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Percolation on two-dimensional elastic networks with rotationally
invariant bond-bending forces
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The behavior at the percolation threshold of a two-dimensional elastic network, involving both central
and rotationally invariant bond-bending forces, is studied by numerical simulations and finite-size scaling
analysis. A critical exponent f& 3 is found that is much higher than the corresponding exponent t = 1.3
for the electrical conductivity of a resistor network at percolation. This new result supports the previous
result from a purely central force model and a mean-field-type analysis of the present model. If the bond-
bending-force constant is not smaller than the stretching-force constant, an interesting crossover from a
conductivity-like scaling behavior to the elastic one is observed as the system size is increased.

The purpose of this paper is to show that the elastic
modulus near the percolation threshold of a rotationally in-
variant model with bond-bending forces is governed by an
exponent f which is different from the corresponding ex-'
ponent t for the electrical conductivity. This result was
found previously for a purely central force nearest-neighbor
model, ' which is particularly easy to study by numerical
simulations, but which is also a somewhat pathological case
in some respects. In this Rapid Communication we study a
more realistic model, including both central and bond-
bending forces, using numerical simulations, and finite-size
scaling analysis. Bond-bending forces were considered by
Harris and by Kantor and Webman in an analysis using
mean-field and scaling arguments, which also gave an esti-
mate of f much greater than t.4 A recent experimental
study5 of the elastic properties of metallic plates with
punched holes also leads to a large exponent f.

The principal result of our calculation is that the elastic
modulus exponent of the bond-bending model, f, is again
much greater than the conductivity exponent t in two
dimensions. Our extrapolation of the data, and subjective
estimate of the uncertainty, give f=3.3+0.5, which is in
good agreement with the result of Kantor and Webman and
which is consistent, in the sense of having overlapping error
bars, with the previous result for the central force elastic
percolation model, ' f „=2.4+0.4. At this point, however,
we cannot rule out the possibility that the bond-bending
force model and the purely central force model belong to
two distinct universality classes, because of the peculiarities
of the central force model. In fact, Lemieux, Breton, and
Tremblay6 have recently reported the results of a calculation
which gave a much lower value f„„=1.05 +0.1.

To be more explicit, the bulk modulus K and shear
modulus N of the entire network go to zero as the fraction
of the occupied bonds p falls below a critical value. For the
case of purely central forces [y=0 in (3) below], the result

K, lv —(p —p, )f . (2)

In the present work, we employ a two-dimensional square
lattice, where the exact value of p, =0.5 is known from a
duality theorem. s

The purely central force model is rotationally invariant,
but suffers from a few peculiarities, as follows: (a) the
model has an elastic threshold of p„„=1 on all hypercubical
lattices; (b) the significance of the straight bond chains in
transmitting elastic forces is ambiguous, since, in a non-
linear model, the . straight bonds could "buckle" under
compression but not under extension;9 (c) the dynamical
matrix of a given pair of bonds, and for many more compli-
cated configurations, is not invertible. The inclusion of the
rotationally invariant bond-bending forces in the present
study removes these peculiarities. In any case, since natur-
ally occurring disordered systems cannot be precisely
represented by any simple lattice model, it seems desirable
to explore a variety of different systems so that one can
develop a systematic understanding of the various universal-
ity classes involved in the elastic percolation.

We now describe the bond-bending elastic network model.
Consider a two-dimensional (2D) square lattice. The poten-

of Ref. 1 for a triangular lattice was that as p approaches the
value p„„=0.58

(p p ) cenf

with the value of f„„quoted above. The critical concentra-
tion p„„is greater than the geometric connectivity threshold
p„which has the value p, =0.3473 for the triangular lattice,
because there exist "floppy regions, "7 which are connected
but cannot transmit an elastic force, in the central force
model.

When bond-bending forces are included [y A 0 in (3)],
the elastic threshold moves down to p„and we may write
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tial energy of the lattice is given by

Z-L '/"[II+b, g-I(L)l . (5)

Here, X is the conductivity of the same network, with unit
conductance for the present bonds, and zero conductance
for the missing ones, and al, a2, bl, b2 are constants, and the
functions g~(L) and g, (L) go to zero for large L Some
possible forms for g, (L) have been mentioned in Ref. 14.
The finite-size scaling has also been used by several other
authors. '

Our calculation is carried out as follows. First we gen-
erate a square lattice of height L and width L+ 1, with ran-
domly occupied nearest-neighbor bonds with probability
@=p,= 2. In 50ok of the realizations, the two vertical

edges are not connected, and these realizations are disre-
garded. In the remaining cases, a sparse matrix inversion
solving routine (courtesy of the Computer Science Depart-
ment of Yale University)ts is used to solve for all the dis-
placcmcnts in the system, with the boundary condition that
we specify constant x displacements on each of the vertical
edges while there are no normal forces at the horizontal
cdgcs Bnd no tangcntlal fol'ccs Rt any bound81y. Then thc
solutions are used to obtain the forces on the boundary and,
hence, the Young's modulus Y of the system for stress
along the x axis. (We expect that all the elastic moduli
should all vanish with the same exponent f as one ap-
proaches p„so only I'is calculated in this work. ) Many
realizations of the random configuration are generated and

V= — [(0,—0) r,,l'g, +~ g (gO,„)'g-g„. (3)

Here, OI and 0~ are displacements of node i and node j;
g&

= 1 for the bonds that are occupied, with a probability p,
and g&=0 for the bonds that are empty, with a probability
1 —p; r& is the unit vector from node i to node j. The
sums are, respectively, over all binds and over all pairs of
bonds with a site in common. The bond-bending forces
between two connected nearest-neighbor occupied bonds ij
and ik are given in terms of the change in angle 80,;k at
node i, which is expressed in turn as a linear function of U;,
OJ, and ok. This model is essentially the same as the Kirk-
%'ood model BAd thc Kcatlng model, cxccpt that %'c now
include the bending of 180 bonds. This is to be contrasted
with the situation when a rotationally noninvarian, and
therefore unphysical, Born model was used in describing the
angular forces. ' %ith the Born model, the percolation
thf cshold also fctul Acd to p, thc ofdlnBI'y conncctivity
threshold, but, in contrast to, above, thc critical exponent
became equal to t. In Ref. 1, the Born model was used to
illustrate only qualitatively thc crossover from a central
force-dominated behavior near p„„ to angular force-.
dominated behavior near p, .

Thc flnltc salTlplc slzc L ls Rn. Obstacle towalds gcttlng
good critical exponents in a direct simulation, because the
collcrctlcc lcngtll $ (p —p ) dlvcrgcs as p approaches
p, . %C employ the finite-size scaling calculational scheme'2
following the work of Lobb and Frank' '~ on the percola-
tive conduction problem. In this approach, we fix p at the
exact value of p„and extract the critical exponents from thc
dependence of the elastic moduli and conductivity, when
pf opcfly Bvcl aged, on thc sample slzc. To bc spcelfle, wc
-WfltC fol' P = PL

rC, W -L f/" [at+ a,@(-L)f, ,(4)
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Flo. 1. Plot of ln(l/ Y)/in(L) against 1/ln(L) for p =p,
=1/2, a=l =1, 800 rsalizations for sach L, and 3& L & 50. The
star marked on the y axis is the extrapolated value of j'/I, and ths
cross corresponds to the value of I//u. Nots ths change in slope at
I.= 15.

the above calculations repeated in order to achieve good
statistics. Three different means of the data —the arithme-
tic mean (I/n) g,"Y;, the geometric mean (Il", YI)I/", and
the harmonic [(I/n) g," YI I] '—are then calculated for
the Young's modulus and the conductivity. The entire pro-
cedure is repeated for many different values of L, and (4)
and (5) are subsequently used to extract the critical ex-
POACAtS.

A useful way to display the data is sho~n in Pigs. 1 and 2
for the parameters y/n= I and y/n=0. 1, respectively. By
plotting ln(I/I')/ln(L) against I/ln(L), the y intercept of
the asymptotic straight lines becomes f/I, as can be seen
easily from (4). Both sets of data, and all three means,
should yield the same value of f/~. Indeed, If one extrapo-
lates the data in Figs. 1 and 2 by eye to I/ln(L) =0, all
three lines converge roughly to a value marked by a star on
thc p axis. It ls to bc noted, howcvcl, that thc data with
y=0.1~ in Fig. 2 are straighter than in Fig. 1; so we have
used these data for detailed curve fitting to (4). A marker
(cross) for the value of r/I is also shown on the figures for
the purpose of comparison.

Our method of fitting has been described elsewhere. '4

Kith much larger size lattices and better statistics, it was
possible in the conductivity problem to determine t/v to
within 8 pclccnt, and to choose bctw'ccn vallous posslblc
forms for the correction g, (L). Since the present data span
8 smaller range of L an'd are less accurate, it was not possi-
ble to distinguish between various forms for gf(L), but for-
tunately, the value inferred for exponents does not seem to
depend very strongly on the choice of the correction func-
tion. In the final fitting, therefore, we used gf (L )
= I/ln(L) for convenience. Fits of this form were per-
formed using all of the data points (L =3-50) and with
some of the lower L points removed (L =4-50, L =6-50,
L=8-50) to get a sense for the scatter in the data. All
sucll fIts werc wltllIIl 0.4 of f//v = 2.5 wlltcll, uslllg P = T,
gives the value quoted above, f= 3.3 + 0.5.
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FIG. 2. Same as Fig. 1, but with n = 1 and y =0.1.

The error estimated here is subjective, and of' course we
cannot totally rule out the possibility that data for larger
values of L may show a change in behavior and lead to a
value of f outside of our error bars.

Conductivity data generated from the same Monte Carlo
realizations as used in Figs. 1 and 2 have been analyzed as
above with the result t/v =0.96+0.05, in good agreement
with the more precise previous work. ' The relatively poor
accuracy of the elastic exponent reflects a greater scatter in
the Young's modulus data than in the conductivity data for
a given L. The scatter is also manifest in the larger
discrepancies in the values of the three different means for
Ythan for X.

The general features of Figs. 1 and 2 can be qualitatively
understood as follows. Near the percolation threshold,
strongly bonded regions are connected by tenuous weak re-
gions. The strong regions can be regarded as perfectly rigid,
so the elastic properties near p, are dominated by the weak
regions. These weak regions are quasi one dimensional and
thus can be modeled as tortuous chains. ' Using a slight
modification of the reasoning of Ref. 3, we expect that the
effective force constant E of such a chain is dominated by
the bond-bending forces, and we may estimate
E = c27/(R(2), where R is the resistance of the chain, and
c a constant. This expression for E is essentially the same
as in Ref. 3, but with N, the number of bonds in a typical

chain, replaced by its resistance. As p approaches p„ the
coherence length g —(p —p, ) " diverges, and the elastic
constant of the system goes to zero as Y= c yX/
(2a: (p —p, )f, with f= t+ 2 t = 3.96, which differs slightly
from the estimate f=2v+ I in Eq. (16) of Ref. 3, and
which is slightly larger than our Monte Carlo result. On the
other hand, for any fixed chain length (or fixed () the
above argument will break down if 7/u is sufficiently large.
Specifically, if 7/( is greater than n, it will cost less energy
to accomplish a displacement of the chain ends of adjusting
the length of bonds parallel to the stress, rather than bend-
ing bond angles; we then find in this case that E=2o./R
and, hence, Y=2nX~ (p —p, )'. For values of y/o & 2c
we, therefore, expect two effective exponent regimes:
namely, the conductivity-like scaling regime at low values of
L and the elastic scaling regime at high values of L, with a
crossover occurring at L = c(y/u)t 2. In Fig. 1, for n=7,
we see such a behavior for L = 15, which suggests a value
c = 15, a number not unreasonable if the chain sizes are of
the order ('/10, and the typical chain widths are slightly
larger than one lattice constant. In Fig. 2, for y/o. =0.1 we
see a reasonably straight line behavior for all values of
L & 4, which is consistent with the interpretation just given.
[We have also obtained data for the case y/o. =2 (not
shown) which exhibited a crossover behavior similar to that
in Fig. 1 with the crossover length L at about 20, and the
data at low L extrapolate to a value of about t/v = 1, as ex-
pected from the above argument. ]

We note that for fixed bond-bending constant y, we can
take the limit n ~ in our model and Y will remain finite
for any fixed p (1. Thus, in the region of interest to us
(L ) 3), data for Y/y in the limiting case y/n 0 should
be very similar to the case y/n = 0.1 which is represented in
Fig. 2.

The great sensitivity of the elastic constant to the physical
size of chainlike regions should also explain the large scatter
of the data for Y, compared with the data for X on the same
set of realizations, for given L

Note added in proof After we s.ubmitted this paper we re-
ceived a report of work prior to publication from D. J. Berg-
man, who also studied the same problem and came to simi-
lar conclusions.
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by the National Science Foundation through the Harvard
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