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We performed phenomenological renormalization-group calculations for ferroelectric 12- and 16-
vertex models on a square lattice with periodic and helical boundary conditions. We considered

strips of infinite length and finite widths (n =1—7,8, or 9). The extrapolated values for the transi-
tion temperature of the 12-vertex model, which has been used for assessing the transition in squaric
acid, are lower than the predictions of the Bethe approximation. The estimates for the critical ex-

ponent v do not allow a definite conclusion about its asymptotic behavior, although the Ising value
v=1 seems more plausible. The estimates far the 16-vertex model considered in this paper, which is
equivalent to an anisotropic nearest-neighbor Ising model, show an excellent convergence to the ex-

act values. Also, we analyze the finite-. size scaling behavior of the critical free energy of both
models.

I. INTRODUCTION

The so-called phenomenological renormalization group,
proposed by Nightingale a few years ago, ' has proved to
be a powerful method for studying the critical behavior of
two-dimensional model systems. In the present paper we

report phenomenological renormalization-group calcula-
tions for two vertex models on a square lattice.

We first consider a 12-vertex model associated with the
study of the antiferroelectric phase transition in layered
hydrogen-bonded crystals of squaric acid. 3 At low tern-

peratures, the crystals of squaric acid show an antifer-
roelectric stacking of ferroelectrically ordered layers. A
ferroelectric 12-vertex model has then been shown to be
adequate to account for the ordering in the layers. Al-

though 6-vertex and symmetrical 8-vertex models on a
square lattice can be solved exactly, the 12-vertex model
does not seem amenable to an exact treatment. On the
other hand, in a Bethe-cluster approximation, which gives
reasonable results for 6- and 8-vertex models, we have
shown the occurrence of a continuous phase transition. It
is thus of interest to use more powerful methods to inves-
tigate the critical behavior of the 12-vertex model, and to
check the predictions of the cluster approximation.

The techniques we use are suitable for assessing the
critical behavior of more general vertex models on a
square lattice. Thus, we decided to investigate the critical
properties of a certain 16-vertex model, which is isomor-
phous to an Ising model with anisotropic first-neighbor
interactions. Since the critical singularities of this Ising
model are known exactly, the calculations reported in the
present paper are a good test for the reliability of the
method. In particular, we reproduce, with somewhat
better accuracy, earlier phenomenological renormaliza-
tion-group results for the anisotropic Ising model.

In Sec. II we define the 12- and 16-vertex models con-
sidered in this paper. In addition, we briefly review the
equivalence between a 16-vertex model on a square lattice
and an anisotropic Ising model with first- and second-

II. DEFINITION OF THE MODELS

The vertex configurations of the 16-vertex model may
be numbered as shown in Fig. 1. %e will be concerned
with arrow inversion invariant energy levels e~ given by

e 1
——e2 ——E1, e3 ——e4 ——E2 es =e6 ——E3,

e7 ——es=E4, e9 ——e13 =Es elo =e14——E6,
11 15 E7 12 16 E8

(2.1)

This vertex model can be converted into an Ising model
with first-neighbor, second-neighbor, and four-spin in-
teractions. Let us define Ising-type variables cr; on the

neighbor interactions and four-spin terms. It should be
noted that the existence of a phase transition in the fer-
roelectric 12-vertex model on a square lattice may be es-
tablished by the application of a Peierls argument. In
Sec. III we recall a theorem by Suzuki and Fisher con-
cerning the behavior of the zeros of the partition function
for vertex models in the complex electric field plane. Ar-
guments based on this theorem indicate that the Bethe ap-
proximation may be giving an overestimated value for the
critical temperature. This has been confirmed by our
renormalization-group calculations for the 12-vertex
model.

The numerical estimates for the values of the critical
temperature and the exponent v are given in Sec. IV. The
results for the 16-vertex model show an excellent conver-
gence. The convergence of the estimates for the exponent
v of the 12-vertex model are inuch poorer, although the
Ising value v=1 seems indeed more plausible. Some
finite-size scaling data for the critical free energy of these
models are analyzed in Sec. V. For the 16-vertex model
they exhibit the expected behavior. However, for the 12-
vertex model it seems that corrections to scaling are still
important even at the highest orders (strips of widths
n=8 and 9) we were able to consider. A summary and
some conclusions are presented in Sec. VI.
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FIG. 1. 16-vertex configurations on a square lattice.

Ei ———2J(1+8), Ez ——2J(1+8),
Es ——2J(1—R ), E4 —2J——(1—R ),
E5 ——E6 ——E7 ——E8 ——0,

(2Aa)

(2Ab)

links of the original lattice such that cr; =1 if the arrow
on the link points up or rightwards, and o; = —1 if it
points down or leftwards. The energy of each vertex may
then be written as a function of the four incident Ising
spins (see Fig. 2). Therefore, we have

E(cr1,oz, o 3,o4) = —Jo
—(Jioioz+ Jzozos+ Jso3«+J4«o»
—(J soio+sJ 6o«z}—J7oiozoso4 ~

2'+ sinh
C

(2.5)

the 16-vertex model corresponds to an anisotropic Ising
model with interactions J~ ——J3 ——J and J2 ——J4 ——RJ be-
tween nearest neighbors only. The exact critical tempera-
ture of this model is given by

'2~J
'

cosh cosh = sinh
C C C

Jo= —
s gE;,

(2.2)
and the correlation-length critical exponent is v= 1.

The ferroelectric 12-vertex model is defined by the en-
ergy levels

Ji = s [(Ez+Es+E7+Es)+(Ei+E4+Es+Es)] E —E —E —E —E'~0
(2.6)

(2.3b)

Jz =
s [«z+«+E5+Es) «i+Es+—Es+E7)]

Js =
s [«z+Es+Es+E6)—(Ei +«+E7+Es)l

(2.3d)

J4 —,
' [(Ez+E4—+—E6+E7) (Ei+E3+E—5+Es)],

(2.3e)

J,= ,
' [(E +E +E +E—) (E +E +E +E—)],

(2.3f)

J6= , [(Es+E4+E6+Es —) (Ei+Ez+Es+E7)]—

In the Bethe approximation, it exhibits a ferroelectric
phase transition of second order. By using a rigorous
version of the Peierls argument, provided that E,E' & 0, it
is possible to confirm the existence of this phase transi-
tion.

III. BEHAVIOR OF THE ZEROS
OF THE PARTITION FUNCTION

Consider ferroelectric vertex models with the lowest en-
ergy levels defined by ei ——ez ——Ei. A theorem proved by
Suzuki and Fisher asserts that the zeros of the IIiartition
function lie on a unit circle in a complex e plane,
w11crc e is tllc oidcr111g clcctrlc fiicld, provided 'tllat 'thc
condition

(2.3g)
—E] /kT —E./kTe ' & e

j=2
(3.1)

4L9 F.

FKx. 2. Numbering scheme for the four links incident on a
vertex.

is fulfilled. There is thus a limiting temperature To for
which the inequality (3.1) turns into an equality. Below
To the unit-circle theorem holds for these vertex models.

For a ferroelectric 6-vertex model (Ei ——0, Ez ——Es
=E&0, E4,Es,E6,E7,Es moo), as well as an—8-vertex
model (E1=0, Ez E3 E&0, E4 ——E'&0, E5——,E6,E7, ——
Es~ 0o ), for which exact solutions are known, the limit-
ing temperature To coincides rvith the transition tempera-
ture. Numerical calculations for finite 6-vertex models
seem to indicate that the zeros of the partition function
actually get off the umt circle for temperatures above
To. On the other hand, the zeros of the partition func-
tion for the 16-vertex model (2.4) are known to lie on the
unit circle at all temperatures. ' In this case the limiting
temperature To has no special meaning.
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There is also a peculiar coincidence between the exact
transition temperature T, of the 6- and 8-vertex models
defined above and the corresponding temperatures, T, II,
predicted by the Bethe approximation. Since T, z ~ To
for the 12-vertex model, we suspected that the Bethe ap-
proximation overestimates the critical temperature. The
renormalization- group calculations presented in this pa-
per rvere undertaken in part to clear up this point.

IV. RENORMALIZATION-GROUP
CALCULATIONS

g'„(z) n

i(z') n —1
(4.1)

where z is an activity, and we choose pairs of strips with
widths n and n —1. The fixed point of the recurrence re-
lation z'=z'(z) gives estimates for the critical activity z„

g'„(z,„)
i(z, „)n 1— (4.2)

Estimates for the exponent v may be calculated by a
linearization of the recurrence relation in the neighbor-
hood of the fixed point. We thus have

We considered vertex models defined on strips of infin-
ite length and finite width (geometry 8, as denoted by
Brezin"). The correlation lengths in the longitudinal
direction were calculated by a transfer-matrix formalism.
The renormalization of the temperature was then obtained
via the scaling relation for the correlation length, '"

ln[ g„(z,„)/g„ 1(z,„)]
ln[n /(n —1)]

where /=de/dz.
Two sequences of estimates were obtained: (i) for

periodic boundary conditions, and with the usual defini-
tion of the transfer matrix for vertex models (ii) for hel-
ical boundary conditions. Details regarding the defini-
tions and calculation of the transfer matrices, as well as
the determination of the correlation lengths, are given in
the Appendixes. In general, the transfer matrices of ver-
tex models with periodic boundary conditions are not
Hermitian. However, it is remarkable that the ferroelec-
tric 12-vertex model obeys the conditions E3——E4 and
E5=E7, which are sufficient to ensure that t e corre-
spo11dlilg tI'aIlsfel matrix is Hermitlan.

In Table I we display estimates of z, = exp( —E/kT, )
and the exponent v for the 12-vertex model with periodic
boundary conditions, for six different values of the ratio
p =E/E'. In the limit @~0, the 12-vertex model reduces
to a 4-vertex model, and z, = 1. The values of
z, ~= exp( —E/kT, II), corresponding to the Bethe ap-
proximation, and of zo = exp( ElkT&—), are also given in
Table I. It is apparent that, in general, To ~ T, ~ T, z for
the 12-vertex model. Estimates for this model under heli-
cal boundary conditions are shown in Table II. In Figs.
3(a) and 3(b) the estimates for the 12-vertex model are
displayed graphically.

The estimates for the 16-vertex model, which is
equivalent to an anisotropic Ising model, are given in
Tables III and IV, for periodic and helical boundary con-

TABLE I. Estimates of the critical activity z, and the exponent v for the ferroelectric 12-vertex
model with periodic boundary conditions. The subscript n refers to a comparison between two models
with widths n aud n —1. Values of z, ~= exp( E/kT, s) an—d zo= exp( E/kTO) are a—lso given. The
parameter p is given by the ratio E/E', with the energy levels defined in Eq. (2.6).

@=2, z, g ——0.17157, z0 ——0.05572
0,157 11 1.322
0.12713 1.036
0.11242 0.970
0.105 25 0.959
0.101 71 0.964
0.099 91 0.971

1
p 1» zc8= 3» z0 —0 2

0.283 63 1.057
0.293 28 0.958
0.28704 0.928
0.28013 0.928
0.275 19 0.937
0.27207 0.948

1 1p= p» zcs=2»
0.42472
0.457 79
0.46783
0.46903
0.46740
0.465 24

z0 ——0.39039
0.926
0.874
0.846
0.844
0.856
0.875

3
4

6
7

p= 3, zcg ——0.58975„
0.50742
0.543 34
0.559 38
0.56563
0.56736
0.567 15

z0 ——0.5
0.895
0.843
0.808
0.793
0.796
0.809

p =—,', z„=0.64780,
0.56410
0.598 72
0.61657
0.62536
0.629 30
0.63071

z0 ——0.571 95
0.887
0.830
0.792
0.768
0.760
0.764

p= —,, z„=0.68914, z, =0.62340
0.606 25 0.887
0.638 68 0.825
0.65671 0.784
0.66669 0.756
0,671 97 0.740
0.674 54 0.736
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FIG. 3. Graphs of the estimates for z, and v, as a function of the widths n, of the ferroelectric 12-vertex model: (a) estimates of
. z„with periodic (pbc) and helical (hbc) boundary conditions (see Tables I and II); (b) estimates of v with periodic boundary conditions

(see Table I) and with helical boundary conditions (see Table II). We display results for several values of the parameter p =E/E'.

TABLE II. Estimates of the critical activity z, and the exponent v for the ferroelectric 12-vertex
model with helical boundary conditions.

3
4
5
6
7
8
9

Zc, n

p=2
0.052 95
0.078 34
0.09024
0.09499
0.09675
0.097 35
0.097 52

Vn

1.331
1.151
1.063
1.022
1.004
0.996
0.993

3
4
5
6
7
8
9

Zc, n

p=1
0.194 17
0.233 39
0.252 04
0.260 68
0.264 56
0.266 23
0.266 92

1.277
1.118
1.040
1.003
0.986
0.978
0.980

3
4
5
6
7
8
9

P=p
0.38299
0.418 70
0.43664
0.44630
0.451 66
0.454 67
0.456 36

1.251
1.100
1.022
0.982
0.961
0.951
0.948

3
4
5

' 6
7
8
9

7=3
0.492 62
0.522 47
0.537 79
0.546 53
0.551 81
0.555 10
0.557 18

1.249
1.097
1.019
0.976
0.951
0.938
0.931

3
4
5
6
7
8
9

7=4
0.56495
0.590 30
0.603 44
0.611 16
0.61603
0.61922
0.621 35

1.244
1.097
1.019
0.974
0.949
0.932
0.923

3
4
5
6
7
8
9

P= g

0.616 83
0.638 82
0.65028
0.657 12
0.661 53
0.664 S1
0.666 59

1.245
1.098
1.019
0.974
0.846
0.929
0.918
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TABLE III. Estimates of z, = exp( —J/kT, ) and the ex-

ponent v for the particular 16-vertex model defined by Eqs.
(2.4), with periodic boundary conditions. J and RJ are the ex-

change parameters of the equivalent anisotropic Ising model on

the square lattice. The exact values of z, and v are also given.

zc,s

0.75

I I I

3
4
5
6

R =1, z, =0.64360,
0.639 69
0.64205
0.642 94
0.643 17
0.643 33

v=1
1.039
1.021
1.013
1.008
1.006

0.64

3
4
5
6
7

R =2, z, =0.73736, v=1
0.735 07 1.042
0.736 49 1.025
0.736 94 1.017
0.737 12 1.013
0.737 21 1.010

I

4 5 6 7 8 9-
0

I I I I I I

ditions, respectively. These estimates, as well as the exact
values of z, = exp( JjkT, ) —and v, are plotted in Figs.
4(a) and 4(b).

The estimates for the 16-vertex model converge to their
asymptotic values faster than the corresponding ones for
the 12-vertex model. As a matter of fact, for the 12-
vertex model, the curves z, „versus n and v„versus n

display, in some cases, a nonmonotonic behavior. We
thus conclude that the estimates for the 12-vertex model,

up to the orders we considered, have not reached the re-

gime where their convergence is governed by the leading
irrelevant-variable scaling exponent. ' This makes it diffi-
cult to devise a reliable extrapolation scheme for the esti-
mates, particularly for those of the exponent v. There-
fore, it remains an open question whether v has a unique
value for the 12-vertex model. We recall that calculations
for the 8-vertex model indicate that the phenomenological
renormalixation-group technique may give good results

TABLE IV. Estimates of z, and v for the 16-vertex model
defined by Eqs. (2.4) with helical boundary conditions.

R
1.0 — pbc pbc

I I I I I I

4 5 6 7 8 9

FIG. 4. Graphs of the estimates, as a function of the widths
n, for the particular 16-vertex model defined by Eqs. g.4) (see
Tables III and IV): (a) estimates of z„with periodic (pbc) and
helical (hbc) boundary conditions; (b) estimates of v, with
periodic (pbc) and helical (hbc) boundary conditions.

TABLE V. Three-point fits for the estimates in Table III
with functions of the form A+En ", associated with three con-
secutive widths, n, n+1, and n+2.
n A 8 X

3
4
5
6
7
8
9

ze, n

R=1
0.624 85
0.635 62
0.639 54
0.641 27
0.642 14
0.642 63
0.642 92

R=2
0.71622
0.726 43
0.730 77
0.732 99
0.734 26
0.735 05
0.735 58

1.060
1.038
1.026
1.018
1.014
1.010
1.008

1.160
1.105
1.077
1.059
1.048
1.040
1.034

0.643 58
0.643 59
0.643 59

1.000 18
0.999 10
1.001 92

0.737 33
0.737 34
0.737 35

1.003 63
1.002 89
1.002 32

R=1, z,
—0.14020
—0.13464
—0.13062

R=1, v
0.410 17
0.35904
0.803 76

R=2, z,
—0.101 17
—0.092 62
—0.085 78

R=2, v
0.34489
0.31852
0.289 28

3.2656
3.2312
3.2093

2.1395
2.0073
2.6461

3.4600
3.3859
3.3309

1.9857
1.9042
1.8211
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for systems with nonuniversal critical behavior. '

Nevertheless, some fits of our estimates for the 12-vertex
model, with the allowance of logarithmic corrections, are
consistent with the assumption that it has a universal crit-
ical behavior, with v= 1. These fits, however, are by no
means definitive.

The estimates for the 16-vertex model behave as expect-
ed. In Table V we present results of three-point fits of
functions of the form A+Bn " to the estimates. They
seem to be consistent with x, =3 for zc,n and x„=2for
vn This supports the scaling relation13 15

x, —x„=1/v .

The exponents governing the convergence of our estimates
seem to be given by the usual values obtained in the On-
sager formulation of the Ising model. ' The amplitudes,
however, are different. Our estimates converge more rap-
idly to their asymptotic values than the corresponding
ones obtained via the Onsager formulation of the transfer
matrix. " Also, due to the way we formulate the Ising
model, even in the anisotropic case (R&1), the direction
in which the correlation length is calculated is equivalent
to the direction along which the widths of the strips are
measured.

TABLE VII. Three-point fits with functions of the form
A +Bn "for the critical free energies of Table VI.

3
4
5

—4.217 59
—4.218 72
—4.219 17
—4.219 17

R=1
—0.525 39
—0.542 08
—0.557 94
—0.557 62

1.8899
1.9342
1.9637
1.9633

—6.294 73
—6.295 98
—6.296 32
—6.296 44

—0.71442
—0.733 61
—0.74632
—0.753 79

1.9145
1.9517
1.9692
1.9776

Similar calculations for the 12-vertex model are not so
accurate since the exact critical temperature is not known.
Values for f„obtained using the estimates for z, of the
preceding section provided nonmonotonic estimates for B
and x. We are thus led to the conclusion that the asymp-
totic regime has not been attained and, therefore, correc-
tions to scaling become relevant.

V. FINITE-SIZE SCALING OF THE FREE ENERGY VI. CONCLUDING REMARKS

According to finite-size scaling arguments, the critical
free energy per vertex is asymptotically given by

f„—=A +Bn (5.1)

where d is the spatial dimensionality of the lattice. ' In
order to verify Eq. (5.1), we calculated the critical free en-
ergies f„given by

ln[Z„(T,)]f„=kT, — (5.2)

TABLE VI. Values of the critical free energy for the 16-
vertex Ising model with periodic boundary conditions.

f(0 n ')

R=l
—4.359 35
—4.283 47
—4.255 84
—4.242 83
—4.235 71
—4.231 39

2
3

. 4
5
6
7

f(0,n ')

R=2
—6.48424
—6.381 93
—6.345 00
—6.437 69
—6.31823
—6.312 50

for the 16-vertex Ising model with strips of width n (for
the 12-vertex model, J should be replaced by E).

In Table VI we give values of the critical free energy f„
for Ising models with width n and periodic boundary con-
ditions. Three-point fits of functions of the form
A+Bn " to these values seem to support the prediction
x =2 (see Table VII). In these calculations, the values of
f„converge faster than in the usual Onsager formulation
of the Ising model. For the isotropic case, B=1.188142
in the Onsager formulation, whereas B=0.557 in our cal-
culations.

We performed phenomenological renormalization-
group calculations and used finite-size scaling arguments
to analyze the critical behavior of 12- and 16-vertex
models on a square lattice.

For a particular 16-vertex model, which is equivalent to
the anisotropic Ising model with first-neighbor interac-
tions, the renormalization-group calculations produced
quite accurate results both for the critical temperature and
for the critical exponent v= l. Also, the behavior of the
estimates as a function of the widths of the strips used in
the calculations is well described by the expected asymp-
totic scaling law. It is thus possible to devise a reliable ex-
trapolation scheme. We obtain extrapolated values with
relative errors of about 0.001% for T, and 0.1% for v.
The critical free energies of the strips are also in good
agreement with the expected asymptotic behavior for the
16-vertex Ising model.

The results for the ferroelectric 12-vertex model are not
so well behaved. In several cases, the estimates for z, and
v show a nonmonotonic dependence on the width of the
strips. This is an indication that the asymptotic regime
has not been reached up to the widths we considered.
Nevertheless, the estimates for z, are sufficiently accurate
to allow the conclusion that the Bethe approximation for
the 12-vertex model leads to an overestimated value of the
critical temperature. Although we believe that the
correlation-length exponent for the 12-vertex model is
equal to the Ising value, v=1, other values of v, or even a
nonuniversal behavior of the model, cannot be ruled out
by our estimates.

All calculations were performed for vertex models de-
fined on strips of widths up to n=7 (16-vertex model
with periodic boundary conditions), n =8 (12-vertex
model with periodic boundary conditions), and n =9 (heli-
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\

cal boundary conditions). We believe that it would be
feasible to consider larger strips, particularly in the case
of helical boundary conditions, and to use better numeri-
cal methods for obtaining the two largest eigenvalues of
the transfer matrix (we used a variation of the power
method' ). Nevertheless, since the estimates seem to con-
verge slowly, it is doubtful whether this improvement
would provide a definitive answer about the value of the
critical exponent v for the 12-vertex model.
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APPENDIX A: TRANSFER MATRIX FOR VERTEX
M()DELS WITH HELICAL BOUNDARY

CONDITIONS

Consider a vertex model defined on a strip of width n

and length m. The total number of vertices will be
N=nm. Usually, ' the transfer matrix with periodic
boundary conditions is defined by

FIG. 5. Tmo rows of vertical bonds and a rom of horizontal
bonds for a vertex model with periodic boundary conditions and
width n =4.

Let us now group the bonds in N sets of n+1 bonds
defined by

Si = IOU «o'«. ««o'«« «o. 'a I « (A7)

with i =1,2, . . . , X«and Sz+i ——Si. The configurations
of each set may be labeled by an index
y;=1,2, . . . , 2++, and the partition function (A6) may
be rewritten as

The partition function is given by
N

Z«« = g g + exp[ —E(CTU. ,CTi, ,oU, oi, )/kT] .

T(«p, q&') = g exp
E,(y, 8,q')

«

(Al)

2n+1

g g T(y;,q;~, )= Tr T",
+~=1 1=1

where «P and y' label the configurations of two disjoint
sets of n vertical bonds, and 8 labels the configuration of
the n horizontal bonds between them (see Fig. 5). The
value of E„(y,8,y') is given by the sum of the contribu-
tions of the n vertices whose configurations are defined by

y, 8, and y . In the limit m ~ ao, the partition function is
asymptotically given by

(A2)

where A, i is the largest eigenvalue of the matrix T(y, y').
Also, the correlation length associated with the vertical-
bond —vertical-bond correlations in the longitudinal direc-
tion is given by

0 if y;+i is not compatible with p;,~(«+i)= p[ —Z(., n, „,„,I, )/kr]

if they are compatible.

It should be remarked that the transfer matrix will be
sparse. There will be, at most, four nonzero elements in
each line. In the limit m ~ oo, the partition function and
the correlation length wiH be given by

ZE =+1 (A10)

g=[ ln(A i/Ai)] (A3)

where A,q is the second-largest eigenvalue. Alternatively,
we may define the vertex model on a strip where the hor-

izontal bonds lay along a helix. These boundary condi-
tions were used by Kramers and Wannier for the Ising
model. ' %e may then number the vertices, as well as the

vertical and horizontal bonds, along the helix, as depicted
in Fig. 6, and associate an Ising spin cr„(vari, ) with each
vertical (horizontal) bond according to the conventions of
Sec. II. The Harniltonian rn.ay then be written as

Z(O'««0'i «CT~ «CFp ) « (A4)
i=1

12 11 10~9

Yg

7 6 5 5

Yp

h„

&a =Oa
0

(A5b)
FIG. 6. Lattice with n =4 and m =6 under helical boundary

conditions.
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g=[ ln(A)/A2)" ] (A 1 1)

where AI and A2 are the largest and the second-largest
eigenvalues of the transfer matrix, respectively.

APPENDIX 8: BLOCK DIAGONALIZATION
OF THE TRANSFER MATRIX OF

VERTEX MODELS WITH PERIODIC BOUNDARY
CONDITIONS

Before performing numerical calculations with periodic
boundary conditions we used symmetry properties to alge-

braically block-diagonalize the transfer matrix. As may
be seen in Appendix A, the states which define the
transfer matrix are invariant under rotations of 2n. ln, as
well as under the inversion of the arrows. Therefore, the
symmetry group to be considered is C„I, ——C„S2. First,
we obtained the character table of this group, with n be-

tween 2 and 8. We then constructed the unitary matrix S
in order to transform T into T'=SX TXSt. The compu-
tational effort in doing these calculations grows very fast
with n, and this imposed severe limitations on the widths
we were able to consider.

'M. P. Nightingale, Physica 83A, 561 {1976).
P. Nightingale, J. Appl. Phys. 53, 7927 (19g2).
J. F. Stilck and S. R. Salinas, J. Chem. Phys. 75, 1368 (]98]).

4D. Semmingsen and J. Feder, Solid State Commun. 15, 1369
(1974).

5J. F. Stilck, J. 'Phys. A 16, L629 (1983).
M. Suzuki and M. E. Fisher, J. Math. Phys. 13, 62 (1969).

7L. Onsager, Phys. Rev. 65, 117 (1944).
~R. J. Baxter, Exactly Solved Models in Statistical Mechanics

{Academic, New York, 1982).
S. Katsura, Y. Abe, and K. Ohkouchi, J. Phys. Soc. Jpn. 29,

845 (1970).
~ T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

E. Brezin, J. Phys. (Paris) 43, 15 (1982).
E. H. Lieb and F. Y. Wu, in Phase Transitions and Critical
Phenomena, edited by C. Bomb and M. S. Green (Academic,
New York, 1972) Vol. 1.
V. Privman and M. E. Fisher, J. Phys. A 16, L295 (1983).

~4M. P. Nightingale, Phys. Lett. 59A, 486 (1977).
B.Derrida and L. Be Seze, J. Phys. (Paris) 43, 475 (1982).
L. Sneddon, J. Phys. C 11,2823 (1978).
H. %. J. Blote and M. P. Nightingale, Physica 112A, 405
(1982).

~sD. K. Fadeev and V. N. Fadeeva, Computational Methods of
Linear Algebra (Freeman, San Francisco, 1963).

9H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).


