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We derive the wave equation for an electron coupled via the s-d interaction to a system of magnetically
disordered spins at nonzero temperature. A nonlinear Schrédinger equation is derived for the case of spins
undergoing the Gaussian fluctuations. It shows that the character of the wave function may be significantly
modified by a thermal disorder, leading to self-trapped and spin-split states in a paramagnetic medium.

The physical contents of the problem considered here are
as follows. We consider an electron moving in an inhomo-
geneous magnetic (exchange) field created by the fluctuat-
ing spins. This field varies both in direction and in magni-
tude in a random way (here assumed as Gaussian). The
problem then is this: what is the wave equation for the
electron moving in such a random field? In other words,
we are interested in deriving the Schrodinger equation in a
situation in which both the direction of spin quantization

axis and the magnitude of an effective magnetic field acting ,

on the electron spin vary in a random fashion in space. To
our knowledge, this problem has not been tackled this way
before in the literature.

The type of problem we consider here appears, for exam-
ple, when studying the bound magnetic polaron (BMP)
states in a paramagnetic semiconductor. The essential role
of thermodynamic fluctuations for those states has been
given in detail previously.!”> However, the form of the
electron wave function was assumed from the start and
chosen based on the specific physical situation of the prob-
lem. This assumption will not be made here. We obtain a
self-consistent wave equation by minimizing an appropriate
form for the effective Hamiltonian®** averaged with respect
to spin degrees of freedom corresponding to random fluc-
tuations.

We use the averaging procedure over random fluctuations
similar to that devised previously for BMP. However, the
objective of this paper is much more general. Namely, the
formalism provides a method of deriving the wave equation
for an arbitrary single-particle Hamiltonian H; and, hence,
can be utilized when studying both the localized and extend-
ed stationary states. :

We start from the Schrodinger equation for an electron
coupledAto the system of spins S,} via the s-d interaction,
—J. 3,S;-S;, where §, is the spin operator of the electron
in the site representation. In the continuous version which
we discuss here only, it is

3,4, (T,0) = Hi¢o(T,0) + 7 [JS(T,0) — g*upH,]
x (7, b (T.0 ¢))
where S(T,f)= 2i§i(t)8( F¥—R,) is the spin-density
operator. H; is the single-particle part of the Hamiltonian,

g" the Landé factor of the electron, ﬁ,, the applied magnetic
field, and 7= (74, 7,, 7,) the Pauli matrices. This equation

30

contains the spin field S(F,7), the dynamics of which is
coupled to that of the electron through the s-d interaction.
In what follows we calculate the reaction of the electron on
itself through a response of spins to its presence. We con-
sider two particular cases, each reflecting a different physical
situation.

CASE A: SPIN-INDEPENDENT EQUATION
(WEAK EXCHANGE FIELD)

The essential assumption of our approach is that the en-
velope function |¢,(T,¢)| contains many spins.!=> Conse-
quently, we assume that the adiabatic® and the Hartree-like®
approximations can be used, i.e., the total wave function is .
of the form

V({S8); T, 0.0) =xB}x,0 (T , ¥)

where X@;} is the wave function of spins, and X, is the spin
part of that for the electron. With such a wave function one
can average (1) with x (S;} and X,, and get
K0, (T,t)=H 1¢(T,1)
+ L2 M () + gl 7o (F) . 3)
2|gums
where M(T) = (x|S(T,1)|x) xguaNo is the local magneti-
zation per unit volume; No= no/vo is number of atoms per
unit volume containing fraction x of magnetic atoms, ng the
number of atoms in unit cell of volume v, a =J.vo/ny, and
¥=23. al(xa|(1_")w,|xo,) the polarization of the electron.
Under this assumption the fluctuating part of local magneti-
zation introduces a random static potential into Eq. (3).
The procedure of averaging Eq. (3) with respect to the
random part of M(T) is as follows. We first define the ef-
fective Hamiltonian*

Her=(b|Hilp)— + 7 KIM(T);¢(F) 1+ HJIM(T)] . @

The first two terms are the expectation values of the elec-
tron Hamiltonian which leads to the Schrodinger equation
(3). The absolute value of the quantity

AIM(T);¢(T)]=g*upH, + —2—M,(H,)
gMB
+—2 | & IM(T)-M,(H, )2
o S arM(e) - Mo(H) 116 ()

Q)
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plays a role of the spin splitting for the electron,? while
Mo(H,) is the field-induced part of magnetization due to
the spins. The last term (Hj) is the Ginzburg-Landau func-
tional for the spins, here taken in the Gaussian form?’

Hsl7(D)] =5 [ 7(F) ©®

where X = aMo/ aH,, is the static susceptibility of spins, and
7(r)=M(r) —My(H,).

One sees that the quantity A/g*;“; is an effective field
acting on the electron. It contains both an applied field-
induced part [the first two terms in (5)], as well as the part
~ 7’( ) which will be treated as a fluctuating field.

Next, to obtain a renormalized Hamiltonian for the elec-
tron we introduce the probability distribution of fluctuations
of magnetization’

expl—BH[7(T)]}
f@i)‘( ) exp{—BH[7(T)]}

where & 7'(T) symbolizes the functional integration over
all possible space profiles of w'(T). Then, the probability
distribution of electron energies P (Eg), is given by

P(ER)=%1_§lf@ﬁ(?)pm(rn

Ply(T)]= ¢))

B(He— H[n(TID} , (8)

where N is the denominator of (7). Thus, the renormalized
effective Hamiltonian for electron may be defined as*?

Hr=—kgTInP(ER) . ()

xexp{—

The functional integrations in (8) may be calculated fol-
lowing the method given in Ref. 2, and after some rather
lengthy algebra one obtains

Kl (T)]1=(d|Hild) — Fe,— ksT

where
Ap=

X Mo(H,) +g*usH, ,
B

and
2
__ o 3 T
r 4(gup)? fdr|¢(r)| ’

This result coincides with the expressions derived before?
for BMP, i.e., when we assume the hydrogeniclike 1s form
of ¢(T), and if H, is composed of the Kinetic energy of the
electron and of the Coulomb potential energy due to attrac-
tion by a donor. The formulation includes both bound and
free magnetic polaron cases, the latter corresponding to a
motion in both periodic and random potentials superposed
on each other.

In order to get the renormalized wave equation for sta-
tionary states’ we write the Euler equations for ¢ ( T'), start-
ing from the functional #%[¢(T)], under the condition
that fldz( 7)|2d% =1. We have then

_1 d¢€p _ ksT d€p
e 28¢(r) Ao 5¢*(T)
2sinh(Ay/2ksT)
X Cosh(Ag/2ksT) + (2¢,/A0) sinh(Ag/ 2k T) % =81;
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It is a nonlinear differential-integral equation. The renor-
malized microscopic Hamiltonian A r of the electron is de-
fined through the relation H g ( T) = Ap(T).

One of the main features of the above equation is that for
extended states (Bloch states or plane waves), €, ~ (vo/ V),
where V is the volume of the system. Hence, the contribu-
tion of nonlinear terms vanishes as ¥V — oo, (vo/ ¥V — 0) for
those states. This is because wnthln a macroscopic volume,
fluctuations average to zero.

The nonlinear part of (11) is attractive, so it favors local-
ized solutions. To show this we consider the particular case
of the high-temperature limit e, << kgT. Then, for H,=0
we get

1¢(r)———~——|¢(r)|2¢(r)—x¢(r) 12)

4 (gu

The nonlinearity is stronger if X grows. Representing H z
as (i%9/9t) one gets in the effective mass approximation

h? V- 3

8 h
3= " om* (

|¢| ¢ . (13)

A similar result has been derived in the mean-field ap-
proximation.!® In one dimension, Eq. (12) has a solitary-
wave solution!! representing localized or self-trapped states:

— gt — ,
b (x,1)= \/217 sech[x uR Xo ]exp{i%(x — Ut —xg )] ,
14)
where the radius R is given by
2 i3
._.1=_3_ a“X 5 m l; (15)
8 (gus) 13

The expectation value for the energy using (14) is
E.= —r*2m*R*+ m*u?/2, where the first term is the gain
in energy due to the nonlinear part of the potential, and the
second is the kinetic energy of classical particle. For com-
parison, the plane-wave solution of (13), =V~12
xexpli (K- T — E¢1)], gives the energy

Ev=h%Y2m*— 3o’/ (gup)1V-" .

The second term in E ¢ is negligible since it is proportional
to (vo/V). Therefore, in one dimension at least, the solu-
tion (14) is more favorable energetically than the extended
one.

CASE B: SPIN-DEPENDENT EQUATION
FOR LOCALIZED STATES

In deriving Eq. (11) we have assumed that the spin and
space parts of the electron wave function can be separated
[cf. Eq. (2)]. One could note, however, that for localized
states, particularly for those induced by thermal disorder,
the spin splitting may not be zero even though the system
on the whole is not polarized magnetically."?>!? In other
words, the electron is localized on the fluctuation of mag-
netization which in turn is kept stationary by the electron
field. In such a case, the wave function (2) should not be
decomposed into spin and space parts, i.e., we have

V() T =xBé5(F) |, (16)

where ¢ --(T) defines the wave function in locally rotated
k4
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frame in the spin space, with the z axis along the vector
AIM(T);¢5(T)]. This means we have now

Y

Applying the same procedure as in case A, one gets the re-
normalized wave equation in the form (consider here only

the H =0 case)
axksT , .
2Gn )zl .,(r)l [ln[ 2!

Hip(T) - éy(T)

=A'y¢y(?) s (17)
where ¢,,( F)Ed;y*( ), y*= #1,

11 €py 2e

+ 1- 2y
T [1 exp[szT][ 2kBT] n wksT
with ®(x) = fxdu exp(— u?) is the error function, and

=y J eI

This equation gives stationary, spin-split, and self-trapped
states of the electron. In the high-temperature regime
(epy << kgT) one gets the renormalized Hamiltonian for
one particle with spin y/2:

Py
2kpgT

i a’x
4 (g,u-za)2

where H{ is the band term transformed to the locally rotat-
ed frame, with z axis along A" (cf. Ref. 13). For extended
states the nonlinear part vanishes again, and we have
Hg=H}. Each of the self-trapped states by-—1(T)=9¢,
will carry a net polarization in the paramagnetic medium. It
is created by fluctuations, enhanced and sustained by the
electron field. Hence, a collection of such states separated
in space will give no net magnetization for H,=0.

The derivation of Egs. (11) and (17) is our central result
(the latter reduces to the former when the spin-dependent
part of the nonlinear potential is disregarded). It provides a
wave equation for a single electron coupled to a fluctuating
field. The spin splitting is nonzero for localized states at
any finite temperature, as can be seen from (18) noting that
€, /kgT — 0 continuously.

It should be stressed that the approach here describes the
self-trapped states involving at least few lattice constants.
However, it has been shown'* that our theory of BMP,!-3

kgT

2mepy

A

Hp=Hf - 4

-—3Y

lg, ()2, (19)
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which is a special case of the present approach, already gives
surprisingly good results when the wave function contains
four spins of magnitude S =§-. Therefore, the additional
subband structure due to the presence of spin-flip terms®
(i.e., involving quantum corrections), and the importance of
which has been shown in the atomic limit,!* seem to be
more important for rather small polarons (cf. also Ref. 6 for
the case of free polaron).

The existence of the spin splitting for self-trapped states
can be shown based on the following physical argument.
The magnitude of the effective magnetic field acting on
electron from the side of spins is of the order (H =0, case
A)

H,=

— JarMmmleo® .
B

This field, when averaged over all configurations of fluctua-
tions will give

1/2
’

where (1712) is the mean-square amplitude of the fluctuating
magnetization over the volume for which ¢ # 0 (i.e., over
the effective volume ¥, for self-trapped states'?). Next,
from the fluctuation-dissipation theorem one can write that
(M)2 3kgTX/V,. Therefore, the thermodynamic average
y of electron polanzatxon within the volume V, is

3X 1/2
=tanh————
¥ 2eus | ke TV, l

It is nonzero as long as the localized solution is stable.

The eigenstates ¢ ( T') obtained from (17) provide a na-
tural qualitative explanation of a very interesting recent ob-
servation'® of spin-split states in the absence of applied field
in semimagnetic semiconductors Pb;-,Mn,Te for small
x ~—0.01. Namely, their spin-split states correspond to our
self-trapped (free polaron) stationary states. Obviously, the
quantitative analysis may require taking into account a real-
istic band structure, together with inclusion of higher order
terms in effective spin Hamiltonian (6). Nonetheless, our
method shows how to formulate the eigenvalue problem for
quantum states of an electron subjected to a fluctuating ex-
change field.
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