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Target annihilation by random walkers
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%e study the target annihilation through random ~alkers on regular lattices, and for it we derive, based
on the generating functions formalism, an exact expression. Extensions to continuous time and to ran-

dom walks on fractals are given. Using numerical simulations we compare the results to those which ob-
tain for the trapping problem.

I. INTRODUCTION

Recently, much interest has been devoted to the study of
diffusion-controlled reactions through random-walk mod-
els. ' ' Here, the term reaction has to bc understood in a
very wide sense, since the applications range from chemical
processes and their analogs, such as electron scavenging and
recombination6 9 " and electronic and vibrational energy
transfer in condensed media, to models for thc distri-
bution of matter and antimatter (or of magnetic monopoles)
in the universe. ' Random-walk models are ideally suited
for computer simulations, a practical way to obtain results,
since for the vast majority of cases no purely analytical
method exists. On the other hand, there is a strong chal-
lenge for solving special cases analytically; such solutions
help in better understanding the models and are good test-
ing grounds both for approximate solutions and for the nu-
merical simulations.

In this Rapid Communication we report the exact solution
for the target annihilation problem (also called the scaveng-
ing problem), in which randomly placed targets are annihi-
lated by random walkers. " '6 In a certain sense the prob-
lem is the dual of thc trapping problem, ' ' '7 ' in which
walkers (say, the A particles) are annihilated in reaching the
traps (r particles); i.e., 2 + T T. For the target problem
the analog reaction is A + T A. The trapping problem
has been extensively studied by us and by other
groups, '8 12'1 and for it, apart from the one-
dimensional, nearest-neighbor, random-walk case, ' no exact
solutions are known. As pointed out, the difficulty of a
general solution is that it is equivalent to knowing exactly
the distribution R„of the number of distinct sites visited in
n steps by the ~alkers. However, the powerful method of '

the generating functions allows one to determine only
the average S„={8„)exactly.

Interestingly, the target problem is amenable to a treat-
ment in the framework of generating functions and, in this
sense, exactly solvable. Applications of the target problem
are the Williams-Watts dielectric relaxation in polymers and
glasses'3 ' and also the poisoning of surface catalysts an.d of
immobilized enzymes. In the dielectric relaxation case
Glarum proposed that a frozen-in dipole could relax when a

mobile defect (particle A ) reaches it; in glassy systems the
defect may be a vacancy which upon reaching the dipole re-
lieves thc local strains. 2 Recent approximate analytical and
numerical solutions to this problem have been obtained by
Shlcsingcr and Montroll14, 15 and by Rcdner and Kan

In Scc. II we present our method and calculate, first for
random walks on regular lattices, the decay of the number
of targets as a function of the number of steps. We extend
then this result to random ~alks in continuous time
(CTRW) by including waiting-time distributions. Also, us-
ing another straightforward generalization we consider walks
on fractal structures. From these expressions we derive
directly the previously advanced approximate decay forms.
In Sec. III wc compare these to the exact forms; as a check
we also present the results of computer simulations, and
find for low dimensions (d «2) that the decay forms due
to trapping and to target annihilation behave differently at
long times, the latter process leading to quicker decays.

II. THEORETICAL

Wc begin our considerations with a regular lattice and
place with probability p walkers on the lattice sites. We
focus on a target, assumed to be at the origin of the coordi-
nate system. As will become evident in thc following, the
derivation carries through for an arbitrary number of tar-
gets, and therefore (distinct from the trapping problem) the
validity of the final expression is not limited to low target
densities. Wc let the walkers step from site to site according
to a probability density w ( I ), where I =

I 1 I is the step
length: Thus, the microscopic rates arc symmetrical, and
the walks arc not necessarily restricted to nearest neighbors.

Let us denote by F ( r ) the probability that a random
walker starting from r reaches the origin 0 for the first
time in the mth step. Because of the symmetry of the walk
F ( r ) is also the first-passage time from 0 to r, as de-
fined by Montroll and Weiss. The probability H„( r ) that
a first passage from r and 0 occurred in the first n steps is

H„(r)—= X F (r)
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Initially, (I = 0) one has a walker at r with probability p;
hence, the probability 4&„( r ) that no particle from r visits
the origin in the first n steps is

4„( r ) = I pH—„( r ) (2)

where the product extends over all sites of the lattice with
the exception of the origin. We note that Eq. (3) holds for
an uncorrelated motion of the walkers, so that during the
walk, sites may be occupied by more than one walker.

Expression (3) forms the basis of our further analysis.
We note that @„ involves F ( r ), a quantity which can be
evaluated via generating-function techniquesz2 (vide infra).
Moreover, 4„ is translationally invariant: for any distribu-
tion of NT targets the ensemble averaged decay is NT4„, an
expression which holds for arbitrary target concentrations.

Taking logarithms we obtain from Eq. (3)

in@„= X' in'&„( r ) = X' in [I pH„( r ) ]—

= —g(ply) g'[H. (r )]', (4)
j=1

where in the last line we remarked that both p and H„( r )
lie between 0 and 1, so that the final series is absolutely
convergent for all values of p and, thus, the order of sum-
mation can be exchanged. As a power series in p, Eq. (4) is
particularly useful for obtaining approximate forms to the
true decay 4„, by restricting the summation to a few j
values.

As an example, we take only the first term j = 1 and have
n

in@„= —p g'H„(r)= —p g g'F (r) . (5)
r m=1 r

Now, following Eqs. (III.2) and (III.3) of Ref. 22 one has

X'F (.r)=$ —S t (m ~l) (6)

where S is the mean number of distinct sites visited in m

steps, S = (R ), with SO= I. Therefore, introducing Eq.
(6) into Eq. (5) we get as a first-order (small p) approxima-
tion to 4„,

4„=exp[ —p (S„—1) ] —= 4„" . (7)

This expression has beeen obtained using different
methods by Shlesinger and Montroll' ' and by Redner and
Kang' in the context of the target problem. We note that
Eq. (7) is an upper bound to 4„, since all the terms discard-
ed in Eq. (4) are negative. From Eq. (4) we also obtain a
lower bound to 4„, by noticing that H„( r ) ( 1 and thus
[H„( r )]i(H„( r ). Thus,

in@„~ —g (pi/j) X' H„( r ) = —
A (S„—1), (8)

j= 1

We now take the target to be annihilated at the first visit of
a walker. Furthermore, we assume the walkers to move in-
dependently of each other, their motion being also unaffect-
ed by target annihilation processes (the chemical analog be-
ing A + T A ). The probability that the target at the ori-
gin survives the first n steps is then

d, = g'q. ( r ) = g'[1 —pH. ( r )1

(10)

where the Kj„are the cumulants of 8„, the number of dis-
tinct sites visited in n steps. The evaluation of higher cu-
mulants (j & 1) is a very complex problems, ''8 whereas, as
we proceed to show, the higher terms in Eq. (4) are readily
tractable.

Let us start from the generating function for the H„( r ):

H ( r;z ) —= X z "H„( r )
n=1

After a few transformations, H ( r;z ) may be expressed
in terms of the generating function for the F„( r ):

F( r;z) = X z"F„(r ) = X z"[H„( r ) —H„ t( r )]
n=1 n=1

= (1 —z)H( r;z) (12)

where we used Eq. (1) and remarked that Hp( r ) =0. On
the other hand F( r;z) is given directly in terms of the
generating function P ( r;z ) of the walk. '22 z3' ~6 27 For
primitive lattices (other cases are discussed in Refs. 26 and
27) one has

F( r;z) = [P( r;z) —8-„0]/P(0;z)

[Eq. (III.6) of Ref. 22], and thus

(13)

H( r;z) = [P( r;z) —8-, o]/[(1 —z)P(0;z)] . (14)

As an example, for simple hypercubic lattices in d dimen-
sions one has

P( r;z)
= (2m) ~ . Jtd~k exp( —i r k)/[1 —zX(k)]

(15)
where A. ( k ), the structure function for nearest-neighbor
walks, is

( 't

X(k) = — g cos(k;)
ld, =t

(16)

k; being the ith component of the d-dimensional vector k.
Taken together, Eqs. (4), (14), and (15) are the (admit-

tedly implicit) analytical solution of the target problem. For
numerical purposes we found it more expedient to deter-
mine H„( r ) in the n space by calculating iteratively P„( r )
from P„ t( r ) and by inverting then P„( r ) to obtain
F„( r ). The method involves no random numbers and is
straightforward (see Refs. 22 and 27 for details). To exem-
plify the ease with which the terms in Eq. (4) can be
evaluated we give in Table I,some typical results for walks
in one and two dimensions, and we follow n over thousand
steps: 1 ~ n ~ 1000.

with X—= —ln(1 —p). Hence,

4„'—= exp[ —A. (S„—1) ] ~ C „~exp[ —p(S„—1)] —= 4&„"

(9)
Interestingly, 4„' is also a lower bound for the trapping

problem, when p denotes the density of traps (see Ref. 18
for details). However, the trapping and the target problems
are different; the decay 4„ in the trapping problem is'
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J =2 J=3

10

100

1000

10

100

1000

2.000 000

5.167 969

15.997437

50.475 261

2.000000

7.881 383

49.504 137

363 ~ 583 763

0.500000

2.111858

8.399 133

28.576 639

0.250000

1.423 142

8.750682

52.(6)

0.250 000

1.295 327

5.757 406

20.200 003

0.062 500

0.439 911

2,.721 064

14.(1)

TABLE I. Values of the partial sums X', [H„( r )]~which deter-

mine the decay of the targets [Eq. (4)] for the linear chain (d= 1)
and for the square lattice (d=2).

1 —N 'XH„(r) (21)

where N is the number of available starting sites in V. Ow-
ing to the different initial conditions, Eqs. (3) and (21)
agree with each other only to leading order in M/N. Evi-
dently, in the thermodynamic limit, which obtains for
V ~, such that M/N p && 1, Eq. (21) reverts to Eq.
(7) and leads in the CTRW framework to Eq. (20).

obtain the first-order approximation for the decay of the tar-
gets.

Summarizing, for the model studied, we have obtained an
exact expression for the target decay in an infinite volume,
under the condition that at start the sites may be occupied
with probability p by exactly one walker. For a fixed
number M of walkers in a finite volume V, Shlesinger and
Montroll' have given the target decay 4„ for a possible
multiple occupancy of sites by walkers. In our notation

'M

H( r, t) = X x„(r)H„( r )
n=0

with a corresponding change in the decay law:

qi(r ) = g' [1 pH( r,r)]—
OO n

=jT 1 —p gx„(t) QF„(r)
n=0 rn =1

(19)

The first-order approximation to Eq. (19) is

in@(r) = —p $ x„(t)(S„—1)—= —p [S(r) —1]
n=0

(20)

The methods of evaluating S (t ) are standard. ' 6 One
should note, however, that the higher approximations to
ip(t) are more complex, since in them products of X„(i)
functions appear, and thus the Laplace transformations get
more involved.

For structures lacking translational symmetry, such as
fractals, generating functions such as Eq. (15) are not avail-
able. One may still bypass the need of a complete numeri-
cal simulation of the full problem by determining the

( r ) through site enumerations on fractals devoid of tar-
gets, and then using Eq. (3) to compute ip„. As an exam-
ple, in Ref. 28 we have determined S„ for several Sierpiski
gaskets; these results can be directly inserted into Eq. (7) to

In Sec. III we compare the decay laws obtained from
P( r;z) with the results of numerical simulations, and there
we also determine the domain of validity of approximate ex-
pressions such as Eq. (7). To close this section we show
that the results obtained can be extended to the con-
tinuous-time domain (CTRW) and walks on fractal struc-
tures.

For walkers whose stepping times follow a distribution
i]i(t), the probability X„(t) of having performed exactly n

steps during the time t obeys

(17)

where L denotes the Laplace transformation, L ' its in-
verse, and I. [i]i(r)]=i]i(u). In continuous time Eq. (1)
changes to

III. RESULTS

In this section we present the decay laws for the targets,
and compare the results to the trapping problem. We also
use the exact decay laws in order to establish the domain of
validity of the approximate expressoin [Eq. (7)].

For illustrative purposes we also display simulation results
on one- and two-dimensional lattices. Such simulations pro-
vide an internal check, both of the theoretical approach and
also of the numerical program, e.g. , of the random-number
generator.

To exemplify, we plot in Fig. 1 the decay of targets distri-
buted on a one-dimensional chain. The walkers are placed
randomly, with probabihty p = 0.5 on a chain with
N =20000 sites. All sites not occupied by walkers are
viewed as targets, and their decay is monitored as a function
of the steps of thc walkers. Note that it is completely su-
perfluous to distribute the targets at random on the lattice:
the necessary configurational average wipes out the initial
target distribution, a fact which we already encountered in
the derivation of 4„[see the discussion following Eq. (3)].

In Fig. 1, the exact decay 4„ is given as a solid line and
the simulation results are indicated through black dots; the
agreement is excellent. In the figure also 4„" and 4„', the
upper and lower bounds to qi„[see Eq. (9)], are given as
dashed lines. Admittedly, because of the large p, none is a
good approximation to 4„. For comparison we have also
included in Fig. 1 the corresponding trapping decay 4„ to-
gether with simulation results, indicated as open circles. As
noticed' at longer times 4„decays quicker than 4„.

In Fig. 2 we display the results obtained for a square lat-
tice. Here, walkers are placed randomly with probability

p =0.5 and 0.1 on the lattice. As in Fig. 1, we compare the
simulated and exact decays for target annihilation and for
trapping. As is evident upon inspection, for p =0.5 and for
short times the target decay 4 „ is closer to the upper bound
4„" while the trapping decay 4„ follows more closely the
lower bound 4„', i.e., at short times the trapping process is
faster than the target annihilation. The situation is reversed
at longer times, where trapping becomes slower, a behavior
which agrees with the known asymptotics. ' ' For the target
problem we note that for small p values at not too long
times the approximation C&„" [Eq. (7)] works fairly well even
in low (d ~ 2) dimensions. For trapping, on the other
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FIG. 1. Survival probability of the targets +„ for a linear chain

(d = 1). The density of the walkers is p = 0.5. The dots are the
simulation results and the solid line is the exact form [Eq. (4)].
The upper and lower bounds, 4„" and 4„' [Eq. (7)], are given as

dashed lines. Included are also the simulation results (open circles)
and the exact'decay 4„of the trapping problem (dash-dotted line).

n
FIG. 2. Survival probability 4„of the targets for a square lattice

(d =2). The density of walkers is p =0.5 and 0.1. The notation is

as in Fig. 1.

or random walks on fractals; it can also be used as a test for
simulation programs.

hand, the form 4„' approximates less successfully in low
dimensions. ' The results in three dimensions are similar to
the two-dimensional case.

In summary, for random walks on regular lattices we have
solved the target problem exactly. The solution may be
readily extended to more complex cases such as CTRW's,
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