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Solitons and electroacoustic interactions in ferroelectric crystals.
I. Single solitons and domain walls
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This paper is devoted to the study of single solitons and one-wall motion in elastic ferroelectrics in

the presence of electromechanical couplings. To that purpose, a rather simple microscopic model is

devised for ferroelectric crystals presenting a molecular group (e.g., NaNO2). Continuum nonlinear

coupled equations are deduced from this model and are given a Hamiltonian form, allowing for the

analytical and numerical study of single ferroelectric solitons coupled to acoustic phenomena. For
single solitons it is shown that the whole problem can be recast as a double sine-Gordon equation of
which one solution is stable and can be interpreted as the motion of a ferroelectric wall with elec-

tromechanical couplings. The remaining mechanical equations then allow one to evaluate the stress

field generated by ferroelectric solitons also as the corresponding elastic displacement, since strain

compatibility conditions are satisfied in the present case. Numerical graphs illustrate the space-time

evolution of a wall and the accompanying stress and displacement fields. Energies involved such as

the wall energy, as well as the thickness of a moving wall, can be evaluated on account of elec-

tromechanical couplings. An interpretation of all results is finally given in terms of phase-transition

phenomena including an incommensurate phase. To that purpose, a Landau-Ginzburg type of ap-

proach is formulated in which a Lifshitz invariant and electromechanical couplings are accounted

for. The initiation of the ferroelectric phase takes place within the incommensurate phase, locally in

the crystal, with the formation of domains and the motion of walls.

I. INTRODUCTION

A. Ferroelectricity, walls, and phase transitions

The purpose of this work is to treat the wave problem
in elastic ferroelectrics in the neighborhood of the phase
transition by directly introducing parameters which
characterize the domain structure of those media. How-
ever, the essential property of ferroelectrics of exhibiting
one or several phases is not overlooked. Ferroelectric
domains are separated by (fictitious) walls which, in the
neighborhood of the phase transition or under the action
of an electric field, can start to move so as to yield eventu-

ally a globally nonvanishing mean polarization within
each domain. This is the ferroelectric phase (T(Tc,
where Tc is the transition or Curie temperature). In con-
tradistinction, the mean polarization vanishes in the
paraelectric phase (T) Tc), which implies that polariza-
tions in different domains compensate both in magnitude
and direction. Therefore, one easily understands that the
motion of walls separating domains will obviously cause a
change in the polarization of the ferroelectric specimen.
This wall motion is related to the appearance of a spon-
taneous polarization P, as a function of temperature.
However, the relationship between wall motion and phase
transition is not so simple and it becomes rapidly complex
depending on the nature of the transition. The phase-
transition problem is generally approached through sta-
tistical thermodynamics (free energy of Landau' ), while
the motion of walls and the evolution of domains are

geometrical features of the "morphology" of crystals. It
follows that the variation in electric polarization at the
level of a wall is necessarily connected with a nonlinear
phenomenon. Except for differing physical interpreta-
tions, the motion of domain walls in ferroelectrics can be
compared to the motion of Bloch walls in ferromagnets
for which the orientation of magnetic spins within the
wall evolves by rotating parallel to the plane of the wall to
yield an antiparallel arrangement of spins on the two sides
of the wall.

From the point of view of dynamics, the propagation of
waves in ferroelectrics is strongly altered by phase-
transition phenomena. Indeed, in a general manner, fer-
roelectric arid paraelectric phases are associated with dif-
ferent crystal symmetries and, therefore, different speeds
of propagation for both acoustic and optic modes. More
precisely, in the ferroelectric state, a wave mod~here
called ferroelectric mode is associa—ted with the order pa-
rameter (e.g., the polarization). Numerous experiments
have shown that the cutoff frequency of this mode
dramatically decreases as temperature approaches T~
from below. Such a mode is therefore referred to as a
soft ferroelectric mode; that is, the natural frequency of
elementary oscillators associated with the order parameter
goes to zero as T~T&, which, in turn, causes an increase
in the amplitude of oscillations. As a consequence, we
note that the dynamical electric susceptibility presents a
discontinuity at T&. A linear model is inadequate in the
neighborhood of the phase transition where parameters*
should exhibit a marked dependence on temperature. We
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are thus led to introducing anharmonicities .On the other
hand, thermodynamical arguments lead one to consider a
thermodynamical potential which includes higher-order
terms in the order parameter as well as its gradient in or-
der to account for "exchange" between domains
(Ginzburg's criterion ). Considered as a classical solid
crystal, the ferroelectric crystal exhibits mechanical phe-
nomena and provides a substratum for the propagation of
acoustic waves. The latter will also depend in some way
on the transition phenomenon through a structural change
in the medium. In addition, an essential property of de-
formable ferroelectrics is to exhibit a strong piezoelectricity
in their ferroelectric phase. This will materialize in a
coupling between acoustic and ferroelectric modes. If we
are in the ferroelectric phase but far enough from (i.e.,
below) the phase transition, then a linear model is suffi-
cient to place these couplings and the associated mode
conversion in evidence. ' However, when temperature T
approaches Tc from below, the ferroelectric mode goes to
zero and, via the indicated coupling, carries the acoustic
mode with it, thus causing a drastic decrease in the veloci-
ty of the acoustic mode. Such a phenomenon is experi-
mentally exhibited by means of infrared and Raman spec-
troscopies and inelastic neutron scattering experiments.
Once the transition is reached and overcome, the velocity
of the acoustic mode takes a different value from what it
was in the ferroelectric phase since the symmetry group is
different. Obviously, crystals of interest may not present
any piezoelectricity. In this case it is electrostriction or
higher-order piezoelectricity which may provide the elec-
tromechanical coupling of interest.

For the study of critical phenomena, solid-state physics
has placed in evidence an anomaly in the frequency spec-
trum of the response function S(q, co), and this can be in-
terpreted as the origin of the central peak in the frequency
spectrum in the neighborhood of Tc, ' which is certain-
related to the notion of ferroelectric domains. At this lev-
el one cannot do without introducing statistical physics,
especially in the neighborhood of the phase transition
where large fluctuations in domain take place, as if the
system hesitated between the "high-temperature"
paraelectric phase and the "low-temperature" ferroelectric
phase. In reality, we have only locally, within the
paraelectric phase, the initiation of the ferroelectric phase
with simultaneous creation and annihilation of domains.
Similarly, we note that certain ferroelectric crystals
present, between a paraelectric phase and a ferroelectric
one, an intermediate phase in which there exists a
structural distortion. More precisely, considering a one-
dimensional monoatomic chain for the sake of illustra-
tion, whenever there exists a modulation of the crystal
structure, we can write for the equilibrium position of the
atom at site n

commensurate phase . This property can be extended to
types of distortions other than the structural ones (e.g.,
helimagnetism in ferromagnets, Bloch electron in an
external magnetic field). For instance, in the case of sodi-
um nitrite NaNO2 in which NO2 is equipped with its
own electric dipole and it rotates like a rigid body about
crystallographic axes, we have a paraelectric phase I
where dipoles are disordered and a ferroelectric phase III
where they are ordered. ' ' However, one does not go
directly from I to III as temperature decreases since there
is in between these two phases an incommensurate antifer-
roelectric phase II for which the orientation of dipoles is
distributed periodically but with a period which is not
commensurate to the crystal mesh. This phase lies in the
temperature interval (TC, Ti) where T, is the transition
temperature between the paraelectric phase and the in-
commensurate one [in NaNO2, Ti-164'C, T&-162.8'C
(Refs. 15 and 16)]. In other terms, regions where the or-
der parameter is almost uniform are separated in the in-
commensurate phase by narrow transition regions that
can be assimilated to solitons (see below). It is customary
to introduce one or two components of the order parame-
ter in the expansion of the thermodynamical potential
(where anharmonic terms are retained) with intentions of
describing an incommensurate phase. ' ' The very
periodic nature of the structural distortion of an incom-
mensurate phase follows from such a description.
Furthermore, as one approaches the incommensurate-
commensurate phase transition, the solution which de-
scribes the distortion degenerates to become a solitary
wave for the order parameter (the orientation of dipoles in
the case of NaNO2). The term "phasons" is also coined
for these solitary waves. In other terms, in approaching
the incommensurate-commensurate phase transition, the
initiation of the ferroelectric phase takes place within the
incommensurate phase, locally in the crystal. Ferroelec-
tric domains are created or annihilated locally. Therefore,
motions of walls (solitons) take place which yield an align-
ment of all polarizations in a privileged direction resulting
in the ferroelectric phase.

The above-given physical description corresponds to the
microscopic description envisaged in this work; that is,
essentially, the case of ferroelectrics in which molecular
electric dipoles rotate rigidly and strong anharmonicities
lead to the description of incommensurate-commensurate
transitions in terms of solitons. The latter can be inter-
preted as the motion of walls separating ferroelectric
domains. In addition, the deformation of the medium is
taken into account so that we shall account for the in-
teraction between acoustic modes (phonons) and solitons
(phasons). This interaction plays a predominant role in
the study.

x„=na +f(q)exp(inqa),

where n is an integer, a is the lattice spacing, and q is the
wave-number modulation. It is said that the structure is
incommensurate if (qa l2n)=a IA=o is .irration, al so that,
mathematically, the wavelength of the modulation and the
crystal mesh have "no common measure. " A phase in
which the structure presents this property is called an in-

B. Solitons

The nonlinearities introduced in the present model of
ferroelectric crystals lead inevitably to solitary waves or
solitons, ' that is, exact propagative solutions of a certain
class of nonlinear partial differential equations (e.g.,
Korteweg —de Vries equation, Schrodinger equation, etc.)
in the general form
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P(x, t) =PT(g), g=x —ut, (1.2)

where u is the propagation speed of this "wave" of infi-
nite period. More precisely, a solitary wave is a localized
wave which transits from an asymptotic value for
g—'+ —oo to another asymptotic value for g~+ ao and is
essentially localized at g. In the present case, these
waves can be interpreted as representing the motion of
walls that separate ferroelectric domains. The study of
these solitons in the present work will require the use of
the whole analytical machinery devised in the treatment
of such waves. The problem envisaged is more complex
than the simple study of the the sine-Gordon equation, 'for
the latter here is perturbed by electromechanical couplings
with acoustic phenomena in the ferroelectric crystal.
Hence the motion of a wall will, in general, be accom-
panied by a nonlinear elastic wave. Conversely, if we are
close enough to the phase transition, an elastic wave will
initiate the motion of a wall, an effect which may ac-
celerate or slow down the transition process depending on
the case considered, this being even more marked if the
transition if of the incommensurate-commensurate type.
Note that electromechanical couplings allow for the gen-
eration of a solitary wave in stresses while the medium
remains elastically linear.

We concentrate here on the case of a single soliton or
one wall in motion, the interaction between several walls
and the interactions of one wall and an acoustic wave be-
ing examined in detail in a planned future work. In Sec.
II below we give a description of a simple microscopic
model of ferroelectric crystals with a molecular group for
which NaNO2 provides a prototype. This is simplified
maximally by a schematization as a one-dimensional
monoatomic chain equipped with microscopic electric di-
poles associated with the molecular groups. Despite this
overall simplicity, this provides a model which is rich
enough to allow for a detailed analysis of nonlinear ef-
fects. The equations of motion for the chain are deduced
from a Lagrangian density. Continuum nonlinear coupled
equations are deduced from this set of discrete equations
by considering perturbations whose characteristic length
is large as compared to the lattice spacing. The continu-
um equations are also given a Hamiltonian form, which
greatly facilitates the numerical analysis and the obtention
of graphs on a computer. Single ferroelectric solitons
coupled to acoustic phenomena provide the subject matter
of Sec. III. The transverse acoustic mode is generally cou-
pled with the ferroelectric one. It is shown that the prob-
lem can first be recast as a double sine Gordon equatio-n.

This equation is solved by a now classical technique and
two different solutions are obtained with the accompany-
ing -"dispersion relations, " which involve pseudowave
numbers and frequencies. Only one of these two solutions
is stable and can be interpreted as the motion of a fer-
roelect6c wall. The remaining mechanical equations then
allow one to evaluate the stress field generated by the fer-
roelectric solitons through electromechanical coupling as
also the corresponding elastic displacernent, since strain-
compatibility conditions are satisfied in the present case.
Numerical graphs obtained by computer illustrate in
space-time the motion of a wall and the accompanying

stress and displacement fields. Finally, energies involved
are evaluated, and this allows one (i) to show the influence
of electromechanical couplings on the total energy, (ii) to
evaluate the wall energy per unit area, and (iii) to evaluate
the thickness of the moving wall, including the effect of
electromechanical couplings. In the final section an inter-
pretation of all results is given in terms of phase-
transition phenomena. There, on the basis of a Landau-
Ginzburg type of approach in which electromechanical
couplings and a Lifshitz invariant are taken into account
and the two components of the electric polarization pro-
vide primary order parameters, it is shown that a physical
interpretation can be given to the phenomena of soliton-
like solutions and of formation of domains in terms of a
phase transition that involves an incommensurate phase.
Only the case of one ferroelectric wall, hence a single-
soliton solution, is considered in the present part.
Multiple-soliton solutions which require the use of a more
elaborated mathematical machinery are studied in a future
work.

II. MODEL AND EQUATIONS

A. Model

The conception of the present model of ferroelectric
crystals relies on the crystallographic description of
NaNO2. As already mentioned, this crystal possesses a
molecular group (cf. Fig. 1). In its ferroelectric phase, its
crystalline structure is centered orthorhombic of symme-
try group C2, or Im2m. The unit cell has dimensions
a =3.560 A, b=5.563 A, and c =5.384 A in the fer-
roelectric phase. The NO2 molecule is considered as a
rigid body and, therefore, is subjected to (i) a displacement
of its center of mass and (ii) a rigid-body rotation about
the center of rotation. These two centers are distinct and
separated by a distance of 0.26 A. However, we should
approximate this in making the two centers coincide. The
NO2 molecular group rotates about the a axis (small rota-
tion in general) as well as about c. The electric polari-
zation of the NO& group is directed along b in the ordered
phase and it has a magnitude of the order of 7 pC. The
motion of the NOz group relative to the Na+ ions can
be neglected in the first approximation since this relative
motion would yield frequencies higher than 10' Hz,
while typical frequencies of the NO@ group in rotation are
of the order of 10 —10' Hz. Therefore, we can reduce
the crystal cell to a point equipped with the global mass
of the cell at its center of mass of which the translational
motion will give rise to acoustic branches. Insofar as the
NO2 molecular group and its motion are concerned, we
consider the simple scheme of a "microscopic" electric di-

pole P0 placed at the center of mass of the crystalline cell,
and a rotational inertia I is associated with the NOq
group. The simplified monoatomic chain equipped with

microscopic dipoles thus obtained is sketched out in Fig.
2. Such a model has already allowed us to study linear
waves. Note that if we account for the relative motion
of the NO& group and the Na+ ions, then a diatomic
chain equipped with dipoles is necessary. Such models
also apply to molecular crystals which are not ferroelec-
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FIG. 1. Crystalline structure of NaNO&. The NO2 group is considered as rigid in the case formed by Na ions.

tries [e.g., KNO3 (Ref. 30), KCN (Refs. 31 and 32),
NaCN, NH4Br, etc.] where, in addition to translational
degrees of freedom, one has to account for the rotational
degrees of freedom of the molecular group, thus resulting
eventually in additional low optical branches (so-called
"librons").

Three types of motion can be distinguished in the
monoatomic chain of Fig. 2: (i) a longitudinal motion of
the lattice points n, (ii) a transverse motion of the same
points, and (iii) the rigid-body rotational motion of the

electric dipole. The displacement of the lattice point in
the plane of the chain is noted U„=(g„,U„) or

U„=x„—X„=u„i +U„j, (2.1)

where X„denotes the equilibrium position, x„being the
position of the same point after deformation. In addition,
the electric dipole at site n rotates by an angle 8„ from its
equilibrium position. The forces acting on a lattice point
n result from the interaction with neighboring points

(n -a) (n+a)

FICi. 2. Monoatomic chain with electric microscopic dipoles.
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p'd r= z QI k(([(u„ i —u„) +(u„+i—u„) ]

+ki[(v„ i
—v„) +(v„+i—v„) ]I (2.2)

The existence of an electric dipole at each lattice site leads
us to account for the mutual interaction between such di-
poles. The interaction energy between two neighboring di-
poles is written in the electrostatic form

(short- and long-range interactions). These are modeled
by means of a stretching coefficient k~~ and a fiexion coef-
ficient kz. These two coefficients, for the lack of a finer
analysis, represent globally all forces of attraction and
repulsion between particles. The energy of deformation of
the chain thus reads

~elec P E ~ (2.3)

where E is the electric field produced by a neighboring di-
pole at the site of the P dipole. The interaction between
dipoles is altogether much more complex than the simple
expression (2.3) states, since interactions between ions of
NOz molecular groups is of the Coulombic type (long-
range interactions). This yields the electrostatic energy8' lec between dipoles. In addition, we have a short-range
interaction between molecular groups which is of the
Born-Mayer type and account should also be taken of the
interaction be&ween Na+ ions and each NO2 group. But
this could only be achieved correctly in the fully three-
dimensional model. In the present simplified model, for
two dipoles at sites n and n —1 in the chain, the electro-
static interaction energy reads

3 Un Un —1

2 a

X [3cos(L9N ~n —i)+(1—pg —i)«s(~pg+&pg i)+2/„ isin(L9„+8„ i)]+O(u„,v„), (2.4)

where we have set

e=Pv l8neyz, p„ i ——(v„—v„ i)la, (2.5)

where eo is the vacuum dielectric constant. For the whole chain, accounting for interactions on the left and right of each
atom site, by summing over n, we obtain the total electrostatic energy as

~ei~= z g(~." + ~."+i) . (2.6)
n

Finally, the kinetic energy of the chain, accounting for translational and rotational motions, is given by

T= —,
' g[m(u„+v„)+IO„], (2.7)

where m is the total mass of the crystalline cell, and I is the inertia of the molecular group. The corresponding I.agrang-
ian is

W = T (Wd,r+ 8;i„—) . (2.8)

Note that no hypothesis has been made concerning the amplitude of the rotation of dipoles so that 8„ is arbitrary for the
moment.

B. Equations of the discrete model

Owing to Eqs. (2.2)—(2.8) and for H„of any amplitude, we deduce the following equations of motion:

r

0n —l . I 0n+0n+1mu, = k~~(u„+i+u„ i —2u„)— (2u„—u„ i
—u„+i) 3sinz +sini

2

6e+ sin
0n+ l

—0„
2

0„+l+ 0„ l
—20n

3 sin +sin
2

0n+ l+ 0n l+ 20„
2

(2.9a)

2E'
2 0n +0n+1

ll i( „+&+v„&—2v„)+ z (2v„—v„+,—v„,) 5 sin
2

0n —0n+9 sin
2

4e
sin

a
0n+ ) —0„

cos
20n +0n+ 1+0n

2 (2.9b)
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IO„= 2E'cos
2

8n /1+ 8n —1 28n
3 sin

8„+i+8„ i+28„—sin
2

2E' 2E'
+ (vn —vn 1)cos(8n +8n 1)+ ( un+1 vn )cos(8n +1+8n )

a a

+ (2u„—u„+ i —u„ i )[3sin(8„—8„ i }+sin(8„+8„+i )],3p
(2.9c)

where we have set

48' ~ $4g
kii kii+ '

y kj ki +
a Q

(2.10)

The latter two quantities are spring constants stiffened by
the presence of electrostatic dipole interactions. The three
equations (2.9) are coupled and are relatively involved.
An appreciable simplification follows when one assumes
that the orientation of dipoles varies slowly over a crystal-
line spacing. That is,

~

8„—8„ i ( « 1 for any n,

r} u
Pu =Cll

Bu e 8
pv =C~ —— (sin28),

2 Bx

~. 88 BvJ8=E +X sin(28)+e cos(28),
r}X BX

where we have set

C(( ——k)(/a, Ci ——ki/a, e=4e/a,

(2.12a)

(2.12b)

(2.12c)

(2.13)

so that
~
8„+i+8„ i —28n

~

&&1 also. On expanding the
trigonometric functions present in Eqs. (2.9) with respect
to differences of the type 8„—8„,and keeping terms of
the first order, and then discarding contributions such as

2(e/a )sin8„as compared to k~~ or ki, we obtain

~ ~

mun = k(~( u+ni+un —i 2un }

+ (8„+i
—8„ i )sin(28„),

36'

a

mv'„= ki(v„+, +v„,—2u„)
26'

(8„+i —8„ i )cos(28„),

(2.11a)

(2.11b)

I8„=2e(8„+i+8„ i
—28„)—2e sin(28„)

26'
+ (v»+ i

—un —i )cos(28„)
a

3E
(u„+i—u„ i)sin(28„) .

a
(2.11c)

The solution of this discrete form of the equations of
motion is much complicated by the presence of couplings
(the linear case, however, was solved numerically in Ref.
29}. Only the case of simple anharmonic chains is solv-
able and leads to soliton waves in certain cases (Toda's
chains ). Here, Eqs. (2.11) are only used as a physical
support for the continuum model used therein after.

C. Equations of the continuum model

If we suppose that the crystalline structure is subjected
to dynamica1 processes of which the characteristic length
L is large as compared to the lattice spacing, L »a, then
the "point" quantities u„, v„, and O„can be expanded
about n as functions of x. After some manipulations we
obtain thus the following system of partial differential
equations for the continuum variables (u, u, 8):

E=2e/a, X=—2e/a, p=m/a, J=I/a
In deducing Eqs. (2.12) we have chosen to neglect the cou-
pling'between the longitudinal displacement u and the ro-
tation [in Eq. (2.12a)], primarily for the sake of simplifi-
cation, but also because of the analogy with the linear
case, where only couplings between the transverse dis-
placement v and the rotation 8 were shown to be of in-
terest. The various phenomenological densities and coef-
ficients introduced bear the following physical signifi-
cance. p is the mass density of the crystal considered as a
continuum, J is an inertia per unit volume, Cll and CJ
are longitudinal and transverse elasticity coefficients, e is
an electromechanical coupling coefficient (playing the
same role as piezoelectricity in the linear case), and P is an
electric susceptibility. The linearized version of Eqs.
(2.12) can be compared, on the one hand, to the linear
equations obtained for the same model (cf. Ref. 28) when
studying coupled harmonic waves and, on the other hand,
to the one-dimensional version of the governing equations
of the so-called elastic micropolar media. These equa-
tions can also be compared to the equations deduced from
a fully continuum approach (Refs. 7 and 8) to elastic fer-
roelectrics. This is readily achieved by introducing a po-
larization perturbation p related by p=Po8 in the case of
small rotations (Ref. 28). However, one must be rather
cautious regarding the physical reality of the above-
devised model since, clearly, such a model accounts only
for what happens along the chain. But when dipoles ex-
perience sufficiently large rotations, the assumed one-
dimensional nature of the medium is broken and interac-
tions with neighboring parallel chains (Ref. 28) should be
taken into account. This would greatly complicate the
picture and the algebra. We prefer to let the coefficients
e, X, and X rather be unspecified so that a wider class of
interactions than those accounted for in the previous para-
graphs could be included in these if necessary.

In the case of rotations 8's of small amplitude about the
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equilibrium orientation 8=0, and making the required ex-
pansion of the electrostatic energy up to terms of the or-
der of 8„and considering only a linear electromechanical
coupling, Eqs. (2.12b) and (2.12c) reduce to

~=—,
'

( Il +p 2)+1+cosp+(g/vz )p, sing .

The associated canonical equations read thus

(2.20)

av a8pv'=C&
2

—e
ax

a8J8=K +2X(8 —,' 8—')+e
X ax

(2.14a)

(2.14b)

/=28, v=2vv 2X/J,

t =r'i/J/2X, x =XV'K/2X .

In an obvious manner we set

(2.15)

A nonlinear term in 8 remains in the second of these
equations. This term is equivalent to considering the rota-
tional motion of electric dipoles in a double-well potential
V(8)=Eo( —,

' 8 ——,
'

) . A previous study considering such
a potential has concluded in favor of the existence of solu-
tions in the form of solitons. The stability analysis of
these waves has shown that only the stable wave could
correspond to the motion of a domain wall separating two
domains in the ferroelectric crystal.

Consider now the following simultaneous changes of
functions and variables:

aII, ap, a+ Vr ———g (sing),a'r

api aIIi
a. +"ax ='
all,

+ =siniI) —(g/Vr)picosg,

apz ailz
ar aX

av =IIi,a'r

ap =II2 .
7

(2.21)

III. SOI,ITONS

This last formalism proves to be useful in studying a nu-
merical scheme for the solution of the system (2.17b) and
(2.17c) under various initial conditions for P and v (in the
problem of the collision of solitons in particular).

n2 JC))
VL —— , Vr —— , q = &J/K . —(2.16)'

pX
'

pK
'

2

The new set (u, v, P) of functions satisfies the following
system:

BQ BQ—Vl ——0,
ad ax
av 2 av a
+

—VT,2
———g sing

av

a ax
—sinP=ri cosP .

(2.17a)

(2.17b)

(2.17c)

2
av ap
a'7 a1

2 2
1 V2 av ag
2 ax ax

'2

—(1+cosP)+ri(sing)
av (2.18)

Now let W =0 for v =0 and P =+m.. Equivalently, on in-

troducing the following conjugate quantities:

It is not difficult to show that Eqs. (2.17) admit the fol-
lowing Lagrangian density:

A. Transformation of the equations

Consider Eqs. (2.17b) and (2.17c) in which we write v

instead of v to simplify the notation. Some obvious prop-
erties of such equations can be emphasized. Let (v, P) be a
solution. Then both ( —v, —P) and (v, m —P) are also solu-
tions, and thus ( —v, m +P) is also a solution. Obviously, P
is defined mod2km. and the system (2.17b) and (2.17c) has
the elementary solution

v=vo ——const, P=k~, kCZ . (3.1)

(3.2b)

We look for solutions in the form of propagative waves,
that is, functions of the only variable g=QX Qr, where—
Q and Q may be referred to as a pseudo wave number and
a pseudo circular frequency which must satisfy a certain
dispersion relation. In this case the system (2.17) yields

d Q
(Q —Qt ) =0, QL, = VL, Qdf2

(3.2a)

2 d U
2 p 2

(Q —QT) = —gQ (sing), QT—:VrQ
dg

(Q —Q ) —sing = riQ cosP .2 &dP . dv

dg
(3.2c)

The first of these obviously provides the dispersion rela-
tion

II =(Ili, ilz), p=(pi, p2), 0=+01 . (3.3)
ay
a7

'

av a2 ap
'ax' p'= a(ay/ax)

=
ax '

we can introduce the Hamiltonian

aw av aw
a(av-/ar)

=
ar ' "'=

a(ay/ar)

awpi=
a( V,av /aX)

Equation (3.2b) integrates once with respect to g to give

(3.4)
~2 dU

(Q —QT) = —gQ sing
dg

on the condition that (dv/dg) =0 if / =km and Q~+QT.
This will have to be checked a posteriori once p is known.
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Now, on substituting (du/dg) from Eq. (3.4) into Eq.
(3.6), we obtain DNIDll(a b)

a a a a
ax ax a~ a~

d2
(Q —Q ) =sing —y(Q, Q)sin(2$), (3.5) X [a (X,~)b (X',~')] (3.10)

where

~2 Q2
y(Q, Q)= 0 —QT

(3.6)

V(P) =2 cosP —y cos(2$), (3.8b)

where Ep is the integration constant which can be related
to the total energy of the system under consideration.
Equation (3.8a) represents the motion of a particle of
mass 0 —Q in a periodic potential V(P) of period
2m—but here the "mass" may be negative in some cases.
In a general manner, Eq. (3.7), hence Eqs. (3.8) as well,
has periodic propagative solutions which depend on the
energy Ep. This is an interesting property which can be
eventually connected with the motion of electric dipoles in
an incommensurate phase (see the introduction). Indeed,
in such a phase, dipoles oscillate with a period which is
not commensurate with the lattice spacing. Here, howev-
er, we shall consider the case of Eq. (3.7) or (3.8) which
present solutions with Ep = —2.

An initial remark is in order before proceeding to the
solution of Eq. (3.7). Consider the following "Lorentz
transformation"

We note that Eq. (3.5) is entirely equivalent to the partial
differential equation

a2$ a2$

aH ax
=sing —y sin(2$), (3.7)

whenever we consider solutions P=P(g). Forgetting for
the moment that the solution of Eq. (3.7) depends on Q
and Q, we note that Eq. (3.7) is formally a double sine-
Gordon equation [not exactly, in fact, since the double
sine-Gordon equation usually studied involves sin(P/2)
and not sin(2$)! (cf. Refs. 38—40)]. If we carry solutions
P(g') in Eq. (3.7), then we recover Eq. (3.5). But the latter
possesses a first integral (energy integral) given by

(& —Q ) + V(p) =ED, (3.8a)2 2

d

Let us first envisage solutions in the form

$=2tan '(f/g), (3.11)

where both f and g are functions of X and ~. Now set

X=Y+T, v.=T—Y,
so that we can rewrite Eq. (3.7) in the form

a'
aYaT

= —sinP+y sin(2$) .

(3.12)

(3.13)

Accounting for the definition (3.11), we have

a'
aYaT

= 2[f.gDTDT(f f gg) (f—' g')D—TDT—(f g)]

)( (f2+g2) —2

On using this and Eq. (3.11), we can rewrite Eq. (3.13) as

[2yf g DTDT(f—'g)](f' g')—
+[Di DT(f g)+(f g—)](f.g) =0—. (3.14)

f=1+6'f2+~'f4+

g =&gi+Ai+ . (3.16)

where 5 is an arbitrary parameter. At zeroth order we ob-
tain

p= 1+2/ ~

while at the first order

(3.17)

We look for solutions of this equation such that the fol-
lowing decomposition holds well (p is not known as yet):

DiDT(f g)=Pf g
(3.15)

DYDT(f' g') = (f'—+g ' )+—(l 27 )(f' g'—)—
This system presents a certain symmetry insofar as f and
g are concerned. Consider now functions f and g, permit-
ting expansions of the following type:

QX —QT, Q~ QX-
(Q2 II2)1/2 '

(Q2 II2)1/2
(3.9) agi

aYaT ="g', (3.18)

Then both Eq. (3.7) and the corresponding Lagrangian
density are invariant in such a transformation. This is of
interest because it allows one to work out the problem in a
frame co mouing w-ith the wave at a velocity 0/Q. This
property can also be exploited in the study of stability of
soliton waves. '

We seek a solution of the latter in the form (the choice is
not unique)

gI(Y, T)=expz, z=aY PT, aP= —p . — (3.19)

The constants a and P can be related to Q and Q by the
intermediary of Eqs. (3.12). This gives

B. Solution
a=Q+Q, P=Q —Q. (3.20)

In order to solve Eq. (3.7) we introduce the following
operator: 2 43

On substituting from Eq. (3.20) into Eq. (3.18) and ac-
counting for Eqs. (3.17) and (3.19), we obtain the disper-
sion relation as
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Q —Q = —(1+2y) . (3.21)

Finally, at the second order in 5, taking the results of pre-
vious orders —Eqs. (3.17) and (3.18)—into account, we
have

~'fz
BYBT

With (3.19}this yields

(3.22)

—exp(2z) (3.23)
4(1+2y)

Taking f~~ =0 and go+i ——0 for p & 2, we can show that
the expansions (3.16) converge and the exact solution of
Eq. (3.17}or (3.13) is finally obtained as

y= —2tan-'

where

sinhg'

(1+2y)'

4(1+2y)

(3.24}

(3.25)

FIG. 3. Dispersion relation for single soliton. (c) and (d):
solutions of Eq. (3.30a). (e) and (f): solutions of Eq. (3.30b).

Q —Q =1—2y (3.27}

This solution holds only for 1+2y &0, which is satisfied
on account of the dispersion relation (3.21) and of the ex-
pression (3.6) of y. As g'~ —oo, (()~+m and for g'~ Oo,

P—+ n-, the term g—o
——51n(1+2y)/4 may be viewed as a

constant arbitrary phase.
Another solution of the problem is obtained by looking

for a solution of Eq. (3.17) or (3.13) in the form

(3.26)

where P satisfies Eq. (3.13) but with sing replaced by
—sing. The resulting computations are identical to the
previous ones and the results are a dispersion relation

is the ferroelectric mode. The branches (c) and (d) corre-
spond to the solutions of the dispersion relation (3.30a) or
(3.21) while branches (e) and (f) correspond to those of the
dispersion relation (3.30b) or (3.27). In the first case (c) is
such that Q & Q while curve (d) is very close to QT, up to
terms of order q, so that the corresponding soliton prop-
agates practically at the speed of a transverse acoustic
mode. As for curves (e) and (f), for both we have Q & Q
and they are conjugate to those obtained in the linear
framework (Refs. 8 and 28).

(i) Stability Of the .two solutions (3.24) and (3.28) (we
could also consider coshz' instead of sinhz'), the most in-
teresting one is the stable one. A stability criterion for the
sine-Gordon equation of the type (3.7) is given by (cf. Ref.
41)

and a solution
Q&Q, ' &0.dd

(3.31)

y=n. —2 tan-'

with

sinhg'

(1 2y)1/2
(3.28)

1 4(1—2y)2'" (3.29)

and

[Q —(QF —2)](Q —QT)+g Q =0

[Q —QF](Q —QT)+g Q =0,

(3.30a)

(3.30b)

respectively. In Fig. 3 the uncoupled solutions of the
linear problem are represented in broken lines (cf. Refs. 8
and 28): branch (a) of equation Q=QT is the transverse
acoustic branch while branch (b) of equation Qz ——1+Q

This last solution is valid if (1—2y) & 0, which holds true

by virtue of Eq. (3.27).
The "dispersion relations" (3.21) and (3.27) are of the

utmost interest. They can be rewritten in full as
(Qp=l+Q )

P=m. —2 tan '(e~+ ) —2tan '(e~ ) (3.33)

Only the solution corresponding to the branch (c) in Fig. 3
is thus stable. This is analytically described by Eq. (3.24).
Moreover, only this solution has a physical significance.
However, it must also be noticed that solutions (3.24) and
(3.28) have been obtained by substituting —X for X in the
system (2.11)—because of the fact that X depends on tem-
perature. Had we kept +7 we would have obtained the
same solutions (3.24} and (3.28} but with y replaced by
—y and the two dispersion relations (3.30) interchanged.
Then the stable solution would have been (3.24). This
must not be overlooked when giving a physical interpreta-
tion to the solutions.

(ii) Other form of the solution (3.24). The solution
(3.24), as well as (3.28) for that matter, can be given
another form by decomposing the tan ' operator. We ar-
rive thus at the expression

p = —2 tan '(e &+a) +2 tan (e &+a), (3.32)

or, else,
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with

g=gX —Qr, 4= ——ln
4(1+Zy)

2 5
(3.34)

In the form (3.32) or (3.33), the simple soliton solution to
the double sine-Gordon equation (3.7) oupled case,
y&O decomposes in the sum of two simple soliton solu-
tions. Taken separately, each of these is analogous to the
simple soliton solution of the usual sine-Gordon equation
(case y=0) up to a factor 2 in front of tan ' operators.
Note also that for y=O, the solutions (3.32) and (3.33)
reduce to the classical case of the solution of the usual
sine-Gordon equation (Ref. 41).

It is of interest to evaluate the stress field generated by
the soliton solution. This field is defined by

2riQ

(Q —Qz)

i 1/2
r+2y '

—2y

~'

cosh(g' —g'o)
tanh —'

(3.37)

The same type of result obtains for the soliton solution
(3.28).

Finally, Eq. (3.34) can be integrated in order to provide
the elastic displacement that corresponds to the motion of
the wall. This, in fact, is possible because the strain com-
patibility conditions are satisfied in the present case.
However, it would not be necessarily the case in more
complex situations where one would have to consider so-
called internal strains. The evaluation of the displacement
yields

~2 Ucr= —VT +ri sing .x
Owing to Eqs. (3.4) and (3.24), this yields

Q &1+2y sinhg'

Qi QT V 1+2y+sinh g'

(3.35)

(3.36)

and

—2rig 1 —2y
U —Up=

(Q —Q~z. )
—2y

1 /2
cosh(g —go)

tan —'
v' —2y

for the solutions (3.24) and (3.28), respectively

(3.38)

FIG. 4. Ferroelectric soliton {polarizatj:on angle).
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FIG. 5. Soliton in stress accompanying the single ferroelectric soliton.

Numerical evaluations of the space-time graphs of the
solutions (3.24), (3.35), and (3.37) are given in Figs. 4, 5,
and 6. Physically, the solution sketched out in these
graphs corresponds to the motion of a wall that separates
two domains, with P~m, 8~@/2 for X~—oo and

8~ n/2 for X~+ oo—. The spatial region
where changes occur drastically determines the thickness
of the wall. The corresponding stress in Fig. 5 is obvious-

ly essentially nonzero in the immediate vicinity of the
wall. It is proportional to the electromechanical coupling
parameter g. Similarly, the displacement in Fig. 6 is
essentially nonzero in the spatial region of the wall,
presenting a maximum where the solution of Fig. 4
presents a point of inflexion. Clearly, a nonlinear stress
wave is generated by the wall motion between two
domains, via electromechanical couplings, although the

I

medium considered is strictly linear from the point of
view of elasticity.

C. Evaluation of energies

Before relating the previous mathematics to some phys-
ical situation, we evaluate and compare the various ener-
gies involved in the system at hand. First, the total ener-

gy is evaluated. Then, in the static case we get an idea of
the wall energy per unit area and compare it to known fer-
roelectric cases. The wall thickness is also determined.

The total energy is obtained by summing up the Hamil-
tonian density (2.20), i.e.,

E=f A (p, II,Q)dX.

After a somewhat lengthy calculation one obtains

2 1+2y
—2y

1/2

tan-' —2y
1+2/

' 1/2

t-t2+ Q& 3n QT-—(I+2y)
l 2

+1+2/ Q2 Q T

(3.39)
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FIG. 6. SoHton in displacement corresponding to Figs. 4 and 5.

Notice that the term y of Eq. (3.6) i»nvoived in the «suit
(3.39). This depends on g, hence on electromechanical
couphngs. The elastic contribution is felt through the
presence of the "elastic" frequency Qr. -If one neglects
electromechanical couplings (

~ y ~
&&1 or g &&1), then

Eq. (3.39) simplifies noticeably to give the extremely sim-
ple result

(3.40)

In this case everything occurs as if both elastic and cou-
pling energies mere zero; only the electric-dipole energy
remains.

Returning to the general case (3.39), we consider small
y's so that an expansion to the first order in y yields

the parameters Vr and q of the model.
In order to evaluate the wall energy, eve consider the

static version of the coupled equations (2.12b) and (2.12c).
That is, in dimensional notation,

d U e d
Ci =— (sin28),

dx
(3.42)

K =—X sin(28) —e cos(28) .
d8 . du

X x
The corresponding total energy of the system reads

r r 2 r '2+~ 1 d8 duE= —E +Cj2 dx dx
L

E =8Q+ ~ 2+Q'+ — „, , +0(y2) . (3.41)
3Q2 2(Qg —Q )

+ —(1+cos28) + —(sin28) ~dx .
x e . dU

2 2 dx
(3.43)

We must still account for the dispersion relation [Eq.
(3.30a)] and extract from it only the stable solution. To
the first order in g in Eq. (3.41) we may take Q—:Q —1
so that

n'Q'
Qz —(Qp —2)

and E depends only on the pseudo wave number Q and

IE=4 —tan
e

+(1 e 2)1/2
e 2)i/2 (3.45)

iT= »(Ci/K)' ', e=e(2C,&)—' '
and transformations (2.15) allow one to return to nondi-
mensional notation if needed. On computing the energy
(3.43), we obtain thus
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Suppose that e «1, which is generally the case, and we
return to dimensional units. Then Eq. (3.45) yields

E
2X(1—e )

1/2

(3.49)

—,
' [2XK(1—e')]' ', (3.46) Reintroducing the definitions of K and X in terms of mi-

croscopic parameters, this reads thus

an expression which compares with the one for Neel walls
in ferromagnets. Notice that the electromechanical cou-
pling has the effect of increasing the wall energy. Return-
ing now to microscopic parameters of the lattice from
which X and K were defined and considering the expres-
sion (2.5) for e, we have

a(1—e )' 0 z

&co~2 0

2E'

Cga
(3.47)

sinh( QX —Zo )y= —2tan-'
( 1

—z)1/z
Qz (3.48)

This is obtained by adopting the coefficients of the
dynamical case. A short computation allows one to show
that the corresponding mechanical stress is zero so that
we can say that, at equilibrium, the wall sepaItating two
ferroelectric domains is described by Eq. (3.48) and the
material presents no prestresses although electromechani-
cal couplings are still felt through e. If the latter is dis-
carded, we obviously recover a solution analogous to the
one obtained for Bloch walls in ferromagnets (ordinary
sine-Gordon equation ). The wall thickness may be de-
fined by 5=Q ' so that in dimensional notation we have

This is an interesting expression. Indeed, in accord with
Eq. (3.46), we have an energy which has the same expres-
sion as the one obtained for Neel walls in ferromagnets.
This analogy holds even more if we notice that the present
model is equipped with microscopic dipoles of constant
magnitude which experience a rotation in a plane orthogo-
nal to the plane of the wall (in contradistinction with the
case of Bloch walls in ferromagnets ). On the other .

hand, Eq. (3.47) is formally the same as the one obtained
for a ferroelectric wall in classical cases (Zirnov's
model ). The energy X depends quadratically on Po/a .
The coefficients K and X which, respectively, account for
dipolar interactions and resemble a temperature-
dependent electric susceptibility, are involved. In addi-
tion, a corrective factor (1—e )'~ is due to elec-
tromechanical couplings. However, passing from Eq.
(3.46) to Eq. (3.47) is rather questionable and the expres-
sion (3.47) must be considered as approximate and the
question arises of the interpretation of the energies in
terms of phase transition. A numerical estimate with
X=5&(10' Jm C and K=1.04&&10 "C /fm [The
evaluation of K was made from the fourth equation of
(2.13) in reduced units: K=2.0X 10' MKS (r.u. ) with
one r.u. =2m/a for the example of NaNOz] gives X=10
J/m and the electromechanical coupling coefficient is
such that e =5.0)&10 . The latter coefficient has a
marked influence for materials with high electromechani-
cal coupling parameters.

If we now return to the solutions of Eqs. (3.42), in non-
dimensional notation we obtain

ma
1/2(1—e )

(3.50)

or 5=0(a). Electromechanical couplings have the effect
of increasing the wall thickness. Here also, Eq. (3.50) is
quite approximate and gives only an order of magnitude.
In general we must check the hypothesis expressed in Eq.
(2.11), which implies that 5&&a. However, Eq. (3.49)
yields 6=5.4X 10 pm.

Only the static case has been considered in the above
calculations. This does not restrict the analysis since a
Lorentz transformation (3.9) allows one to revert to the
case of a wall in uniform motion.

IV. PHYSICAL INTERPRETATIONS

A. Domain walls

The model presented above finds a physical interpreta-
tion in the case of ferroelectrics such as NaNOz
[SC(NHz)z is another example]. For such a crystal in its
paraelectric phase microscopic dipoles associated with the
NO2 group are directed in a random manner, but with an
equal probability, along the axes b and —b. The Na+
ions can occupy two positions, with equal probabilities, on
the axis c orthogonal to b (cf. Refs. 24 and 47). The
paraelectric and ferroelectric phases are separated by an
incommensurate phase in the temperature interval
162.5—164.0 C. Insofar as domains are concerned, x-
ray scattering topography shows that domain walls are
parallel to the (100) plane. On the other hand, in the
static case, Eq. (3.48), with / =28, shows that 8 varies be-
tween n/2 and —m/2 and that the rotation of the dipole
P occurs essentially in the layer of thickness 5. This
means that dipoles oriented parallel to b are reversed
after passage of the wall and are then oriented parallel to
—b. This "rotation" takes place in a plane perpendicular
to the wall. Measurements give a wall thickness of the or-
der of 0.3—1 pm (this corresponds to about 2500 lattice
spacings. ) and is very important for a ferroelectric since,
for BaTi03, the thickness is about (2—5) &(10 pm for a
180' wall and 10 pm for a 90' wall. We can say that
the stable solution (3.24), in effect, corresponds to the
motion of a wall separating two domains in a ferroelectric
crystal of the type of NaN02. However, other
theories, ' in order to explain the important wall thick-
ness, divide the wall in several buffer layers between 180
domains. An intermediate region, wherein microscopic
dipoles perform discrete rotations in accord with several
equilibrium states, is "sandwiched" between two meta-
stable regions. But neither x-ray nor electron-microscopy
experiments seem to confirm this hypothesis for the mo-
ment. The explanation of such an important thickness
could be sustained by a distortion effect of the crystal
structure within the wall. Therefore, a nonnegligible in-
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fluence of strains along the a and b axes of the crystal
could manifest itself. Altogether, however, the wall
motion must be intimately related to the type of phase
transition occuring in thc crystal.

dP„1 dP„
pl ———X, " +—X2

2 dX 2 dX
(4.2a)

B. CommcQsUf'stc-1QOGmmcQsUrstc Phssc trsQslt10Q

Certain crystals such as NaNO2 [but also many others
such as SC(NHz)1, BaMnF4, K2SCO4, (NH4)zBeF4, ThBr&]
transit through one or several intermediate phases, so-
called incommensurate phases, between the paraelectric
phase and the ferroelectric one. These intermediate
phases are of the utmost importance for the formation of
domains. ' ' In the high-temperature phase electric di-
poles associated with the N02 group are disordered, bui
aligned either with the b or —b axis, the crystal having
orthorhombic symmetry of class Immm. As temperature
decreases the crystal enters a modulated antiferroelectric
phase. In the latter (T&164'C), dipoles remain aligned
with b, but the molecular groups N02 experience small-
amplitude rotations about the c axis and this, in turn,
creates a modulation of the (macroscopic) polarization
along the a and b axes. Furthermore, this sinusoidal
modulation is not commensurate with the lattice spacing
(cf. Refs. 15, 16, and 24). In this phase the crystal sym-
metry is still orthorhombic but with class I2mm {symme-
try of the wave vector). The phase is therefore called in
commensurate. In general, the transition from the high-
temperature (disordered) phase to the incommensurate
phase occurs at a temperature TI below which the incom-
mensurate phase is stable and this corresponds to a
structural transition toward a weaker symmetry. Stability
is bounded from below by the lock in temper-ature To. At
this temperature the. modulation follows that of the crys-
tal lattice and we enter the commensurate phase. This is
accompanied by the formation of domains and the Inotion
of walls which materialize a local order. With the disap-
pearance of the modulation, we recover an ordered phase
where all dipoles are parallel to b. This is the ferroelec-
tric phase in which there exists a permanent electric polar-
ization and the symmetry is orthorhombic of class Im 2m
(Refs. 15 and 16). ;

We shall examine these successive phase transforma-
tions on the basis of an elementary model which shall be
easily connected with the more elaborate model described
in previous sections. To that purpose .we consider a
plane —(x,y) or (001)—problem in which the electric po-
larization P=(P„,Py, 0) is taken as order parameter This.
does not exclude the existence of z components for
mechanical and electric quantities in a real three-
dimensional problem. %"henever one sets P~ =I'Ocos8 and
P~ =Posin6I, one recovers the "micropolar" descnption of
Sec. II. Using the Landau thermodynamical potential
with additional terms accounting for elasticity and the
peculiarities of the phase transitions, ' we propose to
write the total energy as

(4.2c)

1 2 2 2+4= 2 (cilexx+c2zeyy+c66exy+2clzexxeyy) ~

q 5"'=h 1lPxe +"12Pxeyy +"26Pyexy

qr5=hIIPye +hz2Pyeyy+h l6P e y
(4.2C)

(4.2f)

aI ——ao{T —To), (4.3)

the other coefficients being assumed practically indepen-
dent of T The total energ. y of the system reads

(4.4)

where yo is a reference energy, yi is the interdipole ex-
change energy, y2 is the electric anisotropy energy, p~ is
thc clastic encl gy, p5 ls the piezoelectric encl gy which
takes two possible forms depending on whether we are in
the incommensurate phase or in the ferroelectric phase, y6
is the energy of electrostriction, and yl is the interaction
energy between polarization and its gradient. This last .

contribution is essential for the description of the incom-
mensurate phase. It already appears in other cir-
cumstances such as the description of the optical rotatory
power of certain dielectrics. Here, however, its role is
totally different. In fact, if one sets 5z———51, one recov-
ers for y3 the so-called Lifshitz inuariant sometimes con-
sidered in theories of the incommensurat:e phase.
Here e;J represents the strains, c;1 are the moduli of elasti-
city, h;J are the coefficients of piezoelectricity, and q;i are
the coefficients of electrostriction. Two order parameters
alc ill fact collsldclcd, tllc polarlzatloll P bcillg a p11111aly
order parameter and the strain providing a secondary or-
der parameter. Working in the (001) plane a priori elim-
inates elasticity and electromechanical couplings that take
place in other planes and which do exist for the present
symmetry. The final results, however, are not altered by
this a priori simplification. Furthermore, all field quanti-
ties appearing in potentials (4.2) depend only on x (along
the a axis). The coefficient a2, dielectric susceptibility
along the b axis, depends on temperature according to the
law

(4.1) Minimization of this expression on account of Eqs. (4.2)
and setting 25=5&—52, yields the equations that govern
I'~ and Py..
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and

d Px dPEi z
—25 —aiP„P,—P„yP—„Py 2q—» e P„2—qz, P„ey„2—q66P e„„—

+h11-exx+h 12eyy

+h 16exy
=0 (4.5a)

d Py dP h26e„y
Kz z +25 az—P„13zP—y yP—„Py —2qizP e~ —2qzze P —2q66e P —'

h21e +h22eyy
'=0, (4.5b}

while the stress field in domains and walls is given by

h11 P„
2 2o~ =c11e~+c12eyy+q12Py+q11Px+ h P

——0,
21 y

2/2

E1E2
IC1O,2+E2(X1

45

h12 Px
2 2

ayy clze +czzeyy+qzz y+qziP + g p22

(4.6a)

(4.6b)

A

1—IC1u2+E2O. 1

4/2

1/2E1E2CZ10!2

4S4
(4.11)

h26 Py
oxy —c66exy +2q66PxPy + h P16 x

(4.6c)

1. Paraelectric phase

Then microscopic dipoles are disordered and the result-
ing macroscopic polarization vanishes. The medium is
unstrained and thus

Px =Py =0, e =eyy =exy =0 . (4.7}

2. Incommensurate phase

We examine at which point does the paraeIectric phase
disappear to leave room for another phase. To that pur-
pose we perturbate Eqs. (4.5) and (4.6) about the basic
state (4.7). The resulting linearized equations read

d Px dPy
IC1 —25 —CZ1Px =0, (4.8a)

dx

d Py dP„
Ez +25 azPy ——0, —

dx
(4.8b)

where we have set

Upper and lower terms within braces in Eqs. (4.5) and
(4.6) correspond to contributions of piezoelectricity in the
incommensurate and ferroelectric phases, respectively.
We shall assume that the medium is in equilibrium and
not subjected to any external fields and we apply the gen-
eral equations (4.5) and (4.6) to the various phases of the
crystal.

IC2
ai ——ap(Ti Tp ) = —[(a)'~z —(ai)'~z]

IC1

where we have set

(4.12)

Tp ——Tp+ (h z6/apc66 ), (a) ' =25(Xz )
' . (4.13)

At T=Tq the wave number takes the value k1 such that

k, = (aiai/XiKz )'~ (4.14)

The temperature Tp is "stiffened" by piezoelectricity. At
T= To, we have cz2 ——0 and k =0, which bounds the sta-
bility of the incommensurate phase to the temperature in-
terval [Tp, Ti]. This means that for T & Ti only the solu-
tion (4.7) is admissible. For T= Ti, the paraelectric-
incommensurate phase transition occurs, below which the
period 2m /k of the modulation (4.10}is not commensurate
with the lattice spacing. As T decreases further, the wave
number k decreases while the period of the modulation
(4.10) increases drastically as T approaches Tp from
above. The harmonic model is no longer adequate. The
transition at To requires anharmonicity. We shall exam-
ine in greater detail the behavior whenever k goes to zero.
Substituting from Eq. (4.10) into the potential (4.4) and
minimizing the latter with respect to P2 ——P;„, and
P1 ——A,P;„„weobtain the value P;„, such that

O, 2 —&I
j~c 4 2 ~ A —K2CXI /E 113 Pik, +Pz+(2yA, /3)

Stability of the system (4.8) is guaranteed for real k's,
hence real positive k . This induces us to define a tem-
perature T1 by

ai ——ai+hii~i+Iiizpi az az (Ii26/e66) (4.9) (4.15)

Px P 1coskx p Py P2 s1nkx (4.10)

and A, 1 and p1 are coefficients of P„and Py in the solution
of Eqs. (4.6) with respect to e and ey„. Solutions of Eqs.
(4.8) can be sought in the form

while the corresponding energy reads

6 P,A, '+Pz+(2ykz/3)
(4.16)

resulting in the following expression for the wave number Electrostriction has played no role in the above analysis.
k (the smallest value has been chosen): The energy (4.16) depends on temperature through az.
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3. Incommensurate-commensurate transition Owing to the boundary conditions the system (4.20) has
solutions .

0 0 2
11exx +C12eyy +q12PO

0 0 2=c12e~+c22eyy+ q22Pp =0,
0

C66exy

from which-it follows that

(4.17)

As the wave number k goes to zero the symmetry im-
posed by k disappears while the medium is not yet fer-
roelectric. Only the electrostrictive terms provide an elec-
tromechanical coupling in these conditions. We need not
account for q&z any longer. In these conditions let us first
consider the strain state at the limit of the domains, i.e.,
for x~+ 00. Then P„~O and P~~+Po for a 180' wall.
The strain state is given by

P„=Qo/cosh(qx), P„=Potanh(qx),

where q, Qo, and Po are determined from

Az 1 —(CA i/A2Bi )

2K2 1+(3KiC/2KzBi)

Qo 0(CK2+B2Ki )/(CKi + iK2)

Po = tzz/P—z

with

(4.22)

(4.23)

(4.24)

(4.25)

0 2 0 2 0e~ =A,2P0, e„y=p2P0 e y 0, (4.18)
2

q12
Pz=P2 —2 +2lzz qzz —qiz

C11

C12
(4.26)

In these expressions both eyy p2P0 and e~
cipzP2o/ciiare internal strains induced by the polar-

ization in the domains. These strains do not check the
usual compatibility conditions. This means that the inho-
mogeneous distribution of polarization within the
domains and walls provides a source of fictitious defects
(quasidislocations) induced by electrostriction. On substi-
tuting from Eqs. (4.19) into Eqs. (4.5) we obtain

K1 2
—2 1P.—Blp —CP Py=o (4.20a)

2

Kz A2Py B2Py CP~Py 0 (4 20b)
X

where we have set

C12
0&1+2@2 q21 q11

C11

~2=&2+2@2 q22 —q12
C12

p

2
q11Bi =Pi —2
C11

2

Bz =Pz —2
. C11

2
q11q12 q 66—y-

C11 C66

(4.21)

where A,z and pz are combinations of elasticity and elec-
'

trostriction coefficients obtained in solving Eqs. (4.17) for
the strains. Here, Po is an unknown. The distributions of
strains both in domains and the wall are functions of x
only. This is true similarly for the stresses. Therefore,

eyy is constant and equal to its limiting value eyy. The
other components are given by

C12P2 2 1
Po — (qizPi+qiiP»

C11 C11

(4.19)

e„y ———2 P„Py .

2 2@„=—Va2/at, (4.27)

where v is a temperature-dependent coefficient which still
depends on the dielectric, mechanical, and electromechan-
ical properties of the crystal. We assume this coefficient,
whose rather complex expression. can be evaluated, to be
positive. The present approach to the influence of elec-
tromechanical couplings on the formation of domains
clearly complements previous macroscopic theories of
domains and walls (see also Ref. 45) and it extends them
to the case of ferroelectrics with an incommensurate
phase. This approach is quite different from the one used
in other theories for this type of phase. ' Here, elec-
tromechanical couplings have the effect of altering both
the linear and the nonlinear electric susceptibilities [see,
e.g., Eqs. (4.21)] so that there can occur either a stiffening
or a softening of these coefficients and this, in turn, has
an influence on the wall properties [e.g. , its thickness, Eq.
(4.23)].

This imPlies that az ao(T ———To) &0, hence that T & To.
The solution (4.22) corresponds to the description of a
wall through which polarization evolves in a plane per-
pendicular to it. We therefore recover the description of
Sec. II. The wall thickness is q '. In some manner, the
solution (4.22) corresponds to vectorial solitons in the stat-
ic case (compare Ref. 55). It is the limit solution of the
incommensurate phase when k goes to zero. In effect, the
period of modulation becomes extremely large and polari-
zations form domains separated by walls described by
Eqs. (4.22). This means that in the neighborhood of To
ferroelectric domains form, demonstrating thus the fer-
roelectric order within the incommensurate phase How-.
ever, a more correct study of the nonlinear system (4.5)
would require looking for anharmonic periodic solutions
and then studying the limit of these solutions for an infi-
nite period (recovering thus the notion of soliton). The
structural transition of the crystal should then be
described with some refinement.

The general strains (4.19) can be evaluated from the
solution (4.22). We can also compute the wall energy and
obtain an expression of the form
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P =Ps=(h —a )'~ —h,
where we have set

(4.28)

3(hzla11+hzzazl )~2P2 az azI l32

2 2
cx2 ——a2 —c]]a$2

—c22a 22 —2c]2a]]a22

—2h2)a &2
—2h22a22,

I 2 2
Pz ——Pz+ 2c11a 11+2czza z1+2c1za» a zz

+2q)2a()+2q2)a2) .

(4.29)

The strain state is defined by the following equations:

c~~e~+C~2eyy +q~2Ps+h2iPS =0,0 0

c~2e~+c22eyy'+q22'Ps+ A22PS py C66e~z ——0 .0 0
(4.30)

From the latter we extract the strain field in terms of Ps.

4. Commensurate fer-roelectric phase

As temperature decreases further from Tp a state of
uniform polarization spreads, yielding the ferroelectric
phase. In this case the order parameter P is constant and
given by (cf. Ref. 19)

a1=a1+yPs —[(2q66Ps+h 16) «661+2(q1,e~+qz1eyy),
2 2 0 0

az az+ 3P2PS + (2q 12Ps+ h z1 )A 3

+ qzz s+"zz P3+ q1z xx+qzz yy
0 0 (4.35)

C'..(T») =@,(T») . (4.36)

From Eq. (4.38) we deduce that a» ——ap(T» —Tp). This
transition is a first-order one.

In order to obtain the system (4.34) we have perturbed
Eqs. (4.6) about the ferroelectric state and accounted for
the state of strains. The coefficients A, 3 and p3 come out
from this manipulation (e~=k3Py, eyy p3P——y). At this
point, the stability study is identical to the one made for
the incommensurate phase. Looking for harmonic solu-
tions with factor exp(ikx), we obtain a wave number k in
the same form as in Eq. (4.11) but with a1 and az replaced
by a1 and az. Stability is guaranteed for real positive
k 's. This results ultimately in T & T0',' which holds true
since T & Tp. Therefore, the stability of the ferroelectric
phase is guaranteed once we have already gone through
the incommensurate-commensurate transition. The
latter occurs when the energies of the two phases match.
This takes place at a temperature T11 defined by

=aiiPs+a»PS eyy =a2iPs+a22 s exy =0 2 0 2 D 0 0

(4.31) 5. Recapitulation

where the coefficients a11 and az1 can be expressed in

terms of the elasticity moduli and the electrostriction
coefficients while a 1z and azz involve the elasticity modu-
li and the piezoelectricity coefficients. The corresponding
energy is given by

1, , 2 hPze =—a'P' 1+— Psc 4 2 S
CX2

(4.32)

With this notation it is possible to write az =ap(T —Tp').
If we assume that Tp &Tp, then we shall say that
piezoelectricity favors the first order incomme-nsurate
commensurate transition.

Let us examine the stability of the ferroelectric phase.
On linearizing Eqs. (4.5) and (4.6) about the state

I Ps, e~,e~,e~„I, we obtain the following system for the
perturbations in P„and Py:

d P„dPy
Ki —26 —cx iP„=0,

dx
(4.34)

d Py dP„
X2 +25 —a2Py ——0,

dx

where we have set

Ps in Eq. (4.28) defines the spontaneous polarization.
This expression is valid for az &0 and this condition de-
fines a transition temperature for which Ps vanishes,
hence a2 ——0; that is, T0' such that

II 1 2 2
TO Tp+ ( ella 12+czzazz+2clzalzazz

a0

+2hz1a 1z+2hzzazz) .

A recapitulation of the above-described transition is in
order. First we have the second-order paraelectric-
incommensurate transition at temperature T&. The in-
commensurate phase takes over for Tp &T& T1 with a
wave number given by Eq. (4.11). This wave number goes
rapidly to zero when T approaches Tp from above. Then
for T & Tp, the anharmonic model dominates if the tem-
perature lies in the interval (T» Tp). In this interval the
commensurate phase is initiated with the formation of
domains while the solution (4.22) holds good. Finally, for
T & T11, the stable commensurate ferroelectric phase is es-
tablished with all polarizations aligned to give rise to the
spontaneous polarization Ps. The existence of the incom-
mensurate phase has the effect of smoothing out the tran-
sition between a disordered phase and an ordered phase
where the order is described by a periodic solution while
disorder was characterized by the incommensurability of
the period. Then order dominates to yield the commensu-
rate phase where polarization is uniform. Figure 7 gath-
ers the various energy curves @;„„4,and 4, versus the
ratio az/a, (or T), with the various transition points. The
real global energy curve is obviously less schematical. Fi-
nally, Fig. 8 gives a schematic representation of the distri-
bution of the P& component of the order parameter as it
evolves with temperature.

Here we have given a physical interpretation of the
model of ferroelectrics with a molecular group such as
NaNO2 —in terms of the incommensurate-commensurate
phase transition. However, the model of this section is
more complete than the simple one previously devised
from a lattice since a continuum model allows one to easi-
ly account for material symmetry and, thus, for elec-
tromechanical couplings. If we wish to pursue the analo-
gy between the present model and the model of Sec. II we

L
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rameters, one of the latter corresponds to the P~ com-
ponent of the polarization and the other is the shear-strain
component e„~ for the case of sodium nitrite. Very early
models have been proposed in order to describe the incom-
mensurate phase of NaNOz. A first model consists in a
structure in microdomains in which the microscopic di-

poles of a layer of (100) plane —or (b, c) plane —have the
same orientation. Two types of microdomains are possi-

ble, those corresponding to dipoles parallel to b and those
corresponding to dipoles antiparallel to b. A micro-
domain is made of several layers and the pattern of the
two types of microdomains is periodic along a. In a
second model, in each layer of (100) plane there exists a
local order such that the average of dipoles in this plane
varies sinusoidally along a. In other terms, one can say
that the probability of occupying a direction parallel or
antiparaHel to b is a sinusoidal function of period
2m. /k. In those models the medium is considered as an
Ising system of elements 5=+1. If, in addition, one con-
siders a global displacement of atoms within the same

crystalline cell in the b direction with the same sinusoidal
variation as the polarization, then one obtains a model
where the transverse acoustic mode is accounted for.
This idea has allowed one to improve the structural factor
which characterizes the x-ray diffraction by the crystal
lattice. Along the same line of thought, we note that a
two-mode model has been built these two modes a po
larization mode and a shear mode, may couple and cause
a structural resonance at a wave number ko&0, hence a
possible explanation of the incommensurate phase. In our
model, there are two order parameters, the polarization P
with two components and the deformation. Their roles in
the description of the phase transitions are obviously not
equivalent. The polarization dominates thc phenomena,
and this directly follows from a continuum description
where only reasonings related to macroscopic parameters
are performed, thus eliminating a orio any repre'senta-
tion in terms of order parameters issued from microscopic
considerations. Note also that other theories accounting
for two order parameters lead to a model which also ex-
plains the formation of domains in terms of solitons
("phasons"; for instance, Refs. 59, 60, and 66), where the
latter are governed by a sine-Gordon equation quite simi-
lar to the one deduced in Sec. II above. However, physical
interpretations differ. In the present case the mechanical
contribution (strain) —via the electromechanical
couplings —plays an important role in the study of
domains and walls. Indeed, if we associate to strains a
"wall" that would correspond to thc crystal-lattice distor-
tion induced by the "wall" due to polarization, we can
show that the first of these walls is much thicker than the
second one [if 5(e~ }and 5(e~) are wall thicknesses corre-
sponding to strains e and e ~, from Eqs. (4.19) we have
the following estimates: 5(e )=35 and 5(e„~)=45,
where 5„ is the thickness related to P~]. This could pro-
vide an explanation for the rather important thickness ob-
served in NaNQ2. ' ' With the estimate of Sec. III
5 5.4X 10 pm, so that 5(e )=0.162 p,m and
5(e~ )=0.216 pm. This is to be compared to wall
thicknesses observed in improper ferroelectrics where

W /oC or T
2 I

T T'
o o

FIG. 7. Thermodynamical potential for different phases as a
function of a/ar and transition temperatures.

This can be identified as X/5, where X is defined in Eq.
(3.46) and 5 is the wall thickness (3.49). This shows how,
in a certain manner, the description using two com-
ponents (P„,P„) is equivalent to the one using the dipole
orientation 8 in the context of the study of walls.

The model thus devised differs either from certain
models which have only one order parameter and do not
account for couplings with strains (e.g. , Refs. 19 and 20},
or from other models with two order parameters (e.g.,
Refs. 17, 20, 54, 59, and 60) or else, models proposed for
improper ferroelectrics. ' In theories with two order pa-
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FIG. 8. Schematic representation of the evolution wi. th tem-
perature of the distribution of the Pz component of' the order
parameter (electric polarization).

must set P„=Pocos8, Pz ——Posing, e&&
——0 and then, by

ideiltifyiilg, we llote c66 ——CJ, e=2q66PD, X=a2PO/2,
q ii ——q i i ——0, and IC is replaced by KPO (IC i ICi ), ——
Po still being defined by Eq. (4.25) with p2 ——p2 —p&
=p. With this notation, the energy density (4.1) reduces
to the integrand of Eq. (4.3), and we find in this particular
case that the wall energy (4.27) is given by

(4.37)
2P otic 66
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strains induced by electrostriction contribute to a thicken-
ing of the walls. ' This is inherent in the type of elec-
tromechanical coupling (electrostriction) which is natural-
ly accounted for in a continuum model and that we recov-
er in Sec. II. On the other hand, it seems, also, that
strains play a certain role in the phenomenon of incom-
mensurate phase. This fact is not excluded by x-ray dif-
fraction experiments.

In the present study we have excluded the action of
external mechanical and electric fields. In reality, howev-
er, an electric field and an applied stress have an in-
fluence on the phase transition at the incommensurate
phase [this materializes in (E,T) and (cr, T) diagrams] A.

wall can be displaced by applying an electric field. The
latter acts upon. the electric dipoles which, in turn, gen-
erate forces which have for effect to distort the lattice,
and thus to change the wall thickness. One, therefore,
should evaluate a wall thickness in the presence of an ap-
plied electric field. Similar evaluations could be envisaged

for applied stresses. At the level of a wall, fields are not
uniform. They thus create a ponderomotive force which
acts on the crystal lattice and a local electric field will
characterize the polarization-lattice interactions which
must have some effects on the wall behavior. Other possi-
ble refinements are as follows. In problems of walls and
incommensurate phases where steep gradients in polariza-

- tion and strains are observed on a length scale of the order
of 10 to 100 times the lattice spacing, one should devise a
semi microscopic theory where second gradients ofstrains
could be introduced in order to comprehend spatial dis-
uniformities of the order of a few lattice spacings at the
scale of walls and incommensurate structural distortions.
Such a model, involved as it may be, could provide a
better description of a wall structure which may be com-
plex when walls involve microdomains. Finally, higher-
order (e.g. , sixth) powers of the P components could be in-
troduced to describe more precisely the first order-
incommensurate-cornrnensurate transition.

*Laboratoire associe au Centre National de la Recherche Scien-
tifique.
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