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Solution of an inverse problem: Maximum-overlap Jastrow function
of the Lennard-Jones Bose fluid
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%e determine for the Lennard-Jones Bose fluid the Jastrow function that has the maximum overlap
with the exact ground state as determined by the Green's-function Monte Carlo method. %e solve the
resulting inverse problem with an iterative predictor-corrector method using integral equations and
Monte Carlo methods, respectively. The maximum-overlap Jastrow function gives also a good value for
the energy.

A common approach to dense quantum fluids like the
helium liquids is the valiatlonal one based on minimization
of the expectation value of the Hamiltonian of the system.
Recently, one of us' has proposed the use of a different
variational principle, one based on the maximization of the
overlap integral (Q,d~Qo) between the exact ground state
Qo and a model function i)im, d The .attractive aspect of this
method is that one does not have to assume a definite form
for the Hamiltonian, but one can get direct information on
the ground state from knowledge of correlation functions of
the system. Such knowledge at the level of the radial distri-
bution function (RDF) can be obtained from scattering ex-
peIiments and, in addition, from exact simulation of many-
body systems, for example, by the method of Green's
function Monte Carlo (GFMC), one can get also the higher
distribution functions. Here we present the first application
of the maximum-overlap criterion to the case of a Bose
fluid.

Prom variational computation of the energy it is known
that the Jastrow function

0 (I f ) lu) = g expI —~u(r&)) (I)
j+j

already represents2 a rather good approximation to the exact
-ground state. The maximum of the overlap integral

obtains for that pseudopotential u(r), which we
call u(r), for which the RDF gq(r~u) equals3 the exact
RDF go(r)

t

gJ(rlu) =go(r)

This implies a similar equality for the structure factor. In
order to solve the functional equation (2) for u, one could
use one of the integral equations, like the hypernetted chain
equation (HNC), that relates gq(r~u) to u(r). However, it
is known that in a dense system gq(r~u) is rather insensi-
tive to the detailed shape of u(r) so that these equations,
wllcI1 solved witll fcspcct to u (r), Rfc Unstable with fcspcct
to the input gJ(r). In this way any inaccuracy of the in-
tegral equation would bias the resulting u(r) without con-
trol. We do not believe that any of these equations are ac-
curate enough at all distances to be directly useful to the
present inverse problem. For this reason we have intro-
duced a new method, a predictor-corrector method.

Our method uses a blend of the integral, equation ap-
proach and of Monte Carlo (MC) computation. Suppose

that for a given pseudopotential ufo'(r) we know gJ(r ~
ufo').

Then wc Usc R suitable intcglal cquatlOn (thc pl'cdlctof) ln
order to estimate the variation 5(r) = u(r) —ufo'(r) need-
ed in order that gJ(u + 5) = go. However, this estimate of
5, which we call 5~'», is only approximate due to the inaccu-
racy of the integral equation. Thus we perform an "exact"
computation (the corrector) of gJ(r ~ut'1), where ut'I = uioi

+ 5I'1, using simulation method. In general, gJ(uf'1) —go is
nonzero due to the approximate nature of the predictor, but
we can use this difference with the predictor to obtain a new
estimate 8~2»=u —u~'». The procedure is repeated until
&g„=gJ(r lu "I)—go(r) is less than a given standard of er-
ror, and the final estimate of u is u = ufo'+ pi 5I'~. We no-
tice that our approach has some general similarity of spirit
with a method used by Campbell and Pinski4 to minimize
the energy.

As predictor, we have used two different algorithms. The
first' is based on the random-phase approximation (RPA)
that states that the change 5c(r) of the Ornstein-Zernike
direct correlation function c (r ) equals —5(r ), the variation
of the pseudopotential. When used as predictor, RPA gives

55 ( )=p '(2 ) 'J d'ke'"'"[Sg '(klu' ')

where p is the number density, So(k) and SJ(ut' Ii) are,
respectively, the exact structure factor and the one corre-
sponding to gJ(u" "). As a second predictor we have used
one based on the modified HNC (MHNC) equation'

544Nc(r) = 54I'4(r)+lnlgJ(rlu" ")/go(r) j

+gJ(rlu" ")—go(r)

The MHNC approximation is known to be accurate at short
distance, in the region of the core, where g(r) is rapidly
vanlshlng.

Our computation proceeds as follows. We start from an
initial guess for u~o» using the result of a variational compu-
tation of the energy. Then we perform a series of the
predictor-corrector cycle using either the RPA and the
MHNC predictor, depending where hg(r) is largest until
the differences KS&(k) = Sg(k) uI") —So(k) and hg&(r) are
below a set level of accuracy for all k and r. The level of ac-
curacy is determined by the statistical noise of the simula-
tion computation. For standard MC and GFMC runs, it is
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joins the Feynman's form 2mc/irk, where c is the sound
velocity of this LJ system. Since SJ(klu) =So(k), this
same correction S~q applies also to u(r) and this is shown in
Fig. 4 for p,q, and in Fig. 3 for p=1.2pcq.

The maximum-overlap principle is quite distinct from the
energy one so, in general, it should not also give a good
value for the energy. However, since both criteria have the
exact ground state as absolute extrema if the variational
subspace includes the ground state, a good value of the en-
ergy for the maximum overlap u indicates that the exact
ground state is rather close to the subspace of Jastrow func-
tions. We find that this is indeed the case. In fact at p q,
we find that u gives an expectation value of the energy per
particle Eo= —5.80 K. This is quite similar to the value
found with the McMillan's pseudopotential (Eo= —5.68 K)
and only slightly higher than the best Jastrow result
(Eo= —6.10 K). At p= 1.2xp, q, u gives Eo= —4.61 K, to
be compared with the McMillan's value (Eo= —4.5 K) and
with the best Jastrow value Eo= —4.91 K.

The maximum-overlap pseudopotential u ( r ) of the LJ
Bose fluid has a structure at an intermediate distance of or-
der of the position of the first minimum and second max-
imum of g(r). At higher density, the structure of u(r) be-
comes stronger and it is displaced to smaller distance. Com-
parison of Fig. 2 with Fig. 3 shows that this displacement
roughly corresponds to (p,„/p)ti3- (1.2) tl3=0.94 and this
points to a collective effect as the origin of the structure.
Also, energy computations have given pseudopotentials with
a rather similar structure. The results of a functional
minimization of the energy in HNC approximation is shown
in Fig. 4 and our initial u 0, shown in Fig. 2, similarly
comes from an energy computation by Monte Carlo. No-
tice that only in the HNC computation is the correct tail r
of u(r) taken into account. We conclude that both energy
and maximum-overlap computations give a Jastrow function
with some structure that is density dependent, and this
feature appears to be more pronounced when the
maximum-overlap criterion is used. Such structure has
been interpreted as a result of zero-point motion of roton
excitations.
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This work was supported in part by the Ministero della
Pubblica Istruzione and the Gruppo Nazionale di Struttura
della Materia.

\

In summary we have shown that the maximum-overlap
criterion can be used to obtain information on the ground
state of a Bose fluid. The maximum-overlap pseudopoten-
tial has a structure at intermediate distance and it gives a
very good value for the energy. This is another indication
of the goodness of the Jastrow function. Our predictor-
corrector method is rather efficient in solving an inverse
problem, the determination of a distribution function start-
ing from structural data. Using the well-known formal simi-
larity between Jastrow theory and a fluid of classical parti-
cles, our method can be used to determine the pair interac-
tion of a classical fluid starting from structural information.
Many extensions of the present computation for quantum
systems can be envisaged, ' for instance, the inclusion of
triplet terms in the wave function and a study of Slater-
Jastrow functions for Fermi particles.
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