outside the electron gas, z~ &d.
We have that

Note that here z] —d is the distance between the charge
and the right-hand infinite barrier. For z& &0 the defini-
tion of 2 „(qll ~

z~ ) is obtained from Eq. (Bl) with the re-
placement zt —d~ ~z) ~.

(ii} External charge is inside the electron gas, 0 & z~ & d.
We have that

Q lq
I I

cmn (q
I I I

z i }2 2

2[qll+(mm. /d) ][ qll+(n~/d) ]

where we have made the definition

—4m ~ ( —1) —cos (m +n) —z~
1 m+n

m+n d

& )[( 1)m+~ II'~]

(1—5 „)
( —1) "—cos (m —n) —z~

m —n d

( 1)m[e II +( 1)"] cos z) [(—1)"e II
'~ +e I '~]

d
(B3)

APPENDIX C: THE MATRIX B (qll I
z~ » }

The matrix B „(qll ~z~,zz), introduced in Eq. (3.17),
takes a different form depending on whether both charges
are outside the electron gas, inside it, or one is inside
while the other is outside. For brevity we now give the re-
sults for the first two cases only. (These are the cases con-
sidered in Sec. III.)

(a) Both charges are outside the electron gas, z& & d and
z2&d. We have that

2 —
qI

~

(z
&
+z2 —2d)

+mn(qll I
zliz2) 2~e Q1Qze

a (z))I mn(qll I
z»z2} 2~e Q1Qzqll

[ qll+( mar /d) ]
a„(z, )

[q', I+(n ~/d)']
(C2)

where we have made the definition

(b) Both charges are inside the electron gas, 0& z& &d
and 0 & z2 & d. We have that

—/lid

X
[q', I+(m ~/d)']

X [(—1)"—e II ]
[qll+(nn. /d} ]

Pt 7Ta (z, )=2cos z~

[e 'tll~l+( 1)m ejl ~1
] (C3)
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