
PHYSICAL REVIEW B VOLUME 30, NUMBER 9 1 NOVEMBER 1984

Generalized Ornstein-Zernike equation

Gerald L. Jones
Department ofPhysics, Uniuersity ofNotre Dame, Notre Dame, Indiana 46556

(Received 22 February 1984)

A previously proposed generalization of the usual Ornstein-Zernike. equation for near-critical
correlations is examined. It is shown that near the critical point, to leading order, this equation is
compatible with realistic critical behavior in both spatial and thermal variables. The scaling predic-
tions of this equation are compared to known results for d =2 and d =3 Ising models. The general-
ized equation changes the usual Ornstein-Zernike values of various quantities in qualitatively the
correct way; however, quantitative discrepancies remain.

I. INTRODUCTION

In a previous article' I have proposed a generalization
of the traditional Ornstein-Zernike (OZ) differential equa-
tion for the pair correlation function of a fluid near its
critical point. This generalization permits nonzero values
of the critical exponent g and is therefore capable of
describing correlations with realistic spatial behavior. I
have shown in Ref. 1 that a certain long-distance asymp-
totic form for the triplet distribution function will, when
placed in the second equation of the Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) hierarchy, yield this
generalized Ornstein-Zernike (GOZ) equation. This paper
presents some further results concerning the GOZ equa-
tion and the assumed asymptotic form for the triplet
function.

In Sec. II, I consider the thermodynamic consistency of
the asymptotic form near the critical point. The density
derivative of the pair correlation is related to an integral
of the triplet function through a sum rule. The leading
contribution to this integral, near the critical point, can be
evaluated from the asymptotic form of the triplet func-
tion. The asymptotic form is shown to satisfy the sum
rule, to leading order, provided that the coefficient a (s) of
the leading term in the asymptotic form is given by
a(s)=p '(Bfq/Bp)p, a result also obtained by others
who have investigated the very-long-range behavior of the
triplet function in the critical region. When this a(s) is
used in the expression for tc (the inverse correlation length)
derived in Ref. 1, there results a relation between z and
the isothermal compressibility ET which is again con-
sistent with realistic (ri+0) critical behavior. These re-
sults, along with those of Ref. 1, show that the proposed
asymptotic form of the triplet function is consistent with
realistic critical behavior in both spatial and thermal vari-
ables.

In Sec. III, I consider the scaling form for the near-
critical correlations predicted by the GOZ equation. The
leading terms have the correct analytic form for both
large and small values of the scaling variable t=~r. The
higher-order terms at small t do not have the expected
exponents. To get some idea of the numerical accuracy of
the GQZ scaling function I have compared it to the
known result for the d =2 Ising model and to some nu-

merical estimates for the d =3 Ising models. In addi-
tion, I have considered the GOZ prediction for the ratios
of the true to the second-moment inverse correlation
lengths and compared these with known results for Ising
models. In all of these comparisons the GOZ results are
shifted from the OZ results in the correct direction, but
quantitative differences between the GQZ and Ising re-
sults remain. Finally, a brief discussion of the analytic
behavior of the Fourier transform of the GOZ correla-
tions is given. In Sec. IV these results are summarized
and a brief discussion of possible improvement of the
GOZ equation is given.

II. THERMODYNAMIC CONSISTENCY

Unless otherwise noted, the independent thermodynam-
ic variables will be taken to be the number density p and
the inverse temperature P=1/kT. The f„(ri, . . . , r„) are
the usual' reduced distribution functions. A standard'
sum rule relating f2 and f3 ls

2 1~ 3

+ 3 ri r2 r3

pf2(rl 3)]d 2 (2.1)

h3(r&, r3
i
r2)=a(s)[1+b(s/r) + ~ ]h2(r)/2

+a (s)[1+b(s/t)'+ ]h2(t)/2,
(2.2)

where KT ——p(Bp/Bp)~. As the critical point is ap-
proached, KT~00, but Bfz/Bp remains nonzero; hence
the integral in (2.1) must diverge at the critical point. The
divergent part of this integral can be found from the as-
sumed' asymptotic expression for the triplet correlations.
In terms of the dimensionless correlations

h~(~i, rz) =[f2(r|,r2) —p']/p'

and

h3(ri, r3 i ~g)=[fp(ri, ~p, r3) —pf2(ri, r3)]/p',
the asymptotic form' is
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where r=ri —ri, t =rl —r2, and s =ri —rl. The form
(2.2) is supposed to be valid for s -ro (the range of the in-
termolecular potential} and r »ro, r »ro, and has the re-
quired invariance under the interchange of ri and ri.
Higher-order terms in the small quantities s/r, sjr have
not been kept. An alternative form of (2.2) follows' from

p dig its=i= i
i po of / dh(r)i

R TR$10f S CXPRIlS10Il RbOUt t =P;

In (2.3), I do not explicitly give higher-order terms in sjr
and dhz(r) jdr since they do not affect the result. Now, in
(2.1} I fix s=—.

~
ri —rs

~
-ro, change the variable of in-

tCgfRt10Il t0 f, RIld SP11t thC 1ntCgfRtlOIl 1IltO PRftS f'~R
alld 7 &R wllclc R »Po and ls fixed T. llus (2.1) becomes

2f2(s)+ps f hz(ri, rz
i
r2)dr

hq(r)
h3(r I, r3

~
r2)=a {$)hi(r)——,

' (r $ )a (s) +p f hs(rl, rid r2)dr
r

(2.4)

+ba {s)(s/r) h 2 (r)

dh2{ r)——„' [1—( r s ) ]a{s)(s/r) +
(2.3)

Only the last term in the large parentheses in (2.4) can
dIVCfgC RS thC CIltlCRj P01Ilt 1S RPPfORChCd, RIld, 1Il th1S
term, the integrand can be approximated by (2.3) as fol-
10%VS:

dh
3 f1,f3 I'2 I'= Q S 2 P' I' —2Q S l"S I'

dh2 r
+ba(s) f (s jr) h2(r)dr ,'a(s) f—[—1 (r s) ](s/r—) dr+

r~R rgb dp
(2.5)

In (2.5), the last two integrals [and all other integrals cor-
responding to higher terms of (2.3)] are finite at the criti-
cal point if ri &0, as is expected. Since the third integral
in (2.5) vanishes because of the angular integration over
{r.s), the only divergent contribution comes from the
second integral which, by the compressibility sum rule"

pKz /P= 1 +p fh2(r) dr, (2.6)

diverges as a(s)Kz/P. These'estimates for (2.5) allow
(2.4) to be written as

Bf2(s) p [a ($)p'Kz /P+F($)],
dp p Kz

(2.7)

a = 12(1 C2Ro/2)/CqR2, —
2&"

dI (d/2) ' d (d +2)I'{d/2}

{29)

(2.10)

where F(s) is finite at the critical point but cannot be sim-

ply evaluated. Solving (2.7) for a (s) gives

I Bf2(s}
a (s)=p PF(s)jp Kr-

P

near the critical point. This expresses the coefficient a (s)
of the asymptotic form (2.2) in terms of the pair distribu-
tion function and a contribution which vanishes as Kz
RS -thC Cf1tlCRl POIIlt 1S RPPfORChCd. ThlS fCSUN Of ltS
equivalent, can be found in several discussions of the
triplet distribution function.

Rcfcl clice 1 . pl'ovldcs ail cxpl cssio11 fol' tllc lilvcl'sc
correlation length a in terms of integrals over a(s), and
thus it is interesting to see what Eq. (2.8) implies for a.
From Ref. 1, Eqs. (14), (11),and (10), we haveil

R~ =p f a($)$ ds,du (s)
ds

(2.11)

where u (s) is the intermolecular potential. Now, Ic

should vanish as the critical point is approached (as
Kz ~ 00), and since R2 in (2.9) is not divergent at the crit-
ical point, 1 —C2RO/2 should vanish as KT~ao. This
can be shown to follow from (2.8) by first writing II, from
(2.9)—(2.11), in the form

(2.12)

[the factor C2/2 in (2.9) comes from the factor 1/2d and
the angular integration in (2.12)]. The virial expression
for the pressure" is

(2.13)

Of

1 — fs a (s)d s =(PjpKz )(1+F),
2d

(2.14)

F= fs F(s)ds .
2dp

This, with Eq. (2.12), gives

(2.15)

This is differentiated with respect to p, and {2.8) is used to
eliminate Bf1(s)/Bp to obtain

P =1— fs [pa(s)+PF(s) jp2Kz ]ds
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which shows' that the a defined by (2.9) vanishes as
Kz. +—oo. The factor A must also vanish at the critical
point if (2.15) is to be consistent with expected critical
behavior. To see this, note' that along the critical iso-
chore, Kz. -~ ", a-~" [where ~=(T—T, )/T, ], and that
one of the standard exponent relations is y=(2 —q)v so
that A =KzK 1 K" and therefore vanishes as ~—+0.
(The result Kzv -a& can also be derived from the
compressibility sum rule by assuming the usual scaling
form for the near-critical correlations. ) The asymptotic
form (2.2) does not determine the value of the factor F ap-
pearing in expression (2.15) for A; hence (2.2) does not im-

ply that A -a". On the other hand, Eq. (2.2) certainly ap-
pears consistent with the assumption that, at the critical
point, F~—1 in such a way that 3 -~&. Hence the con-
jectures of Ref. 1 concerning the asymptotic form of the
near-critical triplet correlations appear consistent with
realistic critical behavior in both spatial and thermal vari-
ables.

h(r)at' " K (t) .

The asymptotic' forms for K&(t) are

1 (t/2)'

(3.7)

and

t~0, p&integer (3.8)

I g=Ct K„(t), p, =d/2 1+q— (3.10)

where C is an undetermined constant. From (3.8)—(3.10)
the GOZ values for the constants D and A in (3.2) and
(3.3) are

Dg Cn 2" ——'/I (1—p)sin(pm ), Ag C(n /2——)', (3.11)

giving a (supposedly universal) ratio of

(3.9)

Comparison of (3.7) with (3.1) gives the GOZ scaling
function

III. SCALING FUNCTION

In this section the GOZ scaling function ' - for the
near-critical pair correlation is compared to various
known results. The scaling function I' is defined by as-
suming the correlations are of the form

Dg/Ag m'~ 2" '~ /I (1———p)sin(pn) . (3.12)

hz(r, tc)=I'(ar)/r +", ~r &&1, r &&r0

where I is supposed to assume the asymptotic forms

I (t)=D D t" ' "+— as t 0

(3.1)

(3.2)

and

d h (r) d —1 dh (r) ph (r)+ —xh r=0
p

(3.4)

[the subscript of h2(r) will be suppressed], where the pa-
rameter p is assumed positive and determines the ex-
ponent g by

g(d —2+g) —p =0 . (3.5)

A straightforward substitution, j =(xr) 'h(r), shows
that j satisfies the modified Bessels equation' of order

p=[(d 2) /4+p)'~ =d/2—1+g—(3 6)

in the variable t=scr. The solutions which vanish at
t =00 are the McDonald functions' (modified Bessel
function of the second kind), and hence the GOZ equation
has solutions

(3.3)

The form (3.3) implies that a in (3.1} is the true, ' rather
than the second-moment, inverse correlation length, and
also implies that the correlation has the usual OZ form at
large t With .this choice the scaling function I is be-
lieved to be universal' up to a multiplicative constant.
Under this assumption a comparison of the GOZ predic-
tion af I' for fluid systems with known results for Ising
models is appropriate.

The GOZ equation is"

Equations (3.7) and (3.8) also show that the GOZ equation
predicts the exponent of the correction term in (3.2) to be
2 and independent of dimension. The correct exponent is
believed to be (1—a)/v, which has the values 1 in d =2
and -1.4 in d =3 Ising models. Hence the correction ex-
ponent in (3.2) predicted by the GOZ equation is too
large.

The GOZ prediction (3.12) for the amplitude ratio and,
in some cases, (3.10}for the scaling function, can be com-
pared to known Ising-model results. For the two-
dimensional Ising model the amplitude ratio is known' to
be

D/A =0.7034(n' )(2' ) =1.36, d =2 (3.13)

when the critical point is approached in zero field from
high temperatures. The GOZ prediction (3.12), with the
known values d =2, g = —,', and p = —,', is

Dg /Ag ——1.72, (3.14)

and hence the GOZ amplitude ratio is about 26% too
large for d =2. This effect is numerically much larger
than the previously noted error in the correction terms at
small t. A comparison of the numerical values of the ac-
tual 0 d =2 Ising scaling function with the GOZ values is
shown in Table I. The value of C in (3.10) has been
chosen so that the two scaling functions match at t =8.

Similar, though numerically smaller, discrepancies are
found for the d =3 Ising model where the D and A coef-
ficients are known from high-temperature-series extrapo-
lations for several lattices. That the same value,

D/A =0.873+0.01, d =3 (3.15}

is found for the fcc, bcc, and sc lattices is an indication of
the expected universality of this ratio. The GOZ predic-
tion (3.12) depends on the value of p and therefore g. The
precise value of g is perhaps still uncertain, ' but for this
comparison I will use g =0.04, which gives
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8
5
3
1

0.1

0.05
0.01
0.002

1.0169X 10
2.278 X 10-'
1.887X10 2

1.738 X 10-'
0.5699
0.6244
0.6819
0.6980

1.0169X 10
2.283 X 10-'
1.898X 10-'
1.772 X 10
0.6210
0.6918
0.8019
0.8487

0
0.2
0.6
2
9

12
18
22

Dg/Ag ——0.954, d =3, g=0.04 . (3.16)

Again, the GOZ value is too high (by about 9%), but is an
improvement over the usual OZ value of 1 for this ratio.

The GOZ equation also allows a computation of the ra-
tio of the true to the second-moment inverse correlation
range, «./«i. It is « that appears as a parameter in the
GOZ equation [Eq. (3.4)], while «.i is defined by the
second moment of the correlation function as

z
—,
' J h(r)r cos Odr

J h(r)dr
(3.17)

The angular integrals in (3.17) give a factor of 1/d, and
when the GOZ scaling form [Eqs. (3.1) and (3.10)] is used
for h (r), (3.17) becomes

J K„(t)t '+'dt
(« /«i)g —— (3.18)

2d K„(t)t"~'dt
0

This ratio of integrals can be evaluated by multiplying the
modified Bessel equation for Kz(t) by t + and in-
tegrating. A straightforward calculation yields

(« /«. i)g —— ——1—(d /2+ 1) —p g(d —2)+g
2d 2

(3.19)

For the usual OZ theory (q=0) this ratio is 1. The GOZ
value of this ratio is 0.984 for d =2 and i? = —,', and 0.993
for d =3 and g=0.04. The Ising values appear to de-
pend somewhat on the method used to extract them. For
both d =2 and d =3 lattices, however, the ratio « /«. i is
probably greater than 0.999 and less than 1. The GOZ
prediction is qualitatively correct, even though the change
from the OZ value of 1 is perhaps too large.

Critical correlations are often ' ' ' discussed in terms
of their Fourier transform, defined by

X(k,«.)= Je' " ' 'h~(r, «)d r .

The scaling form, in the variable y = k/«. , is
X(k,«) =«" X(y), where, from (3.7),

/

&( )=yJ ''e''t' "~'Kp(t)d t . (3.20)

The angular integrals in (3.20) can be done, reducing the

TABLE I. Comparison of the d =2 Ising scaling function
(zero field, T & T, ) with the GOZ scaling function. (Diff.
denotes difference. )

Diff.
(%)

integral to a Fourier sine transform which can be evaluat-
ed in terms of a hypergeometric function of argument
—yz. From the known analytic properties of the hyper-
geometric function one can show the Fourier transform
(3.20) of the GOZ scaling function has singularities only
at y =+i and at infinity with a branch cut conventionally
chosen on the imaginary axis. The details of the singular-
ity structure at y =+i depend only on the dimension d,
while the order of the branch points at infinity depend on
both d and the exponent g. The singularity structure of
the GOZ approximation is certainly simpler than that of
the exact d =2 Ising model which has an infinite se-
quence of branch points on the imaginary axis, but is rich-
er than that of the usual OZ theory which has only simple
poles at y =+i. It is perhaps closer to, although not iden-
tical with, the Fisher-Burford approximate in its analytic
structure. The Fisher-Burford approximate, however, has
one more free parameter than the GOZ, which allows in-
dependent amplitudes at both large and small y.

IV. CONCLUSIONS

As a phenomenological description of near-critical
correlations, this generalization of the Ornstein-Zernike
theory is, in several ways, more satisfactory than the usual
Ornstein-Zernike theory. There remain, however, serious
deficiencies. On the positive side, the GOZ has the
correct analytic behavior, to leading order, at both large
and small values of the spatial scaling variable ter and ap-
pears to be at least consistent with realistic critical
behavior in the thermal variables as well. The amplitude
ratios and the scaling function are shifted from the usual
OZ theory in the correct direction for g & 0. On the nega-
tive side, the corrections to the leading order of the scal-
ing function at small «r have the wrong exponents and the
amplitude ratios are not quantitatively correct. Finally,
for Ising systems, there are lines of states in the thermo-
dynamic plane (H =0, T & T, ) along which the pair
correlations do not have the OZ form at large «r, and,
presumably, such lines exist for fluids as well. For these
states the amplitude of the leading OZ term at large «.r
has vanished and correction terms dominate the large-«r
behavior. These terms are not contained in the GOZ.

What are the prospects for improving the GOZ? It
seems clear from the "derivation" of Ref. 1 that the GOZ
results from an asymptotic expansion in the two small pa-
rameters «r0 and r/ra and that higher-order terms in
these parameters will produce corrections to the GOZ
theory. It seems unlikely to me that these effects will be
capable of correcting the above-noted deficiencies of the
theory. What appears more likely is that a small but
non-negligible coupling between density and energy-
density fluctuations must be taken into account even in
the lowest-order theory. In such a theory, one might ex-
pect, instead of the GOZ, a coupled set of three differen-
tial equations for the density-density, the
density —energy-density and the energy-density —energy-
density correlations. The form that such equations should
take and their resulting scaling properties is not known.
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