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We study the effects of electron-electron interactions in disordered metals in and close to two di-

mensions (2D). We consider physical situations in which localization effects are suppressed. The
field-theoretical renormalization-group (RG) calculation performed recently by Finkelstein is inter-

preted and rederived in terms of perturbative results. Surprisingly, except for the density of states,
the scaling behavior is independent of the interaction range. We further extend the model to several

new universality classes. In the presence of a strong magnetic field the metal is unstable in 2D and

undergoes a metal-insulator transition in d =2+e. The conductivity exponent, defined by
0.-(n —n, )i", is universal with p = 1+0(e) but N(EF) depends not only on the range of the interac-
tion but also on its strength for short-ranged interactions. In 2D the conductivity has a universal

temperature dependence [5o(T)=crn(2 —2ln2)ln(Tr), o& ——e /2+iii] if the interaction is Coulom-

bic. If magnetic impurities (or strong spin-orbit scattering with a weak magnetic field) are present

instead, the noninteracting fixed point is stable for short-ranged interactions (p= —,). For the

Coulomb interaction the interaction is relevant and drives a metal-insulator transition in d =2+@
with universal critical properties (p=1). In 2D the conductivity also has a universal temperature
dependence [5o( T) =o&ln(Tw)]. We also discuss the behavior of the dielectric constant on the insu-

lator side and the frequency (temperature) dependence of the conductivity at criticality. Remarks
are made on the relationship of the above to experiments.

I. INTRODUCTION

In the past few years, a great deal of progress has been
made towards understanding the behavior of electrons in a
random potential. A scaling theory for the localization
problem, i.e., the behavior of a single electron in a random
potential, was formulated' and justified by a mapping to a
field theory of coupled matrices. On the other hand, per-
turbation theory in the interaction strength between elec-
trons shows that in the presence of disorder, a strong devi-
ation from Fermi-liquid theory occurs and logarithmic
corrections to the conductivity and single-particle density
of states in two dimensions are discovered. ' It is clearly
important to develop a scaling theory which effectively
sums these logarithmic series and permits one to discuss
the strong-coupling region of the metal-insulator transi-
tion. Attempts to construct a scaling theory by the
brute-force calculation of the perturbation theory ' have
not been completely successful. Recently, an important
advance was made by Finkelstein, who produced a field-
theory mapping of the interacting disordered problem.
His theory explicitly suppressed the maximally crossed di-
agrams that give rise to logarithms in the localization
problem and can be considered as a scaling theory for the
"pure" interaction problem. He concluded that in two di-
mensions, the resistance scales to weak coupling, ending

up in a perfect conductor at zero temperature.
The physics of the Finkelstein solutions was much clar-

ified in a recent paper by Altshuler and Aronov, who
pointed out that it is very useful to decompose the
density-density fluctuation into singlet and triplet spin
channels. They further pointed out that in the presence of
spin-orbit or spin-flip scattering, the Finkelstein solution
for the resistance scales to strong coupling, so that a
metal-insulator transition is possible in d ~ 2.

In this work we generalize Finkelstein's solution in
several directions. First, Finkelstein has considered the
case of long-range Coulomb interactions. We extend his
considerations to short-range interactions only, which
turns out to provide an interesting contrast with the long-
range case. Experimental systems where a short-
range —interaction model may be realized include the He
Fermi liquid adsorbed on a disodered substrate and the
(MOSFET) metal-oxide-semiconductor field-effect tran-
sistor system with a sufficiently thin oxide so that the im-
age charge of the metal layer cuts off the Coulomb in-
teraction. Second, we write the results for the spin-
flip —scattering case first proposed by Altshuler and Aro-
nov. Third, we consider the application of a large mag-
netic field which causes the spin splitting of the electron
states. This last case is of special interest because the field
also suppresses the maximally crossed diagrams, so that
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we have the solution of a model for a realistic physical
problem. Iri particular, it may be relevant to experiments
performed in a strong magnetic field. ' However, before
developing these extensions, we present in the next section
a pedagogical discussion of Finkelstein s theory. Finkel-
stein actually proves the renormalizability of his theory,
and his work is very complete and difficult. With the
benefit of the insight gained from Finkelstein s analysis, it
is possible to perform simple perturbation theory and ex-
tract the scaling equations from the leading logarithmic
singularity. We also clarify some subtle points in
Finkelstein's renormalization procedure.

II. A PEDAGOGICAL DISCUSSION
OF FINKELSTEIN'S SOLUTION

7r (q.ur. ) = +cl Il

, ls I

+

ls

ing Finkelstein, to all order in V. Out of the perturbation
theory, guided by the structure of the field theory, scaling
equations in agreement with Finkelstein s can be con-
structed.

The evaluation of m.(q, Q) is broken down into several
stages. By general principles, its static limit is given by
the thermodynamic density of states dn Idp,

FIG. 2. General structure of the polarization bubble, explicit-
ly showing the separation into static and dynamic parts.

Lo +(q Q)=&u')aver(
1

Qm I+Doe')l ' (2.1)

where (u ),„ is the average impurity-scattering strength,
Do is the diffusion constant, and the scattering rate is
given by r '=2irNo(u ),„where No is the single-spin
density of states. e„=irT(2n+ 1) and Q~ =2~Tm are the
Matsubara frequencies at temperature T. The zero-
temperature expression of Lo + is obtained substituting

~

Q
~

with —iQ in Eq. (2.1). For convenience we will
drop the factor u r ' from the definition of Lo + from
now on. In Finkelstein s theory, the disorder scattering is
assumed to be weak, so that the theory is evaluated to
lowest order in

t= 1/(2m) NoDo .

However, in the interaction between electrons,

(2.2)

A. Effective diffusion propagator

We consider an interacting fermion system in a random
potential. From perturbation theory we learned that the
logarithmic singularity originates from the fact that den-
sity fluctuations in a random medium are diffusive, i.e.,
the particle-hole propagator Lo +(q, Q) represented by
the infinite series shown in Fig. 1 has a diffusion pole
when the electron and hole lines are on opposite sides of
the Fermi surface, i.e., when e„(e„+Q ) &0,

ir(q —+0, Q=O)=
dp

(2.4)

where n is the electron density and p is the chemical po-
tential. Furthermore, dn/dp is not expected to have any
logarithmic singularity because the physics of the present
problem must be a smooth function of p. Thus, we con-
centrate on the dynamic part of m.(q, Q). This can be
written as an infinite series as shown in Fig. 2 involving
vertex correction K, an effective interaction amplitude I,
to be discussed later, and a modified particle-hole propa-
gator L +(q, Q). This propagator includes modification
by the interaction terms for which the initial energy of the
electron or hole line is equal to the final one. In terms of
these functions, we obtain

2%pK QI. +
m(q, Q)=

dp 1 —2I,QL -+

Our first step is to analyze the propagator L +. To
lowest order in V the diagrams are shown in Fig. 3 in ad-
dition to a set where the dressing of the particle and hole
lines are interchanged. We also have the Hartree version
of these diagrams, which are proportional to 2F where the
factor 2 is for spin degeneracy and the constant I' was

HI —— g V(tel)c~ ~c- c~c~
p —q k+q k p

'
k, p, q

(2.3)
-X-

r

no weak-coupling assumption is made. For simplicity, we
shall present the theory for the short-range potential only.
The extension to include the long-range Coulomb interac-
tion is straightforward. In this section we perform a di-
agrammatic expansion for the polarization function
m(q, Q) valid to lowest order in t ln(

~

Q
~

w), and, follow-
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FIG. 1. Particle-hole propagator I o +(q, Q) under impurity
scatterings using the "ladder approximation. "

FIG. 3. Singular corrections to L + due to interactions.
Four more graphs are obtained from interchanging electron and
hole lines. Also present but not shown are the corresponding
Hartree diagrams.
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given in Ref. 3. Clearly, we can perform an infinite

resummation and consider Fig. 3, as a self-energy correc-
tion to the propagator L +. Denoting the sum of Figs.
3(a)—3(c) and its Hartree counterpart by X,[,we note that
the sum is easily done by recognizing that the integration
over the electron Green's functions is just that given by
Hikami, "

FIG. 4. Hikami four-point vertex, giving Eq. (2.6) for the to-
tal contributions of Figs. 3(a)—3(c).

X [x;——2T g g z z [Dpq + m+ pk +~n],V(q =0)(1—2F)
(Dok +co„)

where the [ ] is from the Hikami vertex shown in Fig. 4. From Fig. 3(d) we have

V(q =0)(1—2F)

~&~ k Do(k+q) +Qm+~n

The total "self-energy" correction is given by

&=&.] +&d

(2.6)

(2.7)

(2.8)

We note that in the limit q =0, Q=O, Eqs. (2.6) and (2.7) exactly cancel, and thus X should be linear in Q and q'. To
exhibit this cancellation, we anticipate that later we shall replace V(q =0) by V(q, [o). Thus, we avoid any integration by

parts and instead rewrite Eq. (2.7) as

V(q =0)(1—2F)d= -2e+ neo&&&k Dp(k+ q ) +Q~ +con

+2T g g V(q =0)(1—2F) +1 1 1

~&~+n k o + n Dp(k+ q) +con+Q Dpk +~n

The first term in Eq. (2.9) yields the following contribution:

V(q =0)(1—2F) 2Q ~ 1 2F—
e+[[&co&e k Dp(k+ q) +[0 +Q 2~ Dpk +['p

(2.9)

(2.10)

where co is of the order of Q . The first term in the large
square brackets of Eq. (2.9) cancels the last two terms of
Eq. (2.6). The remaining terms in Eq. (2.9) can be ex-

panded to leading powers of Q and q . Together, we have

L +(q,Q„)=[(Lo +) ' —&1

=[(D,q'+
~
Q„~ )(1+2I, )

Doq'Iz
I
Q—. 1

I3]-'— (2.15)

&= —(Doq +Qn )2I[ +DPq Iz +Q I3

where

(2.11) Within the accuracy of our calculation, this can be written
in the following suggestive form:

~ V(0)(1—2F)
2 2 7.)n/2 k

(Dok +~. )

L +(q, Q„)=g /(D'q +z ~Q„~ ) .
(2.12)

where

(2.16)

8 ~ ~ V(0)(1—2F)Dk

) [[iz -„(Dok'+~.)'

2 V(0)(1—2F)
I3 ——

2m. „Dok +Q/2

(2.13)

(2. 14)

Note that I3 derives from Eq. (2.10) and involves no ener-

gy integration. In these equations we have used the fact
that 0& @+0& Q and replaced the limit of integration in
Eqs. (2.12) and (2.13) by the typical value e+Q=Q/2,
and in Eq. (2.14) we replaced co=Q/2. In two dimen-
sions, the integrals Ii, I2, and I3 are all logarithmically
divergent and this replacement should be permissible.
The modified particle-hole propagator L +(q, Q) is now
written as

g= 1 I[, —
D' =Dp(1 Ii ), —

z=1 —I3 .

(2.17)

(2.18)

(2.19)

Vc(q, ~)= V, (q)/[1+ V, (q)m{q ~)] .

In two dimensions, this takes the form

(2.20)

Such a separation is, of course, completely arbitrary, but
can be motivated as follows. Firstly, we note that while

Ii, I2, and I3 are all logarithmically divergent, they are
really different integrals and it is natural that they should
renormalize different quantities. Secondly, if we consider
an electron system interacting via a Coulomb potential,
the potential V(q) must be replaced by the dynamically
screened Coulomb potential



530 C. CASTELLANI, C. Di CASTRO, P. A. LEE, AND M. MA 30
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Then we note that while I2 and I3 are proportional (at
T=O) to tin(

I
Q

I
r), I, is proportional to tin (

I
Q

I
r)

and is, in fact, simply the correction to the single-particle
density of states. It is therefore reasonable to treat this
tin (

I
Q

I
&} singularity separately as a "wave-function"

renormalization and maintain this procedure for the case
of short-range forces also. Once this choice is made, D' is

simply the perturbation-theory correction to the conduc-
tivity, and z given in Eq. (2.19) is in agreement with the
frequency-renormalization factor introduced by Finkel-
stein. We should point out that in Finkelstein s approach,
the wave-function renormalization g does not appear ex-

plicitly. A detailed discussion of the two approaches is
given in Appendix A.

B. General form of the renormalization parameters

Let us return to Eq. (2.16). Once we recognize that
singular behavior comes from electrons and holes on op-
posite sides of the Fermi surface with small total q and co,

it is easy to generalize the above discussion formally to all

orders in the coupling constant by introducing the static
amplitudes 1"

&

' and I 2
'. These amplitudes include in-

teractions to all powers in NO V(q) which do not involve
L +. I I

' and I z
' are defined in terms of their spin

structures in Fig. 5, and we can simply replace No V(0) by
I P' and NOFV(0} by I z

' in Eqs. (2.12}—(2.14). Further-
more, a ladder summation of I' ' does not introduce
higher powers in t ln(

I
Q

I
r). This leads to a replacement

of I' ' by the dynamic interaction U(q, co„) as discussed
by Finkelstein and which we shall discuss later. For sim-
plicity, we shall carry on our discussion in terms of "skel-
ton" graphs involving I' ', with the understanding that
I' ' can be replaced by U(q, co} afterwards, in the in-
tegrals for the evaluation of the physical quantities.

It is useful at this point to introduce the singlet (short-

range) and the triplet amplitudes,

Z
(0) p (0) &

Z
(0)

s 1 2 2

.(0) & (0)~t = —~I 2

(2.225)

(2.22b)

The first refers to the spin singlet for the electron-hole
pair, the second refers to the corresponding triplet chan-
neL This separation is useful because in Fig. 2, which de-
scribes density fluctuations, the total spin of the particle-
hole pair is conserved and equal to 0; therefore the singlet
amplitude I, appears in Fig. 2 and in Eq. (2.5). In the
case of the long-range (LR) Coulomb interaction, we fur-
ther separate the singlet amplitude into

p (0)LR p (0) p (0)
s = 0 + s (2.22')

m(q=O, Q~O)=0. (2.24)

This requires that the singularities in K g and in
z —21,( cancel each other, i.e.,

dn/dIJ, (z —21,$ ) =2NOIC g (2.25)

As we shall demonstrate in perturbation theory in t ln, it
turns out that each of the two terms are separately non-

singular, i.e., each term turns out to be an invariant.
From Eq. (2.25) it follows that nacquires th. e charac-

teristic diffusion form

where I,' ' is defined as the part of the amplitude which
cannot be separated by cutting a Coulomb line. Since the
polarization function is irreducible for cutting a Coulomb
line, it is I,' ', which enters Fig. 2 and Eq. (2.5) in lowest
order.

Returning to Eqs. (2.5) and (2.16); the polarization
function now takes the form

2NOE g Q~
(q, Q .

) =dn/dp — . (2.23)
D'q + (z —2I,( )Q~

While this equation satisfies the Q=O limit by design, it
must also satisfy the requirement that

k+ q, &+Q k'+q, &'+Q

a 1 p

i P

k, e k, ~'

+ e ~ ~ ~ ~

dn /1pD "q

(Q +D"q )

where

D"=D'/(z 2I', g ), —

with the conductivity u given by

cr= lim lim
z m(k, Q)= D" .0 dn

0—+0 k~0 k dp

(2.26a)

(2.26b)

(2.27)

This last equation specifies the Einstein relation. For the
present case, D' appearing in L + is~roportional to the
true diffusion constant provided z —21',g is an invariant
as follows from perturbation theory.

C. Renormalized effective couplings

+ ~ ~ ~ ~ ~

P P
FIG. 5. Graphs contributing to the total static amplitudes I ~

and I 2 to zeroth order in t. Note the spin structures.

Returning to our perturbative analysis, the diagrams
which satisfy the requirement (2.24) were already identi-
fied in Ref. 6 to lowest order in Vt ln. Thus, it is straight-
forward to demonstrate the cancellation in K g . The
singular correction to K is shown in Fig. 6. We find that
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Additional diagrams which renormalize I 2 are shown
in Fig. 8. These are second order in I and given by

(2.33)

FIG. 6. Order t 1n corrections to the vertex E.

The corresponding correction to I'
~ is shown in Fig. 9(a),

5I ', '= —2tr (ln(Tr) . (2.34)

However, it is now possible to replace one of the I
~

in
Fig. 9(a) by I z to produce Fig. 9(b),

E/Kp 1+I——i, (2.28) 5I ', '=4tI, I ln( Tr), (2.35)

r) ——I )g (2.29)

(2.30)

We shall see that I 1 and I 2 correspond to the same quan-
tities introduced by Finkelstein.

Let us consider logarithmic corrections to the ampli-
tude I . One class of diagrams which renormalizes I 2

is shown in Fig. 7 and similar diagrams renormalize I 1.
Note that this diagram is first order in I" ' ' and the ener-

gy variables are fixed by the external legs. Thus, no ener-

gy integration is involved in the logarithmic integral.
Denoting its correction to I; by 5t,' ', we find

5I p' = t I 2 ln( T~)— (2.31)

where Eo ——1 —2I 1 + I 2 is the nonsingular Fermi-
—(0) -(0)

liquid value. Thus, we conclude that Kg=ED is non-
singular to lowest order in t ln.

Next we study the combination z —2I,g appearing in
Eq. (2.23). I, is defined as the effective singlet amplitude
between electron and hole lines with positive and negative
energy, respectively. To zeroth order in t ln, it is given by
Eq. (2.22). Now we have to consider corrections to I, to
first order in t ln. For this purpose it is easier to consider
the more general problem of the renormalization of the
amplitudes I 1 and I 2 separately. It is convenient to de-
fine

with the extra factor 2 coming from the spin sum. It is
also possible to replace both I' &'s in Fig. 9(a) by I' z, pro-
ducing Fig. 9(c),

(2.36)

5I " '=2t(l 2+I —I + —,'I )in(T&) . (2.37)

where the four terms in parentheses correspond to Figs.
10(a), 10(b), 10(c), and 10(d), respectively, and

gI (11) & gI (10)
1 2 2 (2.38)

Now we are ready to demonstrate the cancellation of
the singularities in z —(2I,—I 2)g. Recall from Eq.
(2.17) that g is given by

Finally, we have to consider corrections to I coming
from other second and higher orders in I' '. The number
of skeleton graphs which is lowest order in tin(Tr) is
limited and, as discussed by Finkelstein, involve ring-type
diagrams. In Fig. 10 we show the diagrams correcting I z
with internal I 2 vertices. By opening up the closed loop
while joining two of the external legs in Fig. 10, we gen-
erate diagrams contributing to I 1 as shown in Fig. 11.
These are simply Finkelstein's Figs. 9(a) and 9(c)—9(e).
As explained by Finkelstein, if any internal I 2 is replaced
by I 1, the spin indices are restricted in such a way that
cancellations occur between Figs. 10(a) and ll(a), Figs.
10(b) and 11(b), etc. We obtain

and

(2.32)

(=1+&(I,—2I, ) ln(Tr) .

It turns out that the singularity in g is cancelled by

(2.39)

We identify the interaction line in Fig. 7 as I
&

because it
is forced to carry a small momentum. As pointed out in
Ref. 6, this class of diagrams were left out of the pertur-
bation expansion in Ref. 5. Inclusion of these processes
leads to many contributions of order Vt ln (Tr) and
V t ln ( Tr). These have recently been calculated. '

Equations (2.31) and (2.32) are exactly what is needed to
cancel the singularity in z [Eq. (2.19)j in the combination
z —21 „again to first order in t ln( Tr).

z1 ——z —2I 1+I 2 ——z —2I, (2.40)

2(5r '"'+5r '"'+5r '"')—5r P' .

Furthermore, from Eqs. (2.37) and (2.38), it is clear that
the higher-order contributions to 2I 1

—I 2 also cancel.
Thus we see that the combination

FICx. 7. t 1n corrections to I"s to first order in I"s. Note the
absence of energy integrations.

+ symmetric terms

FICx. 8. Representative diagrams for t 1n corrections to I ~

derivative from Fig. 7.
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(a)
(b)

(b)

(c)

(c)

FIG. 9. The equivalent of Fig. 8 for I &.

FIG. 11. The equivalent to Fig. 10 for I ~. The diagrams in

Figs. 10 and 11 are arranged in pairs such that replacement of a
I 2 by I

&
in any pair of diagrams results in cancellation; hence

the absence of I
&

in both figures.

has no logarithmic singularity and will remain invariant
under renormalization. As we have seen, this important
invariance is closely connected with the physical require-
ment that dn/dp is nonsingular together with the local
conservation law expressed by Eq. (2.24). Equation (2.26)
is now confirmed in perturbation theory and has the prop-
er limit for the polarization function. It confirms the in-

terpretation of D' as being proportional to the renormal-
ized diffusion constant according to Eqs. (2.26) and (2.27).

It remains to calculate the correction to I and D' to all

orders in I' ' (but first order in t ln). As mentioned ear-

lier, in D this is accomplished by replacing Xp V(1 —2F)
in Eq. (2.13) first by I i

—21 z where I"
i and I z are the re-

normalized static amplitudes, and then by replacing I
&

and I z by Ui(q, co) and U2(q, co) through ladder summa-

tion. For this purpose it is easier to break the scattering
amplitudes down into the singlet and triplet components,
since the total electron-hole spin is conserved in the ladder
sum. Then, using Eq. (2.16) for L +, one has

U.(q,~)=r.+2r~L +U (q, co)

1.(D'q'+z
I
~

I
)

I~ I
(z —21 )+D'q'

(2.41)

where a stands for either triplet or singlet. The triplet
component, from Eq. (2.22), is simply

Uz(q, ~)= I 2~2(q, co)/Wp(q, co),

where

(2.42)

&p ——(D'q +zI~I )

Nz [D'q +(z+——r,
(2.43)

(2.44)

The propagator &z describes spin fluctuation and is fami-
liar in the theory of paramagnon, if the factor z+ I z is re-
placed by the Stoner enhancement factor (1 FV) ' —As-.
sociated with density fluctuation (the spin singlet chan-
nel), we have the propagator

U, (q, co) =I',&, /&p,

N, =[D'qz+(z —21, )
I

co
I ]

The ladder-sum generalization for I
&

is given by

Ui(q, co) =I i& i&2/&p,
which satisfies the relation

(2.45)

(2.46)

(2.47)

(b)

-( )-

Ui(q, co) = U, (q, co)+ —, Uz(q, co) .

Replacement of V(1 —2F) in Eq. (2.14) by Ui (q, co)
—2U2(q, co) yields the leading logarithmic correction to
the diffusion constant,

6D 4 dco (I i V p V i &2—2I 2&p &2)Dq
D, %p 2ir (2~)'

(c)

FIG. 10. t ln corrections to I 2 involving higher order in I"s.
Note that only I"2's are present in all the diagrams.

(2.48)

It is interesting that by combining one-fourth of the last
term in Eq. (2.48) with the first term, we naturally
separate out the singlet and triplet contribution as follows:
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5D 4
y

dco dq i 3 & 3 2

Dp Np 2m (2ir)
' &p 2 &p

2I, z —2I, 2I,
ln 1+

z 2I s z —2I s

z+r, z+r,
+3 1 — ln

I2 z
ln(rT) . (2.49)

Note that the triplet term, or the paramagnon contribu-
tion, tends to enhance conductivity as temperature de-
creases. ' We might add that in the case of Coulomb in-

teraction the static amplitude is I'p E——NpVc(q~O,
co=0) where Vc is given by Eq. (2.21). From Eq. (2.25) it
follows that

5I', = t—ln( T )(I 2+ I 2
——,I z) . (2.54)

For I z, to the terms (2.32) and (2.37), one has to add the
term —4I &in(Tr), which is left from the cancellation
with g:

51,= —t ln(Tr)(I', +2I', ——', I', ) . (2.55)

where on the right-hand side (rhs) we have replaced I by

I, which is consistent with the accuracy we are working
with.

Finally, we extend the renormalization of 1 to all or-
ders in I' by the replacement 1 ~U(q, co ) in the
"skeleton" diagrams given in Figs. 7—11. Since only U2
is involved, the replacement is straightforward. Here we

just quote the result, as given by Finkelstein,

1.e.)

r,=g'I, =-,'(z —21;)=z, /2,

I-,"R=z

(2.50)

(2.51)

5I i
—— t ln(—T7)[I 2

—@(z,zz)],
5I z= t ln(Tr)[—1,—2@(z,z~)],

where z2 ——z+I 2 and

(2.56)

(2.57)

(2.52)

The correction to D is now

5D 4
y

dco dq z Dq +zco
Dp Np 2' (2~} 2 Dq

It then follows from Eq. (2.41) that the dynamic singlet
amplitude in this case reads

U, (q, co) =LR Is 1 z 1

Dq' ~p 2Dq' ~p
'

I2 I24= —21 2fi(z, z2)+ + f2(z,z,z2)
Z2 2Z2

I 2 4z '+zi ' —2fi(z, zz)
f,(z„z„z)+1',

2z (z —zp)

(2.58)

The first term in 4 corresponds to Eqs. (2.33) and (2.36)
and the remaining terms come from Figs. 10 and 11. The
functions

3——I2
2

(2.53a}
and

fi(a, b) = ln(a/b)/(a b)—

z+r, z+I,=t 1+3 1— ln
I2 z

ln( Tr) . (2.53b)

b c)=[2bf1(a b} 2cfi(a, &)]/(b —c) .

Equation (2.58) can be simplified considerably,

The first term in Eq. (2.53a) is the singlet contribution.
Upon a change of variable, co~zco, we see that this term
is a universal number multiplied by ln(Or), thus confirm-
ing the observation first made by Althuler and Aronov.

From Eqs. (2.31) to (2.38) we have calculated the lead-
ing logarithmic corrections to I i and I'2, from which it
should be possible to construct scaling equations. Howev-
er, it is ambiguous whether the scaling variable should be
I or I . Vfe argue that it is more convenient to use I'. To
see this it is more transparent to consider the long-range
case, where the 1 i terms in Eq. (2.39) for g and
(2.33)—(2.35) for 51' i and 5I' 2 become the ln (Tr) singu-
larity. The term (2.33) of 51"2, which contains I i, is can-
celled by the analogous term in 2(g')I 2 so that the com-
bination 1 z ——g 1 z does not contain ln (Tr). A similar
cancellation occurs for I i

——g I i. Thus, 1 i and I 2, even
in the long-range-force case, are free of ln (Tr) singulari-
ties, which would otherwise cause trouble in writing the
group equations. From Eqs. (2.31) to (2.38) we construct
the leading logarithmic correction to I

&
and I 2. After

the cancellation with g only the terms (2.31), (2.36), and
(2.38) for I i are left:

4= I z /z2 —21 z ln(z2 /z ) . (2.59)

III. SCALING EQUATIONS
FOR THE SHORT-RANGE —INTERACTION

PROBLEM

Now that we know the leading logarithmic singularity
of the quantities z, 1 i, I 2, and t, we can write the scaling
equation, under the assumption that a scaling theory ex-
ists. In the usual field-theory problem, this is accom-
plished by integrating out the degrees of freedom in the
range A,r ' &co &r, so that, for example, ln(T&) in Eq.
(2.56) is replaced by ink, —:—g. An equation for c)I /c)g
can then be derived. However, the present problem is
more subtle because the singularity comes from q and u
integration. In principle, renormalization is achieved by
integrating out all the fast modes at each stage. A possi-
ble renormalization scheme would integrate over the re-
gions
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and

0& I
~

I
«~ ~'&Dq'«X

A, '& lco lr(A, , 0&Dq2~&A, '.
(3.1a}

This region is illustrated in Fig. 12 by the shaded strips
and the dark square. This is apparently the renormaliza-
tion procedure adopted by Finkelstein. However, when he
writes his integrals, the region of integration seems to be
further restricted to

&Dq (3.1b)

0&z
I

co lr&~ ~ &Dq

and

A,
'

& z
l

co
l
r (A, , 0 &Dq 'r & A.

' .

This has the advantage that for the renormalization of t,
z;, and I; (but not for the density of states, as will be dis-
cussed in Appendix B), it is possible to simplify the region
of integration to

(3.2b)A, '&z leo le(A, , A, '(Dq2r&A, .

The above discussion is most readily illustrated by consid-
ering the triplet contribution to the renormalization of the
conductance [second term in Eqs. (2.49) or (2.53)]. Ac-
cording to Eq. (3.1b), we have

i.e., the dark square region in Fig. 12. Since the integrals
are dominated by the poles in the integrands, this scheme
is sufficient provided the poles are all situated at Dq =co.
In fact, the poles are at Dq =z;co Whi. le this scheme is
correct initially, when z, zt, and z2 are of order unity,
under renormalization z and z2 diverge while z& remains
finite and the scheme according to Eq. (3.1b) breaks
down.

We find that it is much more natural to adopt an alter-
nate renormalization scheme in which co in Eq. (3.1a) is
replaced by zoo,

If z and I 2 are constants of order unity, by standard argu-
ments, we find the desired result that the rhs is propor-
tional to ink, . However, in Finkelstein s solution, both z
and I 2 scale to infinity, with I 2/z finite, in which case
the zoo factors in the denominator dominates Dq over the
entire range of the q integration and the integral is no
longer 1ni, . This difficulty is avoided in the renormaliza-
tion scheme given by Eq. (3.2b}, by a simple change of
variable from co to zco. A similar situation obtains in the
renorrnalization of I, in that the nonlinear terms given by
4 in Eqs. (2.56) and (2.57) all involve z and zz. The linear
term and the renormalization of z will also work, because
that logarithm involves a spatial integration only [see Eq.
(2.14)],

~d(Dq ) 1
I3 oc

4~D Dq'+z;A, ' ' (3.4)

5D,

Dp

4 i dco' i d(Dq )

4~D

where z; may be z, zz, or z~. (Note that unlike z and z2,
z& remains invariant upon scaling. ) Again, the renormali-
zation scheme of (3.lb) runs into difficulty when z;
exceeds Dq in the range of integration, whereas accord-
ing to (3.2b), z;I,' should be replaced by z; /zA,

' and can al-

ways be ignored compared with Dq; hence Eq. (3.4) is

proportional to ink, , as desired. We conclude that, using
Eq. (3.2), the renormalization procedure is consistent and
Finkelstein's scaling is recovered.

According to Finkelstein, z diverges only logarithmical-

ly with iL, and the distinction between (3.1) and (3.2) is in
most cases small, leading to no more than a logarithmic
correction to the temperature scale in two dimensions.
However, the singlet contribution 5D, to the conductivity
[first term in Eqs. (2.49) and (2.53)] requires special dis-
cussion. The long-range case of Eq. (2.53) is satisfactorily
treated by the procedure of Eq. (3.2b), but in the short-
range case, the integral involves both z& and z, and special
care is required. We have, from Eq. (2.49),

5D,

Dp

4 ~ dco t'd(Dq )

1V'p ~' 2m ~' 4mD

3 I 2Dq
&(

— . (3.3)
2 [Dq +(z+I z}co](Dq +zco)

(I, /z)Dq
X

[Dq2+(z, /z)co'](Dq +co')

(3.5)

D 2

40 Ol' Z(d
FIG. 12. The proper renormahzation procedure is to in-

tegrate out the shaded and dark regions at each stage.

where we have renormalized according to Eq. (3.2b) and
made the change of variable co'=zco. Initially, z and z~

are both of order unity and both poles are inside the in-

tegration limit. However, after some steps in the renor-
malization, z& /z becomes much less than unity, since z,
is invariant while z diverges, and the factor (zi /z)co' in
the denominator may be ignored compared to Dq . This,
together with the fact that I, /z~ —, under renormaliza-
tion (see below) immediately removes the distinction be-
tween Eqs. (2.49) and (2.53). If instead, the integral is
performed in the entire region given by (3.2a), we find an
extra contribution proportional to zi /z which becomes
negligible as the renormalization proceeds. We shall see
that, with the exception of the density of states, the long-
and short-range problems become identical under renor-
malization.

We now proceed to adopt the renormalization scheme,
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Eq. (3.2b), and generate the scaling equations for the ef-
fective couplings from the leading logarithmic singulari-
ties. From Eqs. (2.19) and (2.14) we see that the replace-
ment V(1 —2F) by Ui(q, tp) —2Uz(q, co) does not change
the results, so that only terms to lowest order in I contri-
bute to the z renormalization,

invariant condition, Eq. (3.10). Suppose

z —2I.,+r,=c .

Then,

1 —2yi+yz ——c/z .

(3.16)

(3.17)

dz/dg= —t(l"i —2I z) .

dI i

dg
=t I,—

From Eqs. (2.56)—(2.59) we have

p2
+2I 2lnz+r2

z+I,

(3.6)

(3.7)

It can be shown that the rhs of Eqs. (3.7) and (3.8) is al-
ways positive, for positive I i and I z, and the fixed point
does not exist for finite I, and I'z. It turns out that the
fixed point of interest corresponds to z ~00. Thus, Eq.
(3.17) becomes

and
1 —2y i+y2 ——0. (3.18)

dt +3 1—
z

z+r, z+r,
ln

I2 z

dI 2 I2 z+r,=t I i —2 +4121n
dz z+I 2 z

From Eq. (2.49) we have

(3.8)

(3.9)

1+y*,
dt/dg=t' 4 —3, ln(1+y "z)

y2
(3.19)

We can combine this condition with Eq. (3.13) to obtain a
single equation for yz and solve numerically to obtain

y z-4. Upon substitution of y', and y z into the rhs of
Eq. (3.15},we find that

where we have left out the transient term in z i /z. As dis-
cussed earlier, Eq. (3.9} is applicable at a late stage in the
renormalization process, when z becomes larger. As al-
ready mentioned, Eqs. (3.6)—(3.8) imply that the singlet
combination is invariant,

d(z —2I i+I'z) =0. (3.10)

To simplify Eqs. (3.7)—(3.9) further, it is useful to
recognize that the natural scaling variables are

and

)', =r, /z (3.11)

1'z=rz /z (3.12)

in that the scaling (3.9) for t can be written entirely in
terms of yi, yz. This is evident from Eq. (3.9) and can be
traced back to the fact that in performing the integrals
over to in Eqs. (2.49) or (2.53) the variable z can be elim-
inated by a charge of variable from co to ztp and replacing
I /z by y. Similarly, equations for yi and yz can be writ-
ten as follows:

1 —2y i+y2 ——0, (3.20}

where y'i ——(I i+I p}/z. The situation is therefore even
simpler, and the fixed-point value for y z is the same in
the long- and short-range cases because Eqs. (3.20) and
(3.18) are identical.

Next we discuss the single-particle density of states.
This involves the renormalization parameter g and, per-
forming the usual substitution of V by U(q, t0) in Eq.
(2.12},we obtain

5X 1 zi 3 z2=t ——ln ——ln ln(T&) .
2 z 2 z

(3.21)

The rhs of Eq. (3.19) is always negative, so that t scales
towards weak coupling. The ground state in two dimen-
sions is a perfect conductor. It is useful to compare the
solution of the short-range problem with Finkelstein's
solution for the long-range problem. After some initial
transient, the scaling equation for t becomes identical to
the long-range problem. The equations for z, I i, and I z

are the same except that I
&

must include the screened
Coulomb interaction I o. The invariance condition be-
comes, e.g., (2.51), which can be written as

2
dy& 2 y2
dg

= t y i
—2y iyz+ yz — +2yz ln(1+ yz)

+y2

r

2+y,
dg

=t ri(1+}'z)—2}'z
1+y2

+4yzln(1+yz)

and

(3.13)

(3.14)

N(A, ') =g(k'/A, )N(A, ), (3.22)

where g is given by Eqs. (2.17) and (2.12) in the perturba-
tion theory. Performing the usual substitution of V by
U(q, co) in Eq. (2.12) and performing the integral in the
entire region denoted by (3.2a), we find (see Appendix B)

To obtain its scaling behavior we note from Eqs. (A10)
and (A13) that as the scale is changed from A, to A, ', the
N(A, ) satisfy the relation

dt 1+y2=t 27i —1'z+. 3 1 — ln(1+yz)
dg y2

g(A, /A, ') =1+—,
' t( lnz) 1n(k/A. ') .

(3.15)
Thus the equation for the density of states is

(3.23)

We should solve Eqs. (3.13) and (3.14) for the fixed points
y i and y2. This task is simplified further by using the

d in%
dg

= —(t/2) lnz . (3.24)
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lnN= ——,", ln g . (3.25)

Up to logarithmic accuracy we interpret A, as the tempera-
ture T or frequency co, and so

Close to the fixed point, t=1/2g and lnz= —", In/, so
(3.24) implies

fusion constant D enters in relating it to a momentum
scale [see Eq. (3.1) or (3.2)]. However, to the accuracy in
the e expansion that we are working in, 2+@ can be re-
placed by 2 in Eq. (4.2) and we shall do so from now on.
Equation (4.2) has the same form as the pure-localization
problem. The standard argument will produce a conduc-
tivity exponent near the critical concentration n„

N( T) e
—(11/32)( )nlnT) (3.26) o.=(n —n, )", (4.3)

d InN/dg= —, tg—.

The solution of the equation yields

(3.27)

(3.28)

indicating that N(T) remains essentially constant until
very low T and then drops abruptly to zero.

In Appendix 8 we also discuss the long-range problem,
where perturbation theory yields a ln T correction. Spe-
cial care is needed to handle this singularity, and instead
of Eq. (3.24) we find

such that

)(t = 1+0(e) . (4.4)

While the scaling equation for t is independent of I, it
is still of interest to obtain the scaling equation for z and
the singlet amplitude I," which are related to one anoth-
er by the invariance relation (2.54), z =21, . The z equa-
tion can be read off of Eq. (3.6) by breaking the rhs down
into singlet and triplet amplitudes, and setting the triplet
equal to zero,

Equations (3.27) and (3.28) were first written by Finkel-
stein. We reiterate that the density of states is the only
quantity that distinguishes the long- and short-range
problems in the scaling region.

dz/d g= —tr,"',
LR

t &LR
dg 2

(4.5)

(4.6)

IV. THE SINGLET-ONLY PROBLEM

A. Long-range case

This case was treated by Altshuler and Aronov. The
scaling equation for t simplifies in that only the first term
in Eq. (2.53) survives, and gives a universal contribution
to the scaling equation,

dt/dg=t2 . (4.1)

The reason that Finkelstein's solution scales to the per-
fect conductor is that the triplet amplitude I 2 scales to in-
finity, and the resulting spin-fluctuation contribution to
the conductivity enhancement overcomes the singlet con-
tribution. Thus, this theory cannot describe a metal-
insulator transition in 2+@ dimensions, because one al-
ways scales to a metal. As pointed out by Altshuler and
Aronov, the situation changes if the triplet fluctuations
are suppressed. Physically, the triplet diffusion channel
will be suppressed in the presence of spin-orbit scattering
or spin-flip scattering. We then have a model which ex-
hibits a metal-insulator transition in at least two experi-
mentally realizable situations: (i) strong-spin-flip scatter-
ing due to magnetic impurities, or (ii) strong spin-orbit
scattering in addition to a small magnetic field to suppress
weak antilocalization. Thus, it is interesting to work out
the scaling properties of this case.

Thus, both I, and z scales to zero. The ratio
y, =r," /z= —, is universal, and produces the universal

correction to t shown in Eq. (4.1). In 2+e dimensions,
t ' =E/2 and we solve Eq. (4.5) to obtain

z =e —'&"=X'" . (4.7)

As first pointed out by Finkelstein, ' the fact that z~O
affects the critical exponent describing the T dependence
of o at criticality. At the fixed point the diffusion con-
stant is given by

(4.8)

To convert this to a temperature dependence, we have to
relate the length scale I. to co. According to Eq. (3.2) we
have

DI. =zoo=A, . (4.9a)

Combined with Eq. (4.7), we see that

&/( & —e/4)=M (4.9b)

Combining Eqs. (4.9) and (4.8), we obtain

~e/(2+ e/2) (4.10)

This is in contrast with the usual scaling argument which
ignores the critical behavior of z and gives D =co' ".

The density of states obeys the same equation as in the
weak-magnetic-field case, except that t is replaced by t *,

In 2+@ dimensions, we introduce a dimensionless resis-
tance t=A, '~ +'(4m NOD) ' as a generalization of Eq.
(2.2). Equation (4.1) becomes

2
(4.11)

dt

dg 2+e (4 2)

which gives

e —t*(ink, ) /4 (4.12)

The factor 2+e on the rhs of Eq. (4.2) comes about be-
cause k is a frequency scale, and the renormalized dif- Substituting t*=e/2 and A, =zT=X' T, we obtain
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—EX- exp
8

2
1

( lnT)
1 —e/4

—(e/8)( lnT)2

to lowest order in e.

(4.13)

(4.14)

We note that in contrast to the long-range case, z scales to
a finite constant. Equation (4.14) states that the singlet
amplitude scales to zero. The interaction becomes ir-
relevant! This is the only case we know of in which the
pure-localization fixed point is stable with the introduc-
tion of interaction. The scaling theory of the pure-
localization problem therefore applies. The consequences
are that, in 2+a dimensions, in a system with spin-flip
scattering (time-reversal symmetry breaking), the scaling
equation takes the form

dt/dg = —
2 et+yt (4.15)

where y is a constant given by the noninteracting scaling
theory. Standard arguments give the conductivity ex-
ponent p= —,

' +O(e). The single-particle density of states
stays finite, as in the noninteracting case.

V. "HIGH"-MAGNETIC-FIELD PROBLEM

In the preceding section the singular contributions from
the maximally crossed graphs are suppressed by the pres-
ence of spin-flip scattering. In Finkelstein s paper it is the
external magnetic field that provides the cutoff for these
graphs. However, the magnetic field also introduces Zee-
man splitting and this must be taken into account if the
temperature is sufficiently low or the magnetic field suffi-
ciently large. Thus, it is particularly interesting to study
high-field limits. The conditions are gpliH »T and

gpiiH »r, ,'. In this case, the S,=+1 channels for the
particle-hole ladder are cut off by the spin-splitting fre-

B. Short-range case

In this case we need to derive a scaling equation for the
singlet amplitude I', . Once again from the equation for z
and the invariance (2.40), we immediately obtain

quency, so that

I.s ++i(q, Q)=(Dq +
~

0
~

i—gpiiH) ', (5.1)

so that these channels may be ignored at sufficiently low
frequency or temperature. The only singular channels
that remain are those for S,=0 (see Fig. 13). This is also
the situation for ferromagnetic metals below T„even if
the field is infinitesimally small since the spin splitting
would be large compared to kii T (unless one is very close
to T, ).

A. Short-ranged interaction

The physics is most transparent if we first discuss the
short-range case. It is convenient to rewrite the interac-
tion part of Eq. (A2) as

(Qiig i't+Qiig ii)+ I (Qifg )i+

ging�

'tf
)

I (g tight+ g itg ti
)

where only the spin indices are displayed. Thus, I ~,
which turns out to be the relevant coupling in the present
case, is the interaction amplitude for processes where
S,=0 in both the direct and exchange channels. Compar-
ison with (A2) means the "bare" value of I H is
I (o) I (0)

1 2
As remarked earlier,

~
S,

~

=1 channel is not diffusive
and so the Hartree diagrams should no longer carry a spin
sum (the exchange diagrams already have no spin sum).
Thus, in a perturbation calculation, 1 —2I' in Eqs.
(2.12)—(2.14) must be replaced by 1 —F. As discussed in
Sec. II, one then obtains the corrections to lowest order in
t ln by replacing No V(0)(1 I' ) by th—e appropriate
dynamic amplitude —in this case UH(q, m), which we now
derive.

UH(q, co) is given by the graphs shown in Fig. 14. A
general graph has an arbitrary number of I H's and zero
or an even number of I i's. For co=0 only the first graph
remains, identifying I H as the total static amplitude.
Evaluating the graphs and summing, one obtains

UH(q, co) = U, (q, co) —Uz(q, co) = U, (q, ~) ——,U2(q, ~),
(5.3)

where Ui, Uz, and U, are given by Eqs. (2.47), (2.42), and
(2.45), respectively. z, and zz now read

[
I

x!

[ I

I

I
X X

(

I

1 f +

(5.5)

+ "'

I

I

x
I

l

I

I I

X X
I

I

I I

~ ~ ~ ~ ~ ~+

+ r„r, r + r r —r + ~ - ~ ~

I H

(b)
FIG. 13. Owing to Zeeman splitting, (b) is no longer dif-

fusive.

z!~f+ Dqz

FIG. 14. Ladder summation giving U~(q, co).
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Inserting UH(q, co) into Eq. (2.13) we obtain the conduc-
tivity scaling equation as d

=t' f(x),

z —r —r,
z+I I

—I ~ z+1"I—I H
lnIi —IH z

—r —I,
dt/dg= t 2— lnI+I

(5.6)

where

x —1 x z*
f(x) =2+x ln +ln, x =

x+1 r',"
(5.13)

dI i =0 (5.7)

and

dr
dg

= —tI 8 . (5.8)

The scaling equation for z can be obtained by substitut-
ing NO V(0)(1—2F) in Eq. (2.14) by Utt(q, co). Alterna-
tively, we can use the invariance of z I

——z —2I,
=z —I'H —I I, together with the invariance of I I for the
present case, to give

Note that this is the same as Eq. (2.49) [or Eq. (3.9) plus
the transient term] when only one-third of the triplet con-
tribution is taken; this follows from (5.2). To interpret
this equation one also needs the scaling equations for z,
I I, and I H. The corrections to I ~ and I I are given to
first order in I"s by the graphs shown in Figs. 15(a) and
15(b), respectively. Note that Fig. 15(b) involves the

I
5, I

= 1 channel and is nonsingular and contributes only
a trivial additive correction to I I. Figure 15(a), however,
is singular. Higher-order corrections are given by the
graphs in Figs. 9 and 10 in Finkelstein's paper. Both of
them are, in the present case, corrections to I ~. Al-
though each graph in Fig. 10 has a relative minus sign to
a corresponding graph in Fig. 11, they do not cancel in
Finkelstein's problem since there is a factor of 2 associat-
ed with the spin sum in Fig. 11. However, it is precisely
this spin sum that the Zeeman splitting removes, and so
for the present case all of the higher-order graphs cancel.
The scaling equations for I It and I

~ are then

dt/dg= — t+f(x)t—
2

(5.14)

and so a metal-insulator transition occurs when
t & t*=e/2f(x). The conductivity exponent is again

@=i+0(e) . (5.15)

The density-of-states correction is given by Eq. (2.12)
with No V(0)(1—2F) replaced by Utt(q, co). Performing
the integration we obtain the singlet term plus one-third
of the triplet term of Eq. (3.21). Inserting the fixed-point
values, we obtain

(z')2 —I ~

dN/dg=t/2N ln =gtN .(z*)' (5.16)

Since 8&0, the density of states must go to zero as
T~O. In fact, the behavior is, in d=2+e, N(T)-T,
where

Note that the stability of the electron gas requires zI &0
so x ) 1. The function f(x) is monotonic in the interval
[1,co] with f(1)=2—21n2 and f(oo)=0; hence t always
increases as T decreases and the system is driven into the
insulating regime. For fixed I z ', as I I

' increases from
0, x decreases from oo, and f(x) increases, and so the
drive to an insulator is faster, the "stronger" the interac-
tion. However, it is important to remember that the real
picture is more complicated since x increases with I 2 ',
which is also a measure of the strength of the interaction.

For d =2+a dimensions, the scaling equation to first
order in e is then

dz/dg= tI H . —
The fixed-point values for these parameters are then

(5.9) &=t'I ~I =[«2f(x)] I()
I

is nonuniversal.

(5.17)

r, =r, ,
(0)

I II=0
z*=1—r =1—I, +r, .

—(0) —(0) —(0)

(5.10)

(5.11)

(5.12)

B. Coulomb interaction

In the long-range case the amplitude I 0 is, according to
Eq. (2.50), given by

Substituting these values into the conductivity equation
(5.6) gives z —I ~ —I I ——2I 0. (5.18)

The various scaling equations are modified as follows.
The conductivity correction is now obtained by taking the
singlet term plus one-third of the triplet term of Eq. (2.53)
to give

z+I, —I- z+r, —rdt/dg=t' 2— lnII—IH z
(5.19)

(o) (b)
FIG. 15. (a) Correction to 1 8 to first order in I is singular.

(b) The corresponding correction to I I is not.

The first-order correction to I H now involves an addi-
tional term coming from the replacement of I tt by I o in
Fig. 12(a). Hence,
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drH = —t(r„+r, ) .

The ~S,
~

=1 channels are still suppressed, and so I'i
remains an invariant. From (5.18) we have

(5.20)

dz drH

dg dg

The fixed-point values are then

rH= —r o" and z*=r'o"+-r

(5.21)

(5.22)

The conductivity equation evaluated at these values is

=(2—2 ln2)t (5.23)

and the metal is unstable in 2D. Note that the coefficient
of t is the same as that for the short-ranged interaction
when z*=I i

'. This is due to the fact that this coeffi-
cient is independent of I 0. Setting I o

——0 immedi-
ately gives z*=I

&
.(o)

In 2+ e dimensions the metal-insulator transition
occurs for t & e/[2(2 —2 ln2) ], with an exponent

p = 1+O(e).
The presence of long-range interaction results perturba-

tively in a logarithmic square correction to the density of
states, which dominates the short-ranged contributions, as
discussed in Appendix B. As in the "singlet-only" case,
the density of states in 2+ E dimensions does not vanish
like some power of temperature, behaving instead as

suppression may be due to spin-flip scattering or an exter-
nal field and we explore how these effects modify
Finkelstein's original solution. We also study the case of
short-range interaction only. Not surprisingly, we fin
that each situation corresponds to a different universality
class. We summarize as follows.

(1) The density-density correlation function is assumed
to be diffusive for all spin channels. The long-range case
is the problem originally treated by Finkelstein. Since
these conditions contradict the suppression of a maximal-
ly crossed diagram, this case may exist in reality only as a
transient region in temperature. Finkelstein found that
the conductance in 2D scales to infinity and the single-
particle density of states vanishes like a power law. The
perfect conductivity is driven by a divergence of the trip-
let amplitude I 2. Surprisingly, we found that the short-
range case basically scales onto the long-range problem
after some initial transient, and the scaling behavior be-
comes identical. The density of states, on the other hand,
scales to zero differently, depending on the interaction
range [Eqs. (3.26) and (3.28)]. The predicted conductivity
rise, even though restricted to a limited temperature
range, has not yet been observed experimentally.

(2) We next introduce spin-flip scattering or a strong
magnetic field. These cases are interesting because a
metal-insulator transition is predicted in 2+@ dimensions
and its critical properties can be calculated. In both cases
the dimensionless conductance remains a scaling variable,
and the scaling equation takes the form

&( T)—exp — ln T
8(2—2 ln2)

(5.24)
dt et 2—At

d in'. 2+a
(6.1)

1 e
o( T) =op — (2—21n2) ln(T~) . (5.25)

It will be very interesting to test this prediction experi-
mentally.

Thus, in the presence of "high" magnetic field, both
short-ranged and Coulomb interactions give rise to a
metal-insulator transition in 2+a dimensions. The con-
ductivity exponent is universal and is equal to 1 in both
cases. The density of states, however, behaves very dif-
ferently for the two situations. For short-ranged interac-
tions, it vanishes as a power, albeit a nonuniversal one, of
the temperature. For the Coulomb interaction, it vanishes
as exponential of a logarithmic square. In 2D, the metal
is unstable in both cases, the conductivity decreasing loga-
rithmically with temperature. The coefficient is
nonuniversal for the short-ranged interaction but is
universal (=2—2ln2) for the Coulomb interaction. This
predicts that in a high magnetic field (gpiiH »kT and

gpriH »v;,', the spin-orbit scattering rate), the tempera-
ture dependence of the conductivity in 2D is given by the
universal dependence,

where /I is a constant at the fixed point. [See the discus-
sion following Eq. (4.2).] This determines a fixed point
t*=e/[(2 +e)A]. Near the fixed point Eq. (6.1) can be
integrated out to a cutoff scale A, which separates the criti-
cal region from either the metallic or insulating region

(6.2)

and

p = [1+0(e)], (6.3)

The conductivity o. is given by

o =t'/P, (6.4)

Dg =A, , (6.5)

where D=(dn/dp) 'o. Combining Eqs. (6.5) and (6.4)
we find

where g is the length-scale change corresponding to A, .
According to the renormalization scheme given in Eq.
(3.2), we have

VI. CONCLUSIONS

In this paper we provided a diagrammatic perturbation
treatment of the disordered interacting fermion problem.
Throughout this work, the maximally crossed diagrams
important for pure localization are suppressed. This

g —1/(2+ e)

The critical exponent v is found from Eq. (6.3) to be

v=p/(2+~) =(1A)[1+0(~)].

(6.6)

(6.7)
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Setting Eq. (6.6) into Eq. (6.4) we find

0 t* (6.8)

constant, so that according to the renormalization scheme,
the two terms D'q and icoz& in Eq. (6.12) remain similar
in magnitude upon scaling. At a cutoff scale A, , q=g
and we have the result

8 =4me 2 de
dp

(6.13)

p= =1+0(e) .
2+@

(6.9)

(6.10)

For m & 6, on the metallic side, we scale to a length scale
A, , at which point we can do perturbation using renormal-
ized parameters. This gives

o (a) )=o (0)[1+(co/b, )'/'], (6.11)

Combining this with Eq. (6.8) shows that in the coeffi-
cient of the T'/ correction to the conductivity should
diverge near the critical point as [cr(0)]'

On the insulator side, scaling is towards strong coupling
and the perturbative methods break down. However, we
can still estimate the dielectric constant by scaling up to
the cutoff scale A, and argue that the polarizability of the
insulator is dominated by the metal-like screening which
operates up to that cutoff scale. %e write the dielectric
constant c in three dimensions as

c= 1+ m(q, co) =4ne . . (6.12)
4me 2 dn D'

q dP D q —iZ1CO

Recall that in the high-magnetic-field case, z scales to a

The above line of arguments produces exponents that are
identical to O(e) to those in the noninteracting problem,
because the basic equation, (6.1), has the same structure as
the noninteracting case. However, because of the appear-
ances of the parameter z in the renormalization scheme
given by Eq. (3.2), other scaling properties may differ.
Here we summarize the results for the two cases separate-
ly.

(a) A magnetic field high enough to cause spin splitting.
The conditions are gp&H »k~T and gp~H &&~, ,'. Al-
ternatively, the spin splitting might be the result of a fer-
romagnetic transition. The two-dimensional long-range
case is particularly interesting in that a universal logarith-
mic temperature dependence is predicted for the conduc-
tivity [Eq. (5.25)], which should be accessible to experi-
mental testing. The ideal geometry would be to apply a
large field parallel to the plane, with a small normal com-
ponent to suppress weak localization. This avoids the
problem of having to deal with quantized Landau orbits.

In 2+@ dimensions, a metal-insulator transition exists.
The sealing behavior is particularly simple because z
scales to a constant, so that the energy scale 5 can be
identified with the cutoff scale A, given in Eq. (6.2). The
scaling behavior for the conductivity on the metallic side
and the dielectric constant c. on the insulating side is iden-
tical to the noninteracting case, and we can follow the ar-
guments of McMillan' and their elaborations. ' Let us
denote by co the frequency or temperature, whichever is
greater. For co & 6, we are in the critical regime, the con-
ductivity is given by

Thus the dielectric constant is predicted to diverge near
the metal-insulator transition as

~

t t ' —
~

"with v given
by Eq. (6.7). Furthermore, combined with Eq. (6.4) we
conclude that in three dimensions (3D), the product

co. = invariant, (6.14)

where e and o are measured equidistant from the transi-
tion. This result is the same as in the noninteracting
problem.

The single-particle density of states vanish at the
metal-insulator transition as a power law with a
nonuniversal exponent in the short-range case [Eq. (5.17)].
In the long-range case the density of states vanishes in a
peculiar way given by Eq. (5.24).

(b) Large spin-flip scattering, 7sF ))kg T, or large
spin-orbit scattering with a weak magnetic field to
suppress weak antilocalization. For a short-range interac-
tion this case scales to weak coupling, so that we recover
the noninteracting localization problem. For example, in
tunnelling experiments, or in MOSFET s with a thin ox-
ide, charges on the metal plate may cut off the long-range
Coulomb interaction in the sample and make this case
relevant. On the other hand, if the interaction remains
long ranged, the interaction is relevant. In two dimen-
sions, the conductivity behaves in a universal way,

1 8o(T)=oo+ ln(Tr),
fi

(6.15)

p(1 —~/4)
t —t*

(6.16)

where we have used Eq. (4.7). As discussed in Sec. IV, the
scaling behavior of the conductivity is given by

~(~) ~e/{2+a/2) ~)g

=o(0)[1+(co/5)'/ ], co & &

where

(6.17)

(6.18)

o(0}= (6.19)

with)M=1+0(e} as before.
The dielectric constant in 3D can be estimated as before

as first suggested by Altshuler and Aronov. Existing data
seem consistent with this prediction. '

In 2+@, a metal-insulator transition is predicted. How-
ever, the critical behavior is different from the nonin-
teracting case or from case (2a) because in this case the
parameter z scales to zero. Thus the energy scale 5 is no
longer the same as A, , but

b, =A, /z

g1 —e/4
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but now z scales to zero while zi remains invariant.
Upon scaling, according to Eq. (3.2), the term zino in the
denominator of Eq. (6.12) dominates D'q and we have

E=4me =4' g z .zdn D'z idn
dp g dp

(6.20)

Near the critical point we find that the dielectric constant
diverges as

—2@+@x

(6.21)

bringing us together for this collaboration. We thank the
Workshop participants, especially Gary Grest, for helpful
discussions. Two of us (P. L.) and (M. M.) acknowledge
support by the National Science Foundation under Grant
No. DMR-82-17965. Another of us (C. D. C.) thanks the
Condensed Matter Theory Group of MIT for their warm
hospitality. After this work was completed, we obtained a
copy of an unpublished paper by A. M. Finkelstein in
which he treated the long-range spin-flip and high-
magnetic-field cases. Except for some details concerning
the density of states, our results are in agreement.

where x is the exponent in z-A," and was calculated in
2+e dimensions to be e/4 [Eq. (4.7)]. Thus we conclude
that in three dimensions,

5

BO (6.22)
t

where the exponent 5=px and is given in a 2+@ expan-
sion as 5=pe/4. Equation (6.21) is to be contrasted with
Eq. (6.14) for the high-magnetic-field or the noninteract-
ing case, and should be subject to experimental testing.

Finally, the single-particle density of states in the long
range vanishes at the transition according to Eq. (4.13).

The experimental situation remains unsettled, with
some experiments reporting @=1 (Refs. 10 and 18) and
the experiment on Si:P reporting p = —,

' (Ref. 19). As em-

phasized in Ref. 5, it is possible that these experiments
represent different universality classes. In particular, the
experiment of Ref. 10 should be described by our high-
magnetic-field model which predicts p = 1+0(e). It will
be interesting to study the temperature dependence of the
conductivity and to make dielectric-constant measure-
ments on the insulating side to compare with the theory.
At the same time, it will be very interesting to study the
metal-insulator transition in Si:P in the presence of a
strong magnetic field to see if p changes from 0.5 to 1 as
our theory would suggest.

Note added in proof. Recently, an error has been
discovered in Finkel'shtein's expression for N so that Eq.
(2.59) should read

p2
(2.59')

Z = exp —W

where

(Al)

~( I g j ) =T f [D Tr( Vg) —4z Tr(eg)
4

—1 (Qyig)+I i(gy2Q)]dr .

(A2)

The matrix Q is Q„'„, where n„nz labels the energy

e„,e„; ij are the replica indices and a,P are spin indices.
The matrix e is =ee5„~ 5ij5p, e„=(2n+1)mT, and I
and I 2 are interaction amplitudes distinguished by their
spin structure,

APPENDIX A

In Sec. II we showed that in order to renormalize L+
it is necessary to introduce a "wave-function" renormali-
zation g. This renormalization is related to the singularity
(t ln } in the density of states. We demonstrated that it is
possible to define I;=I;g so that the coupling constants'
renormalizations become free of the t ln singularity.

In Finkelstein's field-theoretic calculation the I s ap-
pear as the natural coupling constants and the t ln diver-
gences are cancelled everywhere. In fact no "wave-
function" renormalization is necessary in his theory for
reasons we now discuss. We recall that the field theory of
Finkelstein takes the form ~

Details and the physical consequences of this can be
found in Castellani et al. [Phys. Rev. B (to be published)]
and A. M. Finkel'shtein [Z. Phys. (to be published)]. The
new result that is relevant to this paper is that the system
no longer scales to a perfect conductor. Instead, the con-
ductivity remains finite in Finkel'shtein's original prob-
lem. However, the major conclusion reached in Sec. III,
that the short-range and long-range problems become
identical under scaling, remain unchanged. The singlet-
only and the high-magnetic-field problems (Secs. IV and
V are independent of N and are obviously unaffected.
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The matrix Q satisfies the constraint

Q =I,
Trg =0,

and

(A4)

(A5)

(A6)

These matrices can be written as

(grig) =2mT g Q„"'„Q„"'$~5(ni+n3,n2+n4),
n, i

(A3)
(Q}'2Q)=2~T g Q„",'„,Q„",'„5(ni+n&, n2+n&),

n, s
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Q=U-'AU,

where U is unitary and

(A7) (A2) the O(2n )/[O(n ) XO(n )] symmetry has already
been broken by the interaction term I . These terms, upon
renormalization, generate terms which renormalize the
combination Tr(eQ), leading to a renormalization of z
different from that of h« .

Finkelstein chose a renormalization group such that the
constraint, Eq. (A4), is satisfied without rescaling at each
stage of the renormalization process. This is accom-
plished by a parametrization

U = exp( 8'/2), 8'= —W'+ (A8)

Z(A, ,D,z, I, I p) =Z(A, ',D',z', I ', I 2), (A9)

and the renormalization of D, z, I, and I 2 are free of ln
divergences. However, in order to calculate the single-
particle density of states,

and the matrix elements of W are considered as indepen-
dent variables. Note that this is different from the
parametrization used by Wegner and Hikami, " where

the elements Q+, i.e., e„&0 and e„&0 were chosen as
independent. This latter parametrization is more analo-

gous to the usual O(n) model, and a wave-function renor-
malization will occur.

In the renormalization process, Finkelstein showed that
upon a length-scale change from A, to A, ',

APPENDEX 8

In this appendix we discuss the problems associated
with renormalization of the density of states. These are
twofold: (i) the perturbative calculation for the long-
range interaction shows a "logarithmic square" singulari-

ty which must be renormalized properly; (ii) it is no

longer sufficient to include in the integrals just the region
given by (3.2b), and instead one must integrate out the full

region of (3.2a).
First, we review how the perturbative calculation gives

the "logarithmic square" singularity. As shown in Sec. II,
the correction to the density of states is given by the in-

tegral I& [Eq. (2.12)]. The contribution to this from the
long-range Coulomb interaction is

& d~ (-'» dq 1 Vc(q)

(2') (N+Dq ) 1+V, (q)~(q, ~)

(B1)

(A10)

or (Q(r)Q(0)) correlation functions, it is necessary to
add source terms,

Pq ——f dr gh„„' (r)Q„„' (r), (A 1 1)

to the action in Eq. (A2). The calculation of the renor-
malization of h„„(we suppress the remaining indices) is
very similar to Finkelstein's z renormalization except that
only the term arising from ( P~W;„,) contributes [Eq.
(3.34) in Finkelstein]. We find that

vr(q, co) = dn Dq2

dp
~

co
~

+Dq'
(B2)

The integration is straightforward and we obtain

2

where Vc(q) =2me /
~ q ~

is the bare Coulomb interaction
in 2D, and A,», the momentum cutoff, is given by MA, /D,
and e is the energy (temperature) in question. The polari-
zation bubble m is at this level given by

h„'„=h„„(1 I( ) =gh„„, — (A12)
I]— ln

Da
(B3a)

where I~ is Eq. (2.12) cut off at A, '. Thus the renormaliza-
tion of h„„contains the ln A, singularity associated with
the density of states. Using (Q) =5(lnZ)/5h, we see
that I] — ln + ln

Dv

for k~D~, and

E'

Dv

E'

ln —, (B3b)

and

(Q) =g(Q)

( Q( )Q(0) ) =g'(Q( /k)Q(0) )

(A13)

(A14)

for A, &D~, where the inverse screening length
a.=2~e (Bn/Bp).

According to Finkelstein, this leads to the following
scaling equation for the density of states:

where W' is the renormalized action parametrized by D',
z', I", and I 2. Since the particle-hole propagator L + is

related to (Q+ (r)Q +(0)), Eq. (A14) is consistent
with the perturbation-theory result given by Eq. (2.16).

It is worth emphasizing that in the present case, the
"wave-function renormalization" g is very different from
the renormalization constant z, whereas in the nonlinear o.

model representation of the noninteracting localization
problem, or in the usual O(n) model, there is only a single

spin length renormalization. The distinction is that in Eq.

d lnN t
dg 2

(B4)

While we agree with this equation we show that it is
impossible to obtain this using the renormalization
scheme given in Eq. (3.1b) or (3.2b). In this region the
momentum is always finite and it is possible to neglect 1

compared with Vc(q)m. (q, co) in (Al). Replacing the bare
perturbative expression by the correct dynamic one, we
have
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1 Ig'-tI 0 f, de f dx—
X X +ZiCO

(85)

where x =Dq . Upon performing the integration we find

g'-tl 0—,( ln 1,—21nk, ink, '+ ln 1,') =(t/2)I 0(5$), (86)

where g'= ln(A, /1, '), which implies

(Bj)

It is therefore necessary to integrate over the entire region
given by Eq. (3.1a) or (3.2a). While the integration over
the strip corresponding to the first line in Eq. (3.1a) or
(3.2a) gives zero in the same manner as (85), that for the
second line does not. In fact, the integral is similar to
(81) with A,

' replacing e, and z&ro replacing ro in the in-
tegral. Also, as we scale, k becomes smaller than D~ and
so, from (83b),

1I i —TIz
5 — dx dco

(x+ziro)(x+zro)
(89)

As the poles are at x =z&ro and x =zoo, and z~ /z —+0,
this integral is not represented adequately by either (3.1b)
or (3.2b). Again, we must include the entire (3.2a) region
and this gives

1r, ——,r,
5(= t ln(z~ /z)dg .

z
(810)

ly exhibited by Finkelstein.
Finally, we consider the contribution to the density of

states from short-range interactions. The triplet part
gives an ordinary logarithmic term and requires no dis-
cussion. The singlet part is

,' t( Ink,—+ink, ') ln(A, '/A, ), (88)
Ignoring lnz ~ compared to lnz and noting that

y &

——,
'

y z
———,', this leads to

which leads to (84).
From (3.19), we have t= I/2g for large g and so in-

tegrating (84) one obtains N-( T)'~, the answer original-

d lnN t= ——lnz .
dg 2

(811)
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