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Spin susceptibility and spin-spin relaxation in superconductors
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It is shown that the conduction-electron spin susceptibility p(r) and thus the indirect interaction between
magnetic impurities in superconductors can lead to new behavior in very dilute systems that is absent at
higher impurity concentrations and that is compatible with recent experiment. In the superconducting state
we find that X(r) decays exponentially at all r, the spin-spin coupling can be antiferromagnetic at intermedi-
ate r, and the spin-spin relaxation rate depends markedly on Fermi-surface anisotropy.

X(r, g) = —[W /(2k, r ) ']@ (r, g), (1a)

where

4(r, ~) = cos(2kFr ) —sin(2krr )/(2kFr )

is the usual normal-state oscillatory factor and A a constant.

It is generally accepted that the presence of the energy
gap in a superconductor leads to exponential decay of the
conduction-electron spin susceptibility X(r), and, therefore,
of the electron-mediated indirect interaction between mag-
netic moments, at distances greater than the coherence
length g(T).'z Since most studies of magnetic impurity in-
teractions have been made on concentrated samples in
which the separations of magnetic ions are smaller than (,
this and other effects of the gap have been generally
neglected. Recently, however, Kumagai and Fradin3 have
performed NMR experiments on very dilute samples of
Y~,R,Rh4B4 (8 =Er, Gd) in which impurity separations
are comparable to g(T). They find longitudinal relaxation
rates of the paramagnetic ions which are linear in concentra-
tion in the normal state, and which decrease rapidly with T
for T ( T, by factors 10-100 times any previously ob-
served. These facts lead us to consider the indirect interac-
tion between rare-earth (RE) ions as the responsible
mechanism. Accordingly, we have studied X(r, () in detail
and summarize the results here. We confirm the exponen-
tial decay2 and find it to be present at all r; and we find an-
tiferromagnetic coupling at r/( of order unity. Further-
more, the suppression of the relaxation rate below T, by
this exponential damping factor is found to be much too
weak to account for the data if x(r) is assumed to be isotro-
pic. However, on invoking anisotropy of the Fermi surface,
hence, also of x(r) and the magnetic interactions, we find a
pronounced dependence of this relaxation rate on the de-
gree of anisotropy for very low concentrations (c —10 4).

%e start from the general expansion of the isotropic sus-
ceptibility X in a series of thermal-Green's-function prod-
ucts. ' %e then replace fermion occupation factors by their
T =0 limits while retaining the temperature dependence of
the gap 5, and obtain an analytic result. For finite coher-
ence length g, we define a funtion 4(r, () by

The analysis then gives

4(r, ()= e(r, ~) [zKi(z) ]

—-r [sin(2krr )/(2krr ) ]z Kp(z)
p oo

+ [1—cos(2kFr ) ]z J Kp(x) dx

with

z = (2/m)(r/g),

(1b)

(1c)

exhibits the anticipated suppression of the range of X. Plots
of Eq. (1) in Fig. 1 display this damping. The plots also
show that for r/( of order unity, X(r, g) oscillates without
vanishing about a finite value corresponding to antifer-
romagnetic coupling. The distances at which these interest-
ing features occur are comparable to the magnetic ion
separations in the samples of Ref. 3.

To introduce the effects of anistropy, imagine an extreme
limit of Fermi-surface nesting in which the constant energy
surfaces consist of three pairs of parallel planes normal to
the k„, k~, k, axes. The normal-state susecptibility for such
a system is readily found to be

X (xy, z ) = 5„,,5„,,X ~n(z) +

where the ellipsis stands for cyclic terms. In this limit, a
magnetic ion at the origin can interact only with those other
magnetic ions that lie on the coordinate axes. Similarly, if
the one-electron energy surfaces are three cylinders along
k„, k~, k„a magnetic ion at the origin can interact signifi-
cantly only with other magnetic ions lying in the three coor-
dinate planes, via a two-dimensional (2D) susceptibility
function.

%e now concentrate on effects of the exponential damp-
ing factor, and recast X(r) to exhibit clearly that the ex-
ponential dependence on r is analytically exact for all r, not
just asymptotically. The form of x(r) that we display was
not derived from Eq. (lb), but from the general Green's
function expression' by using a particular sequence of ana-

where Kp, K~ are modified Bessel functions. For r && g,
4(r, g) =4(r, ~). For r && g,

4 (r, g) —4 (r, ~ )exp[ —(2/m) (r/g) ]
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1 ~ 125-
k g=1000 one-dimensional or by a two-dimensional exponentially

damped X (r), as well as for the isotropic case. The
paramagnetic relaxation as a function of f ( T) is determined
by the Four&er transform of the spin-spin autocorrelation
function

-1 ~ 125
10.0 125.0

(J,(r),J, (o) )/(J, (o),J, (o) )

for the magnetic system, which we denote by P„(r) for the
case of n-dimensional interactions. Following standard tech-
niques and averaging procedures we obtain

lnP„(t) = —(c/aa )n„J d rr" '(1 —exp[ —r cu„(r) ]], (3a)"Jo

1.125-
k g=100

where o.„ is a purely geometric factor, ao the linear spacing
of substitutional sites, and c the fraction of substitutional
sites that is occupied by magnetic impurities. The averaging
gives

tu„(r) = ( X„ /r")ex p(
—2r/mg) (3b)

-1 ~ 125
10.0

1 ~ 125-

k

k )=10

125.0

where X„ is a constant independent of c and proportional to
the strength of the interaction. When g ~, lnP„(t)
reduces to [ —t/r „(~) ] with a normal-state relaxation time
r„(~) inversely proportional to c and independent of tem-
perature.

Introducing the mean separation of magnetic impurities
d=—(aa/c'~3) and changing the variable of integration, we
obtain

lnP. (r) = —[tlat. (~)]I.(&.c"" '(dig) "[rlr.(~)]], (4a)

where

1„(z)= (1/Jn ) J dx(1 —exp[ —(1/x')exp[ —(zx)' "]})

-1 ~ 125-
10.0 125.0

FiG. 1. Function 4(r, g) of Eq. (1) for the isotropic susceptibility
as a function of r for three values of g as indicated, For k~g
.= 1000, essentially normal-state behavior persists to the largest r of
the plot. For k+g = 100, the exponential decay and antiferromagnet-
ic bias are clear. The plot of kFg = 10 is an extreme example of
both the damping and the bias. Note that the range of k+r shown
corresponds to different orders of magnitude of r/g in these three
plots.

lytic continuations. We thereby can show that for any
dimension and for all r

X(r, () = exp( —2r/m g)X(r, ~), (2)

where X(r, ~) is the normal-state susceptibility. 4 Equation
(2) omits the antiferromagnetic bias seen in Fig. 1, while
fully retaining the damping. The spin-spin interaction of the
magnetic ions vanishes and ceases to contribute to relaxa-
tion when f(T) becomes small compared to the mean im-
purity separation.

'

To demonstrate the consequences of combining anisotro-
py and damping, we have made calculations for limiting
models in which the magnetic interactions are governed by a

(4b)

and A„ is a constant weakly dependent on n and indepen-
dent of temperature. All temperature dependence arises
from the coherence length ((T) appearing explicitly, and
the spin-spin relaxation rate is independent of T above T,.
In general, I„(z) drops rapidly at small z, followed by a very
slow asymptotic decrease to zero. For a given g of experi-
mental interest both the asymptotic reduction and the rap-
idity of the initial drop are much greater for n =1 than for
n = 3 because of the n -dependent factors multiplying
[t/r„/~)] in the argument of I„. At the low concentrations
used by Kumagai and Fradin, one expects d/( of order uni-
ty at T=0. The crucial factor c" ' in the argument of I„
clearly arises because the interactions have an effective
dimensionality lower than that of the system. For
c =2X10, the factors c" ' for n =1,2, 3 are in the ra-
tios 292:17:1. Illustrative plots of' the I„as functions of
t/r„(~) are presented in Fig. 2 for two values of d/g.
Since the argument of I„ is scaled by (d/()", plots for other
values of (d/g) are similar but with the initial drop occur-
ring in an expanded or contracted interval of t/7„(~).

Kumagai and Fradin have fitted their T ( T, data using a
Lorentzian (Fourier transform) P„(co) with a T-dependent
relaxation time, and find reductions of the relaxation rate by
factors of up to 100 and more. As Fig. 2 shows, I„can
have an asymptotic tail which varies quite slowly on the
time scale 2m/coo where cue is an NMR frequency. Accord-
ingly, P„(u) ctan closely resemble a Lorentzian with a relax-
ation rate reduced by an average factor (I„) typical of the
near asymptotic region. For this to be true, the initial drop
of I„must be, of course, sufficiently rapid. Inspection of
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FIG. 2. Functions I„of Eq. (4) which govern suppression in the
superconducting state of the spin-spin relaxation as given by the
correlation function P„(t). Plotted vs time in units of the normal-

state relaxation time v = v„(~) for the indicated ratios (d/g) of
magnetic impurity spacing to coherence length, and for an impurity
fraction c = 2x 10 . In each plot, the upper curve is that for the
isotropic model (n =3), the middle curve is for the anisotropic
model with effectively two-dimensional magnetic interactions
(n =2), and the lower one is for n =1. For (d/g) ~2, li is, at
t/~ «5, too small on the scale of the plots to be discernible from
the axis.

the asymptotic tails in Fig. 2 shows that one can anticipate
a reduction of the relaxation rate by a factor of only 4 or 5
in the isotropic model (n =3). In contrast, for the n = I
anisotropic model one anticipates reductions by factors
which are already 20 to 30 for d//=0. 1 and become well
over 100 at lower temperatures. Numerical evaluations of
P„(oi) bear out these expectations, and show that suppres-
sion of the spin-spin relaxation below T, is much too weak
in the isotropic model to account for the data, while the
n =1 anisotropic model overdoes the suppression. Lack of
any Fermi-surface information precludes a more detailed
model. Despite the simplicity of our model calculations this
variation with n is sufficiently dramatic to suggest a strongly
anisotropic Fermi surface in these systems.

We have obtained an analytic expression for the isotropic
susceptibility in the superconducting state that exhibits both
exponential decay at large r/g and a bias toward antifer-
romagnetic coupling for r/g of order unity. We further
found the exponential dependence on r to be analytically ex-
act in any dimension, and at all r, not just asymptotically. It
is to be noted that the occurrence of an exponential factor
depends only on the existence of the gap, not on the
strength of the pairing interaction. It was pointed out that
strong anisotropy of the Fermi surface can lead to indirect
magnetic interactions of, effectively, a dimensionality lower
than that of the system. This, in turn, was shown to have a
pronounced effect on the suppression of the spin-spin relax-
ation rate by the presence of an energy gap. This suppres-
sion and any effects of anisotropy on it are experimentally
detectable only at very small spin concentrations. Condi-
tions favorable to detection were realized in the experiments
of Kumagai and Fradin, and comparison of our results with
their data suggests strong Fermi-surface anisotropy in the
systems they studied.
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