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The amorphization of a quasi-one-dimensional Ising ferromagnet is investigated with the use of a
new type of effective-field theory vrith correlations. The exchange parameters of interchain and in-

trachain interactions are assumed to have 5-function distributions. We find some characteristic
behavior for the amorphizat1on.

I. INTRGDUCTION
The magnetism of structurally amorphous alloys has

become the subject of both experimental and theoretical
interest in solid-state physics. A number of experimental
and theoretical investigations have led to the results that
magnetic long-I"ange ofdcf may exist 111 Ml1ozphous sys-
tems, although the atomic states in these solids are in-
equivalent both structurally and magnetically. At the
same time, because of this disordered structure, many in-
teresting physical properties not observed in the corre-
spoildiilg crys talhnc Illagllcts Ri c Ilow becoming Rp-

parent. '
Theoretically, there exists a great amount of sophisti-

cated techniques. With regard to the difficulties of the
theoretical description of such complicated magnetic sys-
tems, it is sometimes necessary to do some simplifications.
Therefore, for studying such systems, the lattice model of
amorphous magnets has often been applied, in which the
structural disorder is replaced by the random distribution
of the exchange integral. In fact, experiments of the
Mossbauer effect and the magnetization of amorphous
fclmmagncts IIldlcatc 'tllRt, 8't least ill soIIlc IBR'tcrlals,

there are large fluctuations in the exchange interaction. It
is also found that the magnetization of an amorphous fer-
romagnet is in general lower than that of its crystalline
counterpart. That fluctuation may be that underlying
cause for amorphous magnets. has been proposed by Gu-
banov, Kaneyoshi, and Handrich.

On the other hand, a number of crystalline quasi-one-
dimensional magnets have been found and studied in de-
tail. The type of magnetic order and the temperature of
the magnetic phase transition in quasi-one-dimensional
magnets afc dctcrII11ned by thc weak exchange 1ntcrac-
tions which couple the magnetic chains. In the crystalline
state, such substances are characterized by only two intra-
chain and interchain exchange-interaction parameters, the
magnitudes of which are fixed over the whole crystal.
For the amorphization (for instance, duc to the fast-
neutron irradiation) of a quasi-one-dimensional system,
hoover, the exchange interactions do not distribute uni-
formally, and the magnetic properties may change essen-
tially from those of the crystalline state.

Recently, Kancyoshi and co-corkers have developed
for the spin- —, pure Ising model a new type of effective-
field theory with correlations (based on the use of a con-
venient differential operator in the Callen s spin-

correlation identity ). The theory, within a mathematical-
ly simple framework, substantially improves the standard
molecular-field approximation (MFA) results. This ap-
proach shares with the MFA a great versatility and has
already been applied to 8 variety of interesting situations,
sucll Rs pili c. systcllls, site-random Rnd bond-random
magnets, amorphous magnets, the transverse Ising
model, ' the Potts model, "and surface problems. ' Espe-
cially, in the previous papers, ' we have investigated the
amorphization of 8 diluted crystalline Ising ferromagnet
in a square lattice by using the theory. Some interesting
effects of amorphization came up in the thermal behavior
of the physical properties (in particular, the magnetiza-
tion, the susceptibility, and the high-field magnetization).

In this paper, the physical properties of a quasi-one-
dimensional Ising spin- —, system with randomly distribut-
ed mterchaln and intrachain exchange parameters are in-
vestigated by using the effective-field theory, in order to
clarify the effect of amorphization on the crystalline
quasi-one-dimensional system. We calculate the most
relevant thermodynamical quantities (the transition tem-
perature» thc phase d1agfaID~ the IIlagnctlzatlon~ and thc
imtial susceptibility).

The outline of this paper is as follows. In Sec. II, we
briefly review the basic points of the simple effective-field
theory with correlations. In Sec. III, it is applied to the
problem for the amorphization of a quasi-one-dimensional
ferromagnet. The analytical forms of the relevant ther-
modynamical properties are obtained. In Sec. IV, the nu-
merical results of the quantities are studied and discussed.
We find some interesting behavior characteristic of the
amorphization of a quasi-one-dimensional ferromagnet.

II. THEORY

The system consists of N identical spins, p;=+1, ar-
ranged on a square lattice. The Hamiltoman is given by

where J; are the exchange interactions with J;I=O, Rnd

H ls tllc applied IIlagllctic field. In order to dcscrlbc tllc
amorphization of a quasi-one-dimensional system, the sto-
chast1c lattice I11odcl 18 Used& 88 shown 1n Flg. 1, thc
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cr; = g [cosh(Dt;; +s) +5;+ssinh(Dt;;+s) ]
5

&&tanh(h +x)
~ „p,

J
I I J II

FIG. 1. Exchange interactions in a square lattice.

&(J;J)= 2[ 5( Jj Jj —A—Jg)+5(J~j Jg+b,J—, )], (3)

where the coupling constant Jj is assumed to be weaker
than J.

Formal identities for the correlation functions of the Is-
ing model have appeared in the literature for the same
time. The starting point for the statistics of our spin sys-
tem is the exact relation due to Callen

(y.;)=(tanh 'h+pg J,,tt, '), (4)
J

where h =PH and P='(k& T) '. The angular brackets in-
dicate the usual ensemble average

((.. . )) =Tr[exp( —PH)( . . )]/Trexp( PH) . —
Here, in order to write the identity (4) in a form which is
particularly amenable to approximation, let us introduce
the differential-operator technique proposed by Honmura
and It aneyoshi as follows:

o;=(p;)=(exp DQJnttt )tanh(h+x)~, —e
J

cosh Dtj'+pj sinh DtfJ tanh +x
J

where D =8/Bx is a differential operator and t j ——PJJ.
By assuming the statistical independence of lattice sites,

namely,

Eq. (5) may be rewritten as

nearest-neighbor exchange interactions are given by two
independent random variables,

~(Jijii)= 2 [5(Jijii-J bJ)+5(-Jtj —J+bJ)], (2)

and

where 5 only takes the nearest neighbors of a central site
i. That is to say, in a disordered system, spin-spin corre-
lation should be more reduced than that of its correspond-
ing nonrandom system. The approximation has led, in
spite of its simplicity, to quite satisfactory results. In
fact, the approximation essentially corresponds to the Zer-
nike approximation in the nonrandom problem. ' ' The
formalism has been applied to a number of disordered
magnetic systems.

For a disordered system with random bonds, we must
perform the random configurational average to Eq. (6).
In the case that the exchange interactions are given by in-
dependent random variables, as discussed in Ref. 15, Eq.
(6) reduces to, upon performing the random average,

m =(cr, )„
= ff [ ( cosh(Dt;;+s) )„+m ( sinh(Dt;;+s) )„]

5

)&tanh(h+x)
~
„p,

where ( ), expresses the random-bond average. By
means of (2) and (3}, the random-bond averages are then
given by

( cosh(Dt;;+s ) )„=cosh(2Dt5)cosh(Dt)II

( sinh(Dt;;+s ) )„=cosh(2Dt5)sinh(Dt)II

(8)
(cosh(Dt;;+ s ) )„=cosh(2Dta5& )cosh(Dat )

( sinh(Dt;;+s })„=cosh(2Dta5q }sinh(Dat ),
where t =PJ, 5=5J/2J, a =J& /J, and 5&

——hJq /2Jq. As
mentioned above, the parameter a is assumed to be u & 1.
The factors 5 and 5& are dimensionless parameters which
measure the amount of fluctuation of exchange interac-
tions. As noted in Ref. 13, the result (8) can also be ob-
tained by using the so-called "lattice model" of amor-
phous magnets discussed by Handrich.

In this section, we have briefly reviewed the effective-
field theory with correlations in a Ising ferromagnet with
random bonds. We are in a position to examine the ef-
fects of amorphization in a quasi-one-dimensional fer-
romagnet on the most relevant thermodynamical quanti-
ties, such as the phase diagram, the magnetization, the
transition temperature, and the initial susceptibility. In
the following sections, we shall study the physical proper-
ties within this framework.

III. AMORPHIZATION OF A QUASI-ONE-DIMENSIONAL FERROMAGNET

In this section, let us study the amorphization of a quasi-one-dimensional ferromagnet, as depicted in Fig. &. Qy the .

use of (8), Eq. (7) can be expanded, i.e.,

m =2Am +2Bm +h [C+Dm2+Em4]+O(h~),
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and

g =coshz(2Dt5)cosh (2Dt5ia)[cosh(Dt)sinh(Dt)cosh (Dat)+cosh (Dt)cosh(Dat)sinh(Dat)]tanh(x)
~ „

8 =cosh (2Dt5)cosh (2Dt5&a)[sinh (Dt)cosh(Dat)sinh(Dat)+ cosh (Dt)sinh(Dt)sinh (Dat) jtanh(x)
~ „

C =cosh (2Dt5)cosh (2Dt5&a)cosh (Dt)cosh (Dat)sech (x) i „
D=cosh (2Dt5)cosh (2Dt5ia)[sinh {Dt)cosh (Dat)+cosh (Dt)sinh (Dat)

+4cosh(Dt)sinh(Dt)cosh(Dat)sinh(Dat)]sech (x)
~ „

E =cosh (2Dt5)cosh (2Dt5ia)sinh (Dt)sinh (Dat)sech {x)
~ „

(10)

(13)

Equation (9) was then derived by expanding tanh(h +x)
in Eq. (7) with Ii and retaining the terms linear to h.

For h =0, the averaged magnetization m is given by
1/2

l?l = 1—2.4
28

(15)

The critical ferromagnetic frontier can be derived from
the condition

2A —1=0, (16)

by vrhich the transition temperature and the phase dia-
gram can be determined as functions of the three parame-
ters, a, 5, and 5i. Then, by applying a mathematical rela-
tion e~ f(x)=f(x +a), all the coefficients (10)—(14) can
be expressed as a sum of transcendental functions tanhX
(or sech X) with an appropriate argument X. That is to
say, for the special case of a = 1 and 5=5j =0, the coeffi-
cient A is given by

A o
———,

' [tanh(4t) +2 tanh(2t) j .
From Eq. (16), the critical temperature associated with
a= 1 and 5=5&——0 (which, within the present description,
corresponds to the pill e squai'e lattice) is glveil
T, =3.0898J/k~, which is to be compared with the result
Bethe-Peierls T, =2.8854J /ks (MFA leads to
T, =4J/kz). For the pure case, on the other hand, the
parameter 8 is given by

8,=—,
' ftanh(4r) —2tanh(2r)] .

At T =0, therefore, the parameters Ao and 80 reduce to
the values Ap ——

4 and Bp ———„', by which the magnetiza-
tion is given by, upon using Eq. (1S), m =1. Thus the
magnetization is we11 defined at T =0.

The initial susceptibility is defined by

Bnl t 0Pl7= lim
H-+0 QH J BA I

(18) numerically. The results are shown in the next sec-
tion.

IV. NUMERICAL RESULTS AND DISCUSSION

A.. Transition temperature and phase diagram

By solving Eq. (16), the critical frontiers in the (T,5)
space are plotted in Figs. 2—4 for typical values of a and
5&. For the case of 5i ——5, the critical frontiers are shown
in Fig. 2, in which the curve (a) is the same as that (the
curve labeled as P=1.0 in Fig. 4 of Ref. 13) for the
amorphization of a diluted crystalline Ising ferromagnet
in a square lattice. Increasing the fluctuation of exchange
couplings, i.e., 5, the transition temperature, as is well
known„decreases. For the curve {a) with a=1, the
change of the transition temperature for small 5 is given
by

hT,
To

' =—0.34375,

from which the inverse susceptibility is given by, on using
Eq. (9),

0.2
I

0.5 0.6

6

1—2A —68m
r [C+Dm'+Em4] (18)

Thus, the effects of the amorphization on the thermo-
dynamical quantities in the quasi-one-dimensional fer-
romagnet can be obtained by solving Eqs. (15), (16), and

FIG. 2. Phase diagrams in the (T,5) space for the systems
%1th 5j ——5. Here the interface between the spin-glass (SG) and
the paramagnetic phases (dashed line) is that predicted by the
usual MFA (Ref. 18). (a)—(d) denote the magnitudes of the pa-
rameter a; (a) n = 1, (b) a=0.75, (c) a =0.S, (d) a =0.25, and (e)
+=0.1.
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SG

0,2
I

0.~ 0.5 0.6

6
FIG. 3. Phase diagrams of the systems with 5&

——1.25.
(a)—(d) denote the magnitudes of the parameter, as indicated in
Fig. 2.

where T, is the critical temperature of the ordered system
with 5=0, i.e., T, =3.0898Jlkz and hT, =T, —T, .
Quantitatively similar results have found in other theories
for the lattice model of amorphous ferromagnets. ' Thus
the effect of treating the exchange interaction as a random
variable is commonly to lower the transition temperature
by an amount proportional to the second moment of the
distribution of the bond strengths.

In curve (a) of Fig. 2, on the other hand, there exist two
possible different values of T, for a given value of 5 in
the range 0.5&5&0.565. As discussed in Refs. 13 and
14, if we admit the existence of a spin-glass phase below a
small value of the two T, 's, the result may support the
reentrant phenomenon that the transition from the spin-

Si= 0.5S

0.I 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 I.0

FIG. 4. Phase diagrams of the systems with 5~ ——0.55. The
meaning of (a)—(e) is the same as that of Fig. 2. (f), (g), and (h)
denote (f) a =0.95, (g) a=0.9, and (h) a=0.85.

glass phase to the paramagnetic phase passing through the
ferromagnetic phase is possible (see also Fig. 5). For the
isotropic fluctuation of exchange couplings, i.e., 5& ——5, as
seen from the figure, both the ferromagnetic region and
the region of 5 showing the reentrant phenomenon be-
come narrower than those of a= 1, when the value of a
decreases (the system becomes a quasi-one-dimensional
one).

In Figs. 3 and 4, the critical frontiers in the ( T,5) space
are depicted for the two typical cases of the anisotropic
fluctuations (5&+5). For the systems with 5j =1.25, as
shown in Fig. 3, the transition temperatures of small
values of 5 take nearly the same values as the correspond-
ing ones of Fig. 2. However, the behavior of the curves
near 5=0.5 in Fig. 3 are very different from those of Fig.
2. In curve (a} of Fig. 3, for instance, there exist three
possible different values of T, for a given value of 5 in
the range 0.48&5&0.50, although the region becomes
narrower, on decreasing a. That is to say, in contrast
with the cases of Fig. 2 expressing the reentrant
phenomenon discussed above, for the selected value (5,a)
in the region the ferromagnetic phase (in which the sys-
tem may be inhomogeneous) exists below the smallest
transition temperature of the three T„although the sys-
tem exhibits the reentrant phenomenon at the other two
T, (see also the magnetization curve with 5=0.49 in Fig.
6). Thus, owing to the different fluctuations between in-
trachain and interchain exchange interactions, it seems
that the effect of frustration may be suppressed partially
and the peculiar behavior appears at very low tempera-
tures. For the case (d) with a=0.25 in Fig. 3, on the oth-
er hand, the curve has the form similar to the correspond-
ing curve [curve (d)] in Fig. 2; since the strength of Jz is
weaker than that of J, the effect from the interchain fluc-
tuation 5& on the critical frontier is reduced there.

In Fig. 4, the critical frontiers in the ( T,5) space are de-
picted for 5j ——0.55. The results are very different from
those of Fig. 2 and 3. That is to say, for the weak inter-
chain fluctuation, the effect of frustration is more
suppressed in comparison with those of Figs. 2 and 3.
The reentrant phenomenon seems to be impossible, since
the interchain interactions JJ are always positive even for
large 5. Instead of it, the critical frontiers of the systems
with a given value of a in the range 0.75 &a & 1 reveal the
tails for large values of 5. As will be shown later, the
behavior of the physical properties (the magnetization and
the susceptibility) for large values of 5 are very different
from those for small values of 5.

B. Magnetization

By solving Eq. (15), the behavior of the averaged mag-
netization versus temperature for fixed pair of values (5,a}
are presented in Figs. 5—8 under the given restrictions of
5. From Fig. 5 depicted for 5& ——5, we can see that for
selected values (5,a) [see, for instance, the solid curve la-
beled (0.505,a)] the magnetization, which does not exist
until a certain temperature, starts to increase, passes
through a maximum value, and decreases to zero with in-
creasing temperature. The behavior of the averaged mag-
netization is similar to the experimental results of amor-
phous ferromagnets, showing the reentrant phenomenon.
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exhibit a first-order phase transition. The result comes
from the fact that the transcendental functions
tanh[ut(1 —b5)] with positive a and b are included in the
coefficients A and 8 of Eq. (15), and the functions, at
T =0, can take values

given by 5=0 and a= 1. Thus, we can understand that
the effect of increasing the disorder in the pure system
(except the special cases mentioned above) is generally an
increase of the depression of the reduced magnetization
curve over the entire temperature range for T & T„as ob-
scfvcd 111 dilute Rild, Rniofpllous fcflonlagncts.

tanhIut(1 —b5)j= t0 for 5=—,I
b

'

depending on the value of 5. The characteristic feature
was found in the amorphization problem of a diluted
crystalline ferromagnet, ' '" when we use the amorphiza-
tion given by Eq. (2). As the value of 5 approaches the
value of 5=5, the averaged magnetization starts to de-
crease abruptly from the saturation value at T =0, and
then changes in the usual way with increasing tempera-
ture. When the value of 5 becomes larger than the critical
value 5, on the other hand, the magnetization irutially
starts to increase, passes thmugh a maximum value, and
flMH dCCI'CSSCS to ZCI'0 %'1th 1I1CrCRS1Ilg fCIPCX'3.fQI'C. FOX'

the larger value of 5„however„ the magnetization curve
decreases monotonically, as seen from the curve labeled
(0.8,a) in Fig. 7. Thus, at the point 5=5 in Pig. 4, the
pccllllar bcllavioi' of B1Rgnc'tlzaf1 on 111Ry bc observed.

Finally, a great number of experimental and theoi'etical
works have reported that the temperature dependence of
the reduced magnetization in amorphous and dilute fer-
romagnets has a characteristic feature —it consistently
falls below that of the corresponding crystalline ferfomag-
nets. Therefore, the temperature dependences of reduced
magnetization for some values of 5 and a are shown in
Fig. 9, 111 corllpaflso11 with thc pul'c cfystallBlc systcnl

By solving Eq. (18), the behavior of the inverse initial
SUSCCPtlbllltY VCX'SQS CCIPCI'RtQI'0 lS PI'CSCBfCd lQ FlgS.
10—13. Except the special cases exhibiting the reentrant
phenomenon in Figs. 5 and 6 and the anomalous behavior
of magnetization in Pig. 8„ the susceptibility diverges only
at the transition temperature, as usually observed in fer-
romagnets, even for the amorphization. In the following,
therefore, the inverse susceptibilities are shown in Figs.
10—12 only for the special cases.

An interesting behavior is the case expressing the re-
entrant phenomenon, namely, each case labeled {0.505,a)—
{0.505,d) in Fig. 5, for which the susceptibility diverges
three times —twice at the critical points where the aver-
aged magnetization disappears and once at T =0, because
of the existence of finite clusters, as depicted in Pig. 10.
The behavior of the inverse susceptibilities at very low
temperatures is plotted in the inset of the figure. For the
case labeled (0.49,a) in Pig. 6, on the other hand, the sus-
ceptibihty diverges four times, one at T =0 (finite-cluster
contribution, as understood from the saturation magneti-
zation given by m=0.577 at T =0) and three times at the
critical points where the magnetization disappears. The
result is shown in Fig. 11. Thus, for the cases exhibiting
the reentrant phenomenon, we observe the coexistence of a
Curie-Weiss —type law with a Curie-type one within one
formalism. This was also discussed in Ref. 13 and 14.

In Pig. 12 the inverse susceptibilities of the systems
with 51——0.55 and a =1 are depicted, for which the mag-
netizations exhibit some peculiar behavior, as plotted in
Fig. 8. Notice that for approaching the value of 5 to 5'
thC IOW-tcmPCI'3. 4'OX'C I'CgloQ CXPX'CSSCS RD CXtX'CIClg 1Q-

teresting behavior; for the system with 5 slightly smaller

FKx. 9. RcdUccd magnetization CQrvcs for selected valUcs of
(51,A). For comparlsoni, tile 1cduccd magnetlzat1GQ curve Gf the
p~c system (5=0,A= I) 1n a square lattice 18 dcplctcd. (a) RIld
(d) denote the values Gf o,; (a) 0.= I and (d) 5=0.25.

FIG. Io. Thecal dependence of the inverse susceptibiHty for
thc systems (5~——5=0.505) cxpx'csslng tbc rccnt1 ant
phenomenon. The (a)—(d) corrcspond to those Gf Fig. 2. The
pMts Gf its vcr/ lo%' tcmpcx'atures are deplctcd 1n thc inset.
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In 0.3-

l-

LJ

0.5

FIG. 11. Thermal dependence of the inverse susceptibility for
thc systcID %9th 5y= 1.25 and (0.49,Q) in Fig. 6. Thc values of
the first two maxima must be reduced by 10 '. For reference,
thc averaged magnetization curve (dashed linc) is also plotted.

than 5* the inverse susceptibility shows a maximum and a
minimum below its critical temperature. Below the
IHiniIIlulTl point the inverse susceptibility diverges with
decreasing temperature, since there are no finite clusters
in the system. For the system with 5 larger than 5', how-

ever, the susceptibility diverges twice, once at the critical
point and again at T=0 (finite-cluster contribution, as
seen from Fig. 8). Thus, above and below the critical
value 5 where the system exhibits the first-order phase
transition at T=O, its physical properties exhibit very
peculiar behavior, although we cannot understand the
facts only from the phase diagram of Fig. 4.

Finally, in order to observe the behavior of the suscepti-
bility above the transition tempertaure clearly, the inverse

paramagnetic susceptibilities Xz„, are shown in Fig. 13
for selected values of 5 and a. A characteristic behavior
is that the deviation from the Curie-Weiss law is observed .

more remarkably than that of the pure (0,1) system in a
square lattice, on increasing disorder, which phenomeno~

FIG. 12. Thermal dependence of the inverse susceptibility for
the systems corresponding to Fig. 8.

0.2 0.4 0.8

PIG'. 13. Thermal dcpcndcncc of the invcrsc paraIQagnctic

susceptibility for selected values of (S,a).

is observed in amorphous ferromagnets. As seen from the
curve labeled (0,0.25), the deviation from the Curie-Weiss
law is also observed, when the pure system becomes
quasi-one-dimensional.

V. CONCI. USION

We have discussed the amorphization of a quasi-one-
dimensional Ising ferromagnet. Within the effective-field
theory with correlations, we evaluated the most relevant
thermodynamical quantities, namely, the magnetization,
the critical temperature, the phase diagram, and the sus-
ceptibility. Some interesting effects of amorphization are
revealed in the thermal behavior, especially for tlm mag-
netizations and the susceptibilities of the systems with
anisotropic exchange fluctuations. The reentrant phe-
nomenon is observed in the magnetization curves of some
systems, as shown in Figs. 5 and 6. The susceptibilities of
the systems show the effect of the eventual coexistence of
an infinite cluster with finite ones.

Especially for the system with 5j ——0.55, we find that
there exists a critical value of 5 (namely, 5* in Fig. 4) at
wtuch the magnetization, at T =0, shows the discontinu-
ous change. Near the 5*, the magnetization and the sus-

ceptibility exhibit some peculiar behavior. Thus, it will be
an interesting problem to study whether or not the results
obtained in this paper are general by using more elaborate
theories.

In these calculations, we have applied a decoupling in
the effective-field framework introduced by Honmura and
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Kaneyashi and co-workers. As discussed in Ref. 15, the
approximation essentially corresponds to the Zernike ap-
proximation. 's This formalism is, from the analytical
stRQQP01Qt, 81IDost ss slIIlPlc Rs tbc stsQ68f6 MFA, RQcl

because of neghgence of multispin correlations, shares
with it the fact that topology of the system is only partial-
ly taken into account, essentially through the coordination
number. However, it is worth noting the following fact.; if

one applies the standard MFA to study the critical fron-
tiers, it is well known in the lattice model of amorphous
magnets that the critical frontiers are independent of the
exchange fluctuations, in contrast with the result of Figs.
2—4. . Thus, we verify that its results are quite superior
to the other effective-field theories and exhibit some
characteristic behavior for the amorphization of a quasi-
one-dimensional ferromagnet.
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