
PHYSICAL REVIEW B VOLUME 30, NUMBER 9
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Dipolar interactions in quadratic-layer Heisenberg antiferromagnets have been treated in the
spin-wave approximation to calculate the temperature dependence of the sublattice magnetization

and the magnon energy gap. Magnon-magnon interactions are included to first order. Numerical

results for K2MnF4 and the double-layer K3Mn2F7 confirm the earlier spin-wave analyses of these

structures, in which the k=0 magnon energies were made dependent on temperature in a semi-

empirical way. The gaps as a function of the temperature scale with the sublattice magnetizations.

I. INTRODUCTION

The principal quantities entering the spin-wave analysis
of Heisenberg antiferromagnets, including the two-
dimensional (2D) ones, are the nearest-neighbor exchange
and the anisotropy. The anisotropy, even when weak, has
a profound effect on the magnon dispersion near the
center of the Brillouin zone, and thus on thermodynamic
quantities, by invoking a gap at k =O. The gap decreases
with temperature, and ultimately drops to 0 at the transi-
tion to the paramagnetic s'tate. In particular in the case of
2D systems, antiferromagnetic resonance' (AFMR) as
well as neutron scattering have shown the k =0 energy to
closely follow the sublattice magnetization. This also
holds for the Mn compounds, in which the anisotropy is
mainly of dipolar origin. In a spin-wave theory, however,
dipolar interactions are difficult to treat because they in-
volve many pairs of spins. The usual approach therefore
is to represent the anisotropy by a staggered magnetic
field, despite its failure to account for anisotropy-induced
interactions among the spin waves. With increasing tem-

perature such interactions act to lower the spin-eave ener-
gies near k=O, as observed, whereas a staggered field
leaves the k=0 gap nearly constant. In order to imitate
the temperature dependence of the gap, spin-wave renor-
malization near k=0 is incorporated in a semiempirical
way by allowing the staggered field itself to fall with tem-
perature. In the remaining part of the Brillouin-zone re-
normalizing corrections according to Oguchi, primarily
due to the exchange, are predominant. The staggered-
field approach has provided an adequate spin-wave
description at low temperatures. '"

The primary purpose of this paper is to show that in a
2D spin-wave theory that includes dipolar anisotropy the
k=0 modes are properly renormalized without making
the spin-Hamiltonian parameters dependent on tempera-
ture. In a spin-wave expansion, the four-magnon part of
the anisotropy, i.e., the part to lowest order responsible for
the temperature dependence of the gap, is treated as a per-
turbation. In the actual calculations, the systems con-
sidered are the single-layered K2MnF4 ( T~ ——42. 1 K) and
the double-layered K3Mn2F7 ( Tz ——58.3 K).

II. SPIN %'AVES IN SINGLE-LAYER STRUCTURES

The calculation of the magnon dispersion in quadratic layers, and the sublattice magnetization derived from it, is
based on a model of nearest-neighbor antiferromagnetic Heisenberg exchange and a weak anisotropy by dipolar interac-
tions summed over the lattice. For completeness, we further include axial single-ion anisotropy and an external field
along the easy axis. The Hamiltonian thus reads

A =
~

J
~ QSi S + —,g pii g [S; SJ./rj —3(S; r z)(SJ r J)/rj]+D, g(S,') gp~HO+S, ', —

l, m

where the indices l and m refer to neighboring sites on the
up and down sublattices, respectively', i and j run over
both sublattices.

Following the standard procedure, we expand the spin
operators in local Holstein-Primakoff spin-deviation
operators aI and b, and subsequently go over to. recipro-
cal space. The quadratic part of the Hamiltonian may
then be written as A 0+% 1, with

+G(a b +a b )],k k k k

T=4
~
J ~S+A(k)+C —2D,S,

G=4i J iSy„+D(k),
(2)

A 0 ——g [(T+gp&HO)a „a„+(T gp&HO)b „b„—
k
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A i ——g [B(k)(a a +b „b -„)

+E(k)a „b „+c.c.] .

For the quadratic layer y =cos( —,k„a)cos( —,
'
kza), with a

the dimension of the 2D magnetic cell. Equations (2) con-
tain the lattice suminations, in the notation of Harris, '

A(k)=d g(3cos28„—1)(1+—,e ")/R„,

B( k) = —
~ d g sin 8„e "e "/R„,

n

units 4~ J ~S. In K2MnF4 the splitting vanishes at the
zone center as both B and E are zero there, and increases
to +5 parts in 10 at the zone boundary. Splittings of this
size are of no concern when calculating spin-wave gaps
and thermodynamic quantities. For K2MnF4 in zero field
this has been documented more precisely in Ref. 7, where

the energies from exact diagonalization of A 0+% i,

E-= I T G+—EE' 4B—B*+(gpiiIfo)

+2[ (T G)(—gp~HO)

+ (ET 2BG—)(E*T 2B'G—)

+ (BsE BEe )2]1/2
I

1/2

C = —d g'(3cos 8„—1)/R„, (3)

D ( k ) = —,d g' (3 cos 8„—1)e "/R„,

E(k)= ——,'d g'sin 8„e "e "/R„,
n

with d =g piiS, and g„and g„' denoting summations

over magnetic sites on the same and opposite sublattices,

respectively. In Eqs. (2) and (3), k is taken a three-
dimensional (3D) vector to include dipolar interactions
among the layers.

Because A i (comprising dipolar terms only) mixes k

and —k, A 0+% &
would require 4/4 Bogoliubov

transformation for diagonalization. P 0 by itself, on the
other hand, may be diagonalized by a 2&(2 transformation
of the standard form

a-=u a —v P, b = —v a +u P-. (4)
k k k k k ' k k k k k

The substantial complications introduced by A ~ when

dealing with the 1/2S corrections below may thus be
avoided by treating A ~ as a perturbation to A o. Note
that in KzMnF4 the anisotropy, mainly of dipolar origin,
is -4)&10 in units 4

~

J
~
S, or -0.3 K, compared to

T=0 magnon energies ranging from 7.4 to 84 K. In
zero field, then, A i lifts the degeneracy to first order by
shifts amounting to approximately +

~

E 2y B
~

—/e, in
k k'

which e is the magnon energy associated with A o in
k

have, in approximate form, been compared with those
from A o alone. In second order the energies are shifted

by -(EE* 4BB*)—/8
~

J ~Se, which again is 0 at k=0.
A

&
will not be considered further, but we note that Eq. (5)

may be used to include its effects to lowest order in 1/2S.
With reference to Eq. (1), ignoring A i amounts to neglect
of the nonsecular terms of the dipolar interaction.

In order for the gap to fall with teinperature, it is essen-

tial to consider magnon-magnon interactions. This is ac-
complished in the usual way by including the four-
magnon part of the expansion of A in 1/2$ as a first-
order perturbation. However, to simplify the algebra we

apply the random-phase approximation (RPA) prior to di-

agonalization to obtain an effective two-magnon Hamil-
tonian. ' The transformation diagonalizing the latter has
the forin of the one diagonalizing A o, Eq. (4), but modi-
fied coefficients. The results are, to first order in 1/2S,
equivalent to those of the standard Oguchi scheme. Re-
taining only those terms which ultimately contribute to
the magnon dispersion, we arrive at the effective two-

magnon Hamiltonian

/

A = g [Zi(k)a-„a-+Zp(k)b-b-

+Z3(k)(a b +a „b„)],

in which

Zi(k)= 4
~

J
~
S+A (k)+C —(2S —1)D, +gpiiHO

[ (4
~

J
~
S+C)p2(k ')+[4

~

J
~
Sy-„,+D(k ')]pi(k ')+[A (k)+4SD, ]pi(k ')

PfS

+ [A(k ')+2A (k —k ') —2A (0)][pi(k ')+ —,]],

Z3(k)=4~ J ~Sy„+D(k)— g I —,'[4
~

J (Sy„+D(k)][pi(k')+pp(k')]
k '

(7)

+[4
~

J
~
Sy „y-,—2D(k —k ')]p3(k ') J,
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F =[Zi(k)+Zp(k)]/2Q „,
0 = I —,

' [Z, (k)+Zz(k)] —[Z3(k)] j'/2 .

(9)

(10)

The magnon energies then become

E""=n +-,' [z,(k) —z, (k)] .

Inserting the Bogoliubov transformation Eq. (4) with the
above u and v, we further have

k k'

p, (k) = ,'F —(n'"+n'-„'+1)+—,(n'-„' n'„' —1), —

pz(k) = —,'F „(n'„"+n'„'+I)+—,
' (n'-„' n'„"—I), —

p3(k) = ——,
' 6-(n'"+n'-'+1),

k k k

(12)

where G„=Z3(k)/II, and n „' '=1/[exp(E ' '

/k& T) I] are the—Bose occupation numbers of the inag-
non branches.

The magnetizations of the up and down sublattices are
finally given by

( Sf ) =S—50—Mo( T)+Mi (HO„T)

(S ~ = —S+bo+BDO(T)+~i(HO T)

respectively, in which

aS,(T)= ' gF„(n'„"+n'„"),
k

(13)

(14)

~S,(H„T)= g (n'" n'"),—
k k

k

while the zero-point spin reduction reads

60—— g(F-„—1) .1

21'
k

(15)

(16)

III. COMPARISON WITH EXPERIMENTS
IN K2MnF4

In this section we discuss the computer evaluation of
the magnon energies and the sublattice magnetization in
K2MnF4 (S= —,', g =g, ), and compare the results with ex-
perimental data and the earlier analysis based on a
serniempirical anisotropy field. As for the parameters, we
take

~
J

~
/kz ——8.41 K, which is the weighted average

from various experiments in both the ordered and
paramagnetic regime. ' ' The Inagnetic lattice param- .

while Z2(k) is obtained from Z, (k) by inverting the sign

in front of gpgHO and interchanging p, (k) and p2(k). In
Eqs. (7), p, (k) =(a-a ), p2(k) =(b-b ), and p3(k)

k ' k k

=(a b ) =(a-b ); N is the number of magnet-
k k k k

ic unit cells. The Hamiltonian Eq. (6) is diagonalized by
Eq. (4) with

u „=[—,
' (F-„+I)]'~, v-„=[—,

' (F-„—I)]'~

Here,

eters at 4.2 K are a = (4.151+0.003)V 2 A and c
= 13.242+0.010 A. '

Our first concern is to evaluate the dipolar summations,

Eqs. (3). Except for C, which is independent of k, the
summations were determined at a selection of 100X100
equidistant points in the 2I3 Brillouin zone by summing
over the lattice within a Lorentz sphere of radius 20a.
Advantage was taken of the symmetry, and the conver-
gence was checked by summing out to 30a in a number of
cases. For arbitrary k, then, the dipolar sums were found
by linear interpolation. Two specific points should be
commented on. First, in case k=0 the summations do
not converge to a unique value when extended beyond the
Lorentz sphere. ' ' Here, we notice that the k =0 energy
depends, to leading order in 1/2S, on the summations in
the combination A+C D, contr—ibutions to which from
the continuum outside the Lorentz sphere are essentially
0. A similar conclusion holds with regard to the 1/2S
corrections. Second, and more important, the summa-
tions depend on k, . We have examined in some detail the
question of how dipolar interactions among the layers af-
fect, as a function of k„ the dispersion. This would be
very cumbersome with inclusion of the 1/2S corrections,
but it is expected that a determination of the energy at
(k =0, k» =0) on the basis of A 0, i.e., the leading terms

of Z;(k), will provide a reliable assessment of the effects.
When varying k, from the center of the zone out to the
zone boundary, corresponding to going from in-phase to
out-of-phase precession of adjoining layers, it appears that
the 20 gap does increase, but by 4 parts in 10 only. We
henceforth set k, =0.

Given the temperature, the external field, and the pa-
rameters of the system, the coefficients Z;(k), and from
them the energies and Bose occupation numbers, can now

be evaluated as a function of k. The calculation is done
self-consistently since these quantities occur implicitly at
the right-hand side of Eqs. (7). Typically, five iterations
were required for sufficient convergence. Summations in

Eqs. (6) of the form g „,2 ( k —k ')pi( k '), which con-

tain a shifted argument, were computed for 50 X50 points
in the 20 Brillouin zone, and at other points obtained by
interpolation. These summations are convolutions, and
may therefore be efficiently performed via passage back to
r space. From the calculations it emerged that dipolar
anisotropy cannot fully account for the experimental mag-
non gap. The residual anisotropy has been attributed to
single-ion anisotropy upon noting that isolated Mn + in
the nonmagnetic isomorphs of K2MnF~ also exhibit a
weak D, term. ' To determine D„ the calculated zero-
temperature gap was made coincident with the gap mea-
sured by AFMR, Ek o(T =0)lk~ =7.40+0.05 K.z The
result is D, /kz ——( —9+2) X 10 K, which is comparable
with D, of Mn + in the nonmagnetic hosts.

In Fig. 1 the sublattice magnetization (S') is plotted,
as calculated from Eq. (13) with the above parameters in-
serted. Near zero temperature we find (S') =2.329, or a
zero-point spin reduction Ao ——0. 171, to be compared with
the experimental result ho ——0.17+0.03, ' and 50——0. 170
from spin-wave theory with a staggered anisotropy field.
Also plotted in Fig. 1 are the data from NMR, anchored
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FIG. 1. Calculated sublattice magnetization versus tempera-
ture in K2MnF4, compared with the data from ' F NMR
(Ref. 7).

to the calculated (S') at T =0 K. Excellent agreement is
observed to exist up to about 20 K, or T/Tz -0.5, which
essentially is the upper limit of validity of the earlier
spin-wave analysis based on a staggered field. In fact, the
fall of (S') with temperature calculated here corroborates
the earlier analysis even above the point of departure from
experiment. At 35 K, for instance, (S')=1.6886, com-
pared to (S')= 1.6878 calculated in Ref. 7. Another
salient result from the calculations is that the develop-
ment of the spin-wave gap with temperature tracks the
fall of the sublattice magnetization to great precision. Up
to at least 35 K, the difference nowhere exceeds a few
tenths of percent. In this way the relation

Ek 0(T)~ (S'(T)), which is frequently adopted in spin-
wave approaches based on a staggered field, is given a
theoretical basis in case of dipolar anisotropy.

It is noteworthy that in the present analysis the gap at
T =0 is successfully taken to match the AFMR value. It
has been pointed out, however, that these quantities need
not coincide because in a 2D spin-wave theory the gap is
an effective one made up of the (k„=O, k„=.O) energy
averaged over all k, rather than the energy at k =0. In
the presence of a residual exchange along the c axis of
magnitude J„ the effective gap is larger by a factor
1+

~
J,

~
S/H~, where Hq represents the anisotropy. The

T =0 magnon gap here may indeed be varied slightly
without significant detrimental effects on the fit, provided
J is appropriately adjusted, and of course kept within its
error bounds. This sets an upper limit to

~
J,/J

~

of or-
der 10

To further explore the validity of the present analysis,
we also calculated the magnetizations residing on the sub-
lattices in an external field, and compared the results with
both the data and the spin-wave analysis based on a stag-
gered field of Ref. 15. Up to 20 kG and 20 K excellent
agreement has been found for the individual sublattice
magnetizations as measured with NMR. In this region,
the present calculation also closely reproduces the spin-
wave analysis of Ref. 15. With regard to the net magneti-
zation in a field, our calculated results agree with the
spin-wave analysis of Ref. 15 up to 30 kG.

IV. DOUBLE-LAYER STRUCTURES
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FIG. 2. Same as Fig. 1, but for the double-layer structure
K3Mn2F7. The NMR data are taken from Ref. 20.

The spin-wave theory of Sec. II may be expanded
straightforwardly to Heisenberg double-layer antifer-
romagnets with dipolar anisotropy, of which K&Mn2F7 is
the archetype. The development of the theory is more
complex because a primitive magnetic unit cell contains
four spins, two up and two down. Accordingly„ there are
four sublattices. The magnon dispersion has two
branches, an "acoustic" branch, corresponding to in-phase
precession of the paired layers, and an "optical" branch,
corresponding to out-of-phase precession and having a
minimum energy -4

~

J'
~

S. The formalism will not be
reproduced here. We note, however, that the Hamiltonian
from which to start, the dipolar summations, and the final
expressions for the energies, the sublattice magnetizations,
and the zero-point spin reduction are appropriate generali-
zations of Eqs. (1), (3), (11), (13), and (16), respectively.

The results of the calculations for K3Mn2F7 (Fig. 2) as
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well as the conclusions derived from thein are very similar
to those for the single-layer system KzMnF4. The calcula-
tions were done while setting the nearest-neighbor ex-
change parameter equal to

~
J

~
/kii ——7.59 K, as obtained

from NMR. The magnetic lattice parameters at 4.2 K
are a =4.181)&V2 A and c =21.55 A (Ref. 21); the
separation between the paired layers was taken equal to
the in-layer Mn-Mn spacing. We again made allowance
for a small single-ion anisotropy such as to attain agree-
ment of the calculated gap with the AFMR result at zero
temperature. The latter is Ek 0(T =0)/kii ——5.78+0.05
K, which yields D, /kit ——( —6+2) &(10 K. For the
zero-point spin reduction we calculated 60——0.125, in ex-
cellent agreement with experiment, and equal to the re-
sult of a spin-wave calculation based on a staggered aniso-

tropy field. Accord with the semi-empirical staggered-
field spin-wave formalism was also found for the tem-
perature dependence of (S'). As in Ref. 20, the depar-
ture of the present spin-wave analysis from the experi-
mental data sets in at about 30 K (cf. Fig. 2). Also the
calculated temperature dependence of the spin-wave gap is
very similar to the case of KzMnF4 in that it accurately
follows the dependence of (S*).

V. CONCLUSIONS

We have calculated, as a function of the temperature,
the magnon energies and the sublattice magnetizations in
typical examples of quadratic single-layer and double-
layer antiferromagnets with dipolar anisotropy. The
spin-wave theory developed is based on Heisenberg ex-
change and dipolar interactions, and includes corrections
to the magnon energies to first order in 1/2S. In earlier
work, where the anisotropy had been represented by a
staggered field, spin-wave descriptions of ordered 2D sys-
tems were concluded to break down above —,

' T~. This
conclusion is essentially confirmed. The region of the
spin-wave fit has not been modified. An important dis-
tinction from the earlier treatment, however, is a faithful
renormalization of the spin waves in the center of the
Brillouin zone by the formalism itself rather than by al-
lowing the gap to vary with temperature in a semiempiri-
cal way. This in fact leaves only the zero-temperature pa-
rameters to be adjusted in the spin-wave fit. The fall of
the spin-wave gap with temperature has been found to fol-
low the thermal reduction of the sublattice magnetization.
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