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Calculation of electron states in Cu„Zri „glasses by the orthogonalized
linear combination of atomic orbitals method
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Based on periodic structural models containing 90 atoms which are computer relaxed, the elec-
tronic structures of metallic glasses Cu„Zr& „are calculated using a first-principles orthogonalized
linear combination of atomic orbitals method. The calculated density-of-states curves and their
values at the Fermi level are in good agreement with experiments. Each electronic state in

Cu„Zr~ „ is analyzed in terms of a localization index. It is shown that the Cu states are localized
and the Zr states are relatively delocalized. The states at the Fermi level are delocalized but there is
a tendency for a slight increase in their localization index when the Cu concentration is increased.
The implications of these results for the transport properties of metallic glasses are discussed.

I. INTRODUCTION

Metallic glasses are one of the most important systems
in the general area of disordered condensed matter phys-
ics. Over the past few years metallic glasses have received
a great deal of experimental attention, especially in
characterizing their structural, mechanical, electrical,
magnetic, and superconducting properties. ' While enor-
mous amounts of data have been accumulated, their inter-
pretation and explanation in terms of a consistent theory
has not been fully realized. Ziman's theory and its exten-
sions, ' which are quite successful in the case of liquid
metals, have met with only limited success in metallic
glasses and it is still a puzzle why such a theory, which is
essentially based on a nearly-free-electron model, should
be applicable to strong scattering systems such as those
involving transition-metal d electrons. One of the key ele-
ments required to formulate a better theory is a fuller
understanding of the electronic structures of various me-
tallic glass systems. Although the calculation of band
structures of crystalline metals has been advanced to a
stage of high sophistication, realistic calculations of elec-
tron states in metallic glasses are only beginning. Gen-
erally speaking, there are three levels of information about
the electronic structures of metallic glasses: (I) the elec-
tron density of states (DOS), which is the most fundamen-
tal quantity describing the electron states in a disordered
solid; (2) the value of the DOS at the Fermi level Ef,
which relates to so many important experimentally
measurable parameters, such as the superconducting tem-
perature T„ the temperature coefficient of specific heat
and magnetic susceptibility, and which enables an accu-
rate estimation of the effects of spin fluctuations; (3) the
nature of electronic states at Ef, particularly the degree of
localization, which is related to the electronic mean free
path and is critical to the interpretation of many
anomalies in the transport properties of metallic glasses.

Current theoretical efforts concentrate on obtaining the
DOS curves, whjch can then be compared with photo-
emission experiments. In this paper we describe the
methods and the results of a calculation on Cu„Zri
glasses, which provides the three above-mentioned levels
of information. In recent years, the Cu„Zrj „metallic
glass series has been studied in detail experimentally. '

This glass, which consists of an early transition (ET) met-
al Zr and a late transition (LT) metal Cu, can be formed
in a wide range of compositions and exhibits many in-

teresting properties such as superconductivity, ' ' ' '

negative temperature and pressure coefficients of electric
resistivity, ' ' ' ' and crossover behavior of the Hall
coefficient. ' ' Our approach to the calculation of the
electronic structures in Cu„Zri „ is as follows. First, we
construct appropriate structural models consisting of 90
atoms in a cubic cell, which are periodically extended.
We then apply a first-principles method, the orthogonal-
ized linear combination of atomic orbitals (OLCAO)
method, to obtain the electronic structures. Next, we
analyze the resulting wave functions of each state in terms
of a localization index (LI) to reveal its degree of localiza-
tion. Our previous work on this system involves only 39
atoms in the periodic cell and therefore is too small to
analyze the wave functions in terms of its LI. It must be
pointed out that the first-principles nature of the calcula-
tion and the use of a sufficiently large quasiunit cell are
essential in making meaningful localization analyses. In
empirical studies the interaction matrix elements are usu-
ally parameterized and do not fully reflect the random po-
tential field experienced by an electron in a disordered
solid; hence in these studies a similar type of localization
analysis will be unreliable, if not impossible. The present
paper is organized as follows. In Sec. II the construction
of model structures used in the present calculation is
described. The essential steps of the theoretical calcula-
tion of electron states are outlined in Sec. III. The results
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are presented in Sec. IV, where comparisons with relevant
experiments and other calculations are made. The last
section is devoted to a discussion and some concluding re-
marks.

II. CONSTRUCTION OF STRUCTURAL MODELS

Before actual construction of the inodel, we must first
decide the total number of atoms N (both Cu and Zr) to
be included in the cubic cell. One would like to have X as
large as possible, limited only by one's computational
resources. Since our aim is to study the electronic struc-
tures, N is determined by the feasibility of performing an
electronic structure calculation using the Inethod to be
described in the next section. We chose N to be 90 for
calculation with Cu Zr& „. The second step is to deter-
mine the size of the cubic cell. This is done by requiring
the mass density of the model to be the same as the exper-
imentally determined values. In Fig. 1 we plot the mea-
sured densities of Cu„Zri „which appeared in the litera-
ture ' as a function of x, and use this curve to deter-
mine the size of the cubic cell at any value of x. For a
given value of x, an appropriate number of Cu atoms and
Zr atoms are placed at random in the cubic cell. This ini-
tial configuration of the model must be relaxed under a
suitable potential field. Following several workers in the
field, we use a Lennard-Jones type of potential of the
form

8
i&+ 6 +Crj+D for 0&rj &r, ,U;=. r r;.

0 for r, &re,

where r,J is the distance of separation between the atoms i
and j, and r, is the truncation distance which is set rather
arbitrarily. The parameters A and 8 are generally fixed
by the available experimental information such as inter-
atomic separation, cohesive energy, and bulk compressi-
bility of the elemental metal. (The parameters for the
Cu-Zr pair are taken as the geometric means of the Cu-Cu
and Zr-Zr pairs. ) The parameters C and D are fixed by
the condition that U,J and its derivative vanish at r, .
These parameters are listed in Table I and the three types
of the pair-wise potentials are plotted in Fig. 2. Two
types of relaxation processes are used: (1) the conjugate
gradient method, in which each atom moves in turn to
the position of zero force field under the potential given
by Eq. (l) until the total elastic energy can no longer be
reduced; this corresponds to the case of zero-temperature
quenching; and (2) the Monte Carlo method, in which a
fictitious temperature parameter T is introduced; the sys-
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FIG. 1. Density of Cu„Zr& „as a function of x. 0 denotes
Ref. 29; 4 denotes Ref. 28; X denotes Ref. 27.

W(r) =4m. [p(r) —pp]/pp, (2)

is then calculated from the resulting equilibrium positions
of the atoms where pp is the average atomic density.
These are shown in Figs. 2—5 for the three values of x
considered: x =0.33, x =0.50, and x =0.67. Also
shown are the experimentally determined PCF for com-
parison. ' The two methods of relaxation gave similar
results and the agreement with the experimental
curves ' is quite reasonable. The slight differences in
the small substructures of PCF can be attributed to the
simplified potential functions used in the relaxation and
the limited number of atoms per cubic cell considered. A
more realistic interatomic potential in metallic systems
should include Friedel oscillations in the tail part of the
potential. However, other than the case of simple met-
als, it is quite difficult to derive more general and accu-
rate potential functions either from first principles or
from experimental data. We have also calculated the
average nearest-neighbor coordination numbers Zc„and

tern is then relaxed using the conventional Monte Carlo al-
gorithm by successively reducing the "temperature" T
from an initial high value down to zero. There appears to
be no significant difference in the radial distribution func-
tion of the same model relaxed by the above two different
methods, but the Monte Carlo method gives a faster rate
of convergence towards the final equilibrium configura-
tion. Furthermore, the Monte Carlo method of statistical
mechanics bears a close resemblance to the actual rapid-
quenching process in the preparation of metallic glasses.

Throughout the relaxation process, periodic nearest-
image boundary conditions were imposed and all the
pair-wise interactions for pairs of atoms within a distance
r, are included. The pair correlation function (PCF)

TABLE I. Parameters of modified Lennard-Jones potential interatomic distances and truncation distances used in the relaxation of
structure models for Cu„Zr~

Pair

Cu-Cu
Cu-Zr
Zr-Zr

A (eVA' )

0.1043X 10
0.4035 X 10'
0.1109X 10

a (eVA')

—0.4492 X 10'
—0 1050X 10
—0.2230 X 104

C (eVA-')
—0.003 26
—0.004 70
—0.006 34

D (ev)

0.0266
0.0411
0.0592

2.80
3.01
3.16

7.0
7.5
8.0
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FIG. 2. Sketch of Lennard-Jones type of pair potential used
in the relaxation. Solid line denotes Cu-Cu; Dashed-dotted line
denotes Cu-Zr; dashed line denotes Zr-Zr.
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FIG. 4. Same as Fig. 3 for Cu0 5Zr0 5 ~

Zz, and the short-range order parameters g,/ (Ref. 39) for
each model, which are listed in Table II. The small values
of g/ indicate that there is very little chemical short-
range order in these models as would be expected
from a glass formed by an ET metal and a LT metal. We
did not make any further efforts to characterize our
models such as searching for the two-level tunneling
centers or the estimation of their densities, though the
existence of such centers in our models cannot be ruled
out. We would rather consider these models as a reason-
able representation of the actual equilibrium, metastable
structures of the Cu„Zrl „glasses. The atomic coordi-
nates of the models are then used in the electronic struc-
ture calculations.

II. METHOD OF ELECTRONIC STRUCTURE
CALCULATION

The first-principles OLCAO method has been very
successful in the calculation of electronic structures of
disordered materials such as amorphous semiconductors,
insulating glasses, ' and crystals with very complex struc-
tures. We briefly outline the method in this section with
special comments deemed appropriate for the metallic
glass system. We start with the construction of the total
charge density of the system p(r) by superposition of
atomic charge densities from atoms whose positions are
defined by the coordinates of the model. In accordance
with the local-density-functional theory, the exchange-
correlation part of the one-electron potential can be con-
structed according to
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FIG. 3. Pair correlation function 8'(r) for Cu033ZI067 (a)
Relaxation by Monte Carlo method; (b) relaxation by conjugate
gradient method; (c) experimental results of Ref. 27.
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TABLE II. Some calculated characteristics of 90-atom models for CU„Zr~ „.The symbols are explained in the text. Supercell lat-
tice constant a, coordination numbers, and chemical short-range orders for Cu Zr& „models.

0.33

No. of Cu
atoms

30

No. of Zr
atoms

60

a (A)

12.152

Origin
atom

CQ

Zf
3.9+1.6
3.8+ l.6

Zr

7.6+1.4
8.6+1.6

Total

11.6+0.9
12.4+0.9

IAA EBB

0.06 0.02 —0.03

0.50 45 45 11.664
CU

Zr
5.9+2. 1

5.8+1.9
5.8+ l. 8
6.8+1.6

11.6+ l.0
12.6+ 1.0 0.05 0.04 —0.04

0.67 60 30 11.294
Cu
Zr

8.1+1.7
8.5+2.0

4.2+1.2
5.2+1.3

12.3+1.0
13.6+ 1.2 0.03 0.06 —0.05

VEc( r )= —
2 rr[3p(r )~~]

p(r) =gp"(r —Ri),
I

where a is the exchange parameter and p"( r } is the charge
density of atom A at R&. For the sake of computational
convenience, we decompose VEC(r) into localized func-
tions VEC(r } centered at each atomic site by a numerical
fitting procedure so that they add up to the VEC(r ) given
by (3). Since the Coulomb part of the potential Vci(r ) is
a simple superposition of Coulomb potentials of each
atom:

Vci( r ) =g Vci ( r —Ri ),
I

A p

[
r —r'/

where Zz is the atomic mass number of atom A, the total
one-electron potential V( r) can be written as a superposi-
tion of atomiclike potentials V"( r ) centered at each site:

V( r)= Vci(r)+ VEc(r)=yv (r —R$),
I

where

V"(r)= Vci(r)+ VFC(r) .

The effective atomiclike potential V"( r ) differs from
the true atomic potential only in the valence region due to
the presence of other atoms in the solid. The potential
constructed above is generally called the "overlap of
atomic charge density" (OAC) model. The OAC model
has been shown to give better results than does the
simpler "overlap of atomic potential" (OAP) model. In
an amorphous solid, V"(r) differs slightly from site to
site because of the different local environments. For prac-
tical reasons, we averaged V (r) over different sites of
the same type of atom; thus V"(r) depends only on the
atomic species and the compositional parameter x. V"( r )
is numerically fitted to a functional form consisting of a
sum of Gaussians, in order to facilitate the later evalua-
tion of multicenter integrals occurring in the Hamiltonian
matrix elements. Next, we use the method of contraction
to obtain a set of atomiclike orbitals p;(r ) which are the
linear combination of Gaussian type orbitals (GTO), i.e.,

2 —CX.f
e ' for s-type orbitals, xe ' for p„orbitals,

—A ~ P
xye ' for d„» orbitals, etc. We first choose a con-
venient set of 13 Gaussian exponentials Ia; j ranging from
a& ——0. 15 to a&3——250000, and use this set of single
Gaussians as basis functions in solving the Schrodinger
equation with potential V"( r ). The resulting eigenvalues
can be easily identified as atomiclike states' ' of the
atom A and the corresponding normalized eigenvector
coefficients will be the coefficients of different GTO in
forming p;(r). These contracted atomiclike orbitals are
qualitatively similar to the free-atom orbitals, but are gen-
erally shorter ranged and include, to some degree, the dis-
tortion caused by other atoms in the solid. We use the
same set Ia; I for contraction with Cu and Zr atoms, as
well as for states of different angular momenta. This is a
very important feature in our method because it greatly
reduces the number of integrals which must be calculated
and makes a seemingly impossible first-principles calcula-
tion for an amorphous solid manageable. A Bloch sum

may be constructed from p;( r):

b;~(k, r)=pe "p;(r —R„—p~),
V

(7)

where R„ is the supercell lattice and p is the position of
the ath atom in the vth cell. For a sufficiently large cell,
such as those considered here, the Brillouin zone (BZ) is

very small and only the case k =0 need to be considered.
Effectively, our calculation is k independent, as it should

be for an amorphous solid where k is no longer a good
quantum number. With the use of a minimal basis set,
the index i covers the core orbitals and the occupied
valence orbitals of each atom. Since the core states are
not of our prime interest, we wish to eliminate the core
states from the calculation without the risk of losing any
accuracy in energy eigenvalues. This is accomplished by
orthogonalizing b;~(k, r ) to all the core Bloch sums of all

the other atoms. We now use b (k, r) to denote an
orthogonalized Bloch sum in which i covers only the oc-
cupied valence orbitals. These are 4s, 4p„, 4p~, 4p„3d„~,
3d~» 3d~, 3d„, 2, and 3d3.. . for Cu atoms and Ss,

5p„, 5p„, 5p„4d„», 4d„„4d, 4d, „and 4d3„. .. for
Zr atoms. The electron states are obtained by solving the
810&810 secular equation:

i
H ~ Jp(k) =S~ Jp(k)E(k) i

=0
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FIG. 8. Same as Fig. 7 for Cup 5Zrp5.

no evidence of the spurious substructures in the DOS
curves which appear in other theoretical calcula-

8, 10, 12tions. ' ' To meet a more stringent test on the accuracy
of our calculation, we computed the DOS at E, N(E )f~ f
for the three compositional values of x and these are list-
ed in Table III together with other important quantities
calculated. These values of N(Ef) are also decomposed
into different atomic and orbital components. In Fig. 10
we plot the calculated N(Ef) of Cu„Zr~ „as a function
fo x together with several experimentally determined

14, 15, 17,22values. ' ' ' These are the bare DOS's at Ef obtained
from the low-temperature specific heat and superconduct-
ing temperature data, converted by using McMillan's for-
mula. It is clear that the calculated values of N(E ) areare

in excellent agreement with experiments. On the other
hand, recent calculations by Fujiwara' gave N (E )

values about 35% too low. From the values listed in Table
f

III, we observe that at low x, N(Ef ) is dominated by Zr
4d states but with a non-negligible contribution of about
13'Fo from Cu states as well. At a higher Cu content
(x =0.67), N(Ef ) is about 43% for Cu states. Both Cu
4s, Cu 4p and Zr Ss, Zr Sp make small but non-negligible
contributions to N(Ef). The ratios of Zr 4d states to Zr
Ss and Zr Sp states are consistent with relative magni-
tudes obtained from susceptibility measurements. ' The
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FIG. 11. Calculated LI of Cu„Zr& „glasses: (a) x =0.33, (b)
x =0.50, and (c) x =0.67.
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TABLE III. Some calculated electronic properties of Cu„Zr& „. The symbols are explained in the text.

Effective charge
(electrons)

Qz.E~ (eV) E;„{eV) QcU

Charge transfer
per atom (electrons)

bQ /Cu EQ*/Zr
X(E~) (states/eV atom)

Cu 4s Cu 4p Cu 3d Zr 5s Zr 5p Zr 4d Total

0.33 —4.12
0.50 —3.81
0.67 —4.10

—2.81 11.98
—2.40 11.83
—1.80 11.79

3.51
3.17
2.42

0.98
0.83
0.79

—0.49
—0.83
—1.58

0.014 0.101 0.026
0.012 0.114 0.050
0.019 0.181 0.060

0.031 0.156 0.713 1.04
0.028 0.078 0.577 0.86
0.028 0.029 0.289 0.61

EF
(a)

I ~,~ ' ' ~ ~' ~

(b)

2-
~ ~ r ~

4- (c)

2.

0,
-1,0

I I I j I

-5

ENERGY (eV)

I T I

30

FIG. 12. Same as Fig. 11, but only for states 1 eV above and
below Ef.

average effective charges Qc„and Qz, are also listed in
Table III. There is a considerable amount of charge
transfer from the Zr atoms to Cu atoms. For x =0.5, an
average of 0.83 electrons are transferred from a Zr atom
to a Cu atom. Because the effective charges are calculat-
ed according to a Mulliken's scheme which is of limited
validity in metallic systems, and because the present cal-
culation is not fully self-consistent, the amount of charge
transfer quoted above should be viewed with caution.

To ascertain the nature of electron states in Cu„Zr&
we calculated the LI of each state according to (13).
These are plotted in Fig. 11. The following observations
can be made. (1) For low Cu content, all Cu states are lo-
calized. When the Cu content is increased, only the states
near the Cu 3d band edges are localized. (2) The Zr states
are generally delocalized, although there is a tendency to
increase the LI when the Zr content becomes small. The
relative differences in LI between Cu and Zr states can be
attributed to the much wider Zr 4d band (10—15 eV) as
compared to the Cu 3d band (3—4 eV). (3) The states at
Ef are not localized. However, as the Zr concentration is
decreased, the Fermi level moves closer to the edge of the
Zr 4d band, and the states at the vicinity of Ef start to
show some signs of increased localization. This fact is ex-
emplified in Fig. 12 in which we plot the LI for states

within 1 eV above and below Ef in an enlarged scale. In
comparison with highly localized Cu states, these states
near Ef can still be judged to be relatively delocalized.
From these results, it is fair to conclude that it is very un-
likely to have states at Ef highly localized for any other
values of x in the Cu„Zr~ „series.

V. DISCUSSION

We have calculated the electronic structures of
Cu„Zr& „glasses using a first-principles method. Our re-
sults provide three levels of information about the electron
states in metallic glasses, namely (1) the DOS, (2) the
quantitative value of the DOS at Ef, and (3) the nature of
electron localization in such a glass. The overall agree-
ment with experimental measurements is very good. Two
questions that have been constantly raised with regard to
such theoretical calculation are the following: (1) Is the
calculation based on a single-structure model for each x
representative of the actual electronic structure of the
glass? (2) Is the cubic cell consisting of 90 atoms suffi-
ciently large to represent an amorphous solid? To address
the first question, we made an additional calculation on
Cu033Zlo 67 based on another structural model indepen-
dently constructed. The PCF calculated from these two
models are almost the same. The DOS curves calculated
using these two different models of same x are compared
in Fig. 13(a). There is hardly any difference in the two
curves, indicating that the results from a single-model cal-
culation are indeed quite representative. To answer the
second question, we note that if the cell is sufficiently
large, the corresponding BZ will be sufficiently small and
the DOS based on the eigenvalues obtained by diagonali-
zation of matrix equation (8) at the center of the BZ and
at the corner of the BZ should be the same. Figure 13(b)
shows the DOS of Cuu 33Z10 67 obtained at k =(0,0,0) and

k=(2'/a)(1, 1, 1), respectively. The spectra from these
two calculations are almost indistinguishable, especially
for states below Ef. We thus conclude that, as far as elec-
tronic DOS is concerned, a 90-atoms model is sufficiently
large for a system such as Cu„Zr&

There are several aspects of our calculation which differ
from other theoretical approaches. First, by using a
periodic model of definite size, the density of the model is
always correct, in contrast to cluster type of models ' ' '

in which the density may not agree with the experimental-
ly measured value. Second, because the actual atomic po-
sition of each atom enters into the calculation rather than
just partial structure factors, the disorder in the metallic
glass system is treated at a microscopic level. Third, due
to the first-principles nature of the calculation, the effect
of potential fluctuation and the short-range order of each
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individual atom are fully taken into account. This, in
conjunction with the use of large unit cell, enables us to
quantitatively analyze each state in terms of its LI.
Fourth, there is no assumption in our theory which makes
it applicable only to weak scattering cases; the method is
completely general with regard to different types of glassy
systems, and there are no intrinsic limitations on the num-
ber of atomic components that may be present. Last, full
self-consistent-field calculation may be desirable, but in
practice because of the large number of atoms involved, it
is not economically feasible to perform them. It is much
more efficient to construct V"(r) carefully to yield good
band structures of the elemental crystals before they are
used in the metallic glass calculations.

The present calculation offers no detailed information
about the transport properties in Cu Zr~ glasses other
than those inferred from the nature of the electron locali-
zation at the Fermi surface. If localization is going to
weaken superconductivity in Cu„Zr~ „,a decrease in T,
as x is increased may be due to two factors: (1) the de-

ENERGY (eV)
FIG. 13. (a) Total calculated DOS for Cup 33Zrp 67 using two

independent structural models. (b) Total calculated DOS for
Cup33Zrp67 obtained from k=(0,0,0) and k =(2m/a)(1, 1, 1),
where a is the supercell lattice constant.

crease of N(Ef) and (2) the slight increase of the LI for
states near Ef. With regard to the stability of glass for-
mation, we may conjecture that the wide compositional
range I for glasses formed by an ET metal and I T metal
may be associated with the delocalization of electron
states in the vicinity of Ef in such glasses. Nagel and
Tauc, based on a nearly-free-electron model, had argued
that the stability of a metallic glass should be linked to
the location of Ef at a local minimum in the DOS curves.
Such is not the case for Cu„Zri „,since from Figs. 7—9,
Ef is located near a broad maximum in DOS for all x.
The results of our localization calculation are certainly in
agreement with the analytic theory of disordered systems
based on model Hamiltonians. General theories address-
ing the electron localization in metallic glasses have ap-
peared recently. ' ' Girvin and Jonson argued that cou-
pling of phonon and localized electrons may actually in-
crease the electron mobility, and such a mechanism could
be the source of Mooij correlation between the resistivity
and its temperature coefficient. Because of the complicat-
ed interplay of many competing factors such as the
strength of scattering, the bandwidth of each orbital com-
ponent of each atom, and the amount of charge transfer
that may be involved in an amorphous environment, it is
difficult to predict the nature of electron localization at a
Fermi level for any particular system without making de-
tailed calculations such as those demonstrated in this pa-
per. It therefore becomes necessary to make detailed cal-
culations on various metallic glass systems and to corre-
late the results with a variety of experimental observa-
tions. Such information will certainly aid the develop-
ment of a consistent theory for the eletronic processes in
metallic glasses. Since explicit wave functions are ob-
tained in our calculation, it may be possible to study the
conductivity of metallic glasses along the line of the
Kubo-Greenwood formula or its modified simpler
forms without resorting to Ziman's theory, which ap-
pears to be the only presently available theory for theoreti-
cal interpretation of many transport data on metallic
glasses.
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