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Magnetic resonance in spin glasses: FesNi72P2o and FeioNi70P2o
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An ESR study on amorphous Fe8Ni7qP2o and FeloNi7oP20 spin-glass alloys was performed at 1.1
and 9.3 GHz. The line shape, at both frequencies, shows progressive distortion as the temperature is
reduced. We use an improved dynamical model to fit the distorted line shapes and demonstrate that
there is a tendency for the relaxation rate to vanish as Tf is approached. In the spin-glass regime,
we also find a shift in resonance position in addition to the dynamical one, which is due to. the ex-
istence of a static anisotropy field in the spin-glass state. The anisotropic energy K(T) is found to
be proportional to (1—T/Tf).

I. INTRODUCTION

A key aspect of the spin-glass transition is the onset of
a slow time decay of spin correlations without a corre-
sponding change in spatial decay. Electron spin resonance
(ESR) measurements on spin glasses reflect this through
an increase in linewidth and a shift in resonant field as the
temperature is reduced toward Tf.' Previously, we
demonstrated that both the broadening and shift could be
explained by exchange narrowing of a spin-nonconserving
interaction above Tf. More recently, similar conclusions
have been reached for ESR iesults on AgMn. Both our
previous result and its extension by Levy. et al. use the
standard Kawasaki-Mori theorys of resonance line shape.
The latter authors have considered a Dzyaloshinsky-
Moriya interaction as the source of the resonance width
and improved the decoupling of four-spin correlation
functions. However, the conclusions remain unchanged:
As T& is approached, spin fluctuations slow, leading to a
dynamical shift in resonance position and broadening of
the line.

By contrast, the ESR behavior far below Tf has been
studied by Schultz et a/. They associate the resonance
position in CuMn with the existence of static anisotropy
fields and a remanent magnetization. Using a
phenomenological equation of motion, they could explain
the position of their ESR lines, and predicted a second
resonance inode when the anisotropy frequency
y [K( T)IX]'~ exceeds the spectrometer frequency co.
Here, EC(T) is the temperature-dependent anisotropy, X
the susceptibility, and y the gyromagnetic ratio. The
phenomenological model has been placed on more solid
theoretical foundations by Henley et al. and by Saslow.
It has remained unclear how to connect the low-
temperature anisotropy model with the high-temperature
exchange-narrowing picture.

Naively, one might expect the Lorentzian, exchange-
narrowed line to evolve to Gaussian shape as the spin
dynamics slow, finally giving an inhomogeneously
broadened line. In fact, the line shape becomes strongly

distorted (neither Lorentzian nor Gaussian), even above
TI. The problem, as first pointed out by Kubo and Toy-
abe, ' lies with the usual assumptions leading to the
Kawasaki-Mori formalism, which are invalid when the
modulation is slow and the spin-nonconserving field is
larger than the Zeeman field. The distinction between
secular and nonsecular terms is lost, and the Zeeman split-
ting becomes a perturbation on the static splitting induced
by the random, nonconserving field.

In this paper, we report ESR measurements of two
amorphous spin glasses, Fe8Ni72P2p and Fe)pNi7pP2p at' l. l
and 9.3 GHz spectrometer frequencies. A form of the
Kubo-Toyabe model" is used to make detailed fits to the
resonance lines. In addition to the dynamic effect of ran-
dom local fields, to explain the line shift in the spin-glass
regime requires the presence of a static anisotropy field
along the applied field. Unlike the analysis of Schultz
et al. , inclusion of the dynamical effects accounts for all
of the shift in resonance position above Ty and the static
anisotropy field is found to vanish at T~, as it should if .it
follows the spin-glass order parameter. From the data, we
can determine the parameters of Kubo-Toyabe model;
these show clearly the decrease in relaxation rate for ran-
dom fields, but give nonzero rate at Tf. A brief report of
the 9.3 GHz data was published previously. '

II. EXPERIMENT

The freezing temperatures of FesNi72P2o and
Fe~pNi7pPpp are 18 and 23 K, respectively, determined
from the position of the cusp in the dc magnetic suscepti-
bility at low field. ' ESR measurements at 9.3 GHz were
performed with a conventional cold-finger ESR spectrom-
eter, and at 1.1 GHz with a cold-finger strip-line resonant
cavity. Ribbon samples of these alloys were cut to 1 or 2
cm lengths and mounted in the center of both ESR spec-
trom'eters. The sample could be rotated to have the ap-
plied field either parallel or perpendicular to the face of
the ribbon. As noted above, the line shape shows progres-
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sive distortions at reduced temperature. These distortions
give rise to spurious peaks at low field when the usual
derivative method is Used; consequently, data were taken
without field modulation. To minimize line-shape
changes due to skin-effect mixing, the samples were
thinned to 10 pm, approximately equal to the microwave
skin depth, by mechanical polishing. The mixing ratio of
the real, part of the susceptibility to the imaginary part in
the data at 9.3 GHz is 0.45:1 for Fe&Ni72Pzo and 0.47:1 for
FeioNi7OP20, while at 1.1 GHz, it is 0.2:1 for Fe&Ni72Pzo
and 0.18:1 for FeioNi70P20, approximately the expected
v f dependence. These ratios are determined from high-
tcmpcrature ESR data and RI'c tRkcn to bc temperature 1rl-

dependent, as expected from the small change in resistivi-
ty of both samples over the temperature range of in-
terest. ' Other groups' have noted the need to change the
mixing ratio substantially near Ty. Rather than a change
in skin depth, this approximately accounts for the changes
in line shape that we report in detail here. To test that the
distortions Ric not dUc to Rn inhomogencous demagnetiza-
tion field at the edge of the sample, we plated copper on
the sample ends, but observed no change in line shape.
Because these samples have very small offsets in their
hysteresis loops, the interesting problem of resonance
modes in the field-cooled configuration does noi arise.

The resonance field Ho was determined by measuring
the resonance in both the parallel and perpendicular con-
figurations. For the applied field normal to the face of
the sample, the observed resonance field H„i is related to
the true resonance field H& by

f = 956Hz

0.
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(u;„/2' f
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FIG. 1. Plotted as a function of internal frequency
m;„=yH;„, the line shape at 9.3 6Hz, e, is Lorentzian at
T ~&T~, becomes distorted, b, around T= Ty, and absorption at
zero field, a, develops for T & Ty. The squares indicate the data
points and the solid line, the theoretical line shape.

where Mi is the magnetization in the internal field of the
sample, i.e., Mi M(Hii). Pa——rallel to the sample plane,
we have

Hg ——[H, ii(H„ii+4nMii )]'

wh«e M~~ =M(H„~~). Defi»ng a =M~~gM, , w«an com-
bine Kqs. (1) and (2) to get

H~ ——,
'

I [(@+a2)H„((+4aH„((H,i]' aH, ((I . —(3)

In the para, magnetic phase T»Ty, the resonance field
Hz derived from the data at 9.3 GHz has a constant
value, HR ——3.340 kOe, corresponding to a g value of 2.0.
As temperature is reduced, H~ begins to decrease near the
freezing temperature and continues to decrease in the
spin-glass regime. As shown in Fig. 1, this is accom-
panlcd by a pI'ogfcss1vc change 1Q llrlc shape: The
exchinge-narrowed line at T ~~ T~ shifts and broadens as
temperature is decreased toward T~. It becomes asym-
metric, and finally develops an absorption at zero field

. below Ty. Under such conditions, the maximum in the
absorption can no longer be taken to be the field for reso-
nance nor can (3) be applied. In the data at 1.1 GHz, the
linewidth is much larger than the resonance field, and the
negative frequency contribution is very strong. In this re-
gime, H~ just represents the position of maximum inten-
sity and decreases very rapidly with decreasing tempera-
ture, approaching zero near Ty. The contribution of the
resonance line for negative frequency (opposite polariza-

tion) is significant over the entire temperature range of in-
terest. HowcvcI' wc can still sec in Flg. 2 the progr'cssivc
changes in line shape as temperature is reduced. In the
presence of such severe distortions in line shape at both
frequencies, linewidth measurements =specially these in-
volving peak-to-peak values from the derivative
method —lose their meaning. Therefore, we have made
least-square fits of the data to an improved model,
described below.

In the particular configuration the absorption line is
slightly broader than that in the parallel configuration;
fhe difference is due to the fact that the demagnetization
fidd in the samples is along the applied field for perpen-
dicular configuration but perpendicular for parallel con-
figuration. When the demagnetization field is along the
applied field, it shifts the resonance to high field by
stretching the field scale. Similarly, when the demagneti-
zation field is perpendicular to the applied field, it moves
the line to lower field and also compresses the scale. The
distortion of the field scale gives different widths of the
line in field for the same rdaxation rate. Therefore, the
magnetization M(H, T) of both samples and data taken in
the perpendicular configuration are used to obtain the
lines on an internal field scale. The relation between
internal field H;„and external field H,„, is given by the
Usual equation

H,„,=H;„+4aM(H~„, T) . (4)

In the simplest form of the exchange-narrowing ~odel,
the linewidth AH and g factor are both governed by
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l.2
f = I.I GHz previously used such arguments to explain the simultane-

ous increase in ~ and b,g. However, as noted above,
these expressions are only valid for cod~,ff &&1. For slow
modulation and low applied fields, a more complete treat-
ment is required.

0.8

III. SLOW-MODULATION THEORY

0.

0.0
t2

In order to calculate line shapes in the slow-modulation
regime, we have followed the theory of Kubo and Toy-
abe, ' as modified by Hayano et al. " In this model, spins
precess in the resultant of an applied field, parallel to the
z axis, and random field H(t). The response is averaged
over the distribution of random variables H(t), which
models the effects of spin-nonconserving terms in the
Hamiltonian. The instantaneous values of H(t) are distri-
buted according to a Gaussian of width 5/y and zero
mean. Thus, this model can apply rigorously only to the
zero-field cooled state. The correlations are assumed to
decay exponentially with rate constant v. Then, the corre-
lation function takes the forin

FIG. 2. Line shape at 1.1 GHz shows a progressive change
with temperature. Line shape at T»Tf (c) is narrowed and
the maximum intensity position is at nonzero internal field; it
becomes broader, b at T=Tf and the maximum intensity posi-
tion moves to zero field and the line shape becomes much
broader, a for T&Tf.

dynamical effects, and are given roughly by
cog'r ff/eX and hg /g =cozHtt/X. Here cod /y is the

strength of the field causing the broadening while jeff ls
its correlation time. For' spin glasses, the susceptibility
has no critical behavior near Ty, but we expect slowing
down of dynamical effects; that is, an increase in ~,tt. We

( H( t +r ) H(~) ) =3(b, /y ) exp( vt )—,
where y is the gyromagnetic ratio. The assumption of ex-
ponential decay of the random field autocorrelation func-
tion makes this model only approximately valid for spin-
glasses, where power-law decays are expected. '

The ESR resonance spectrum I (co) is proportional to
the real part of the relaxation function Ii (co,v), which is
the Fourier transform of the correlation function of the
total spin G~(t, v) In the .static (v=O) limit, we define
I~(co) oc ReF(co,v=O) =Ref~(co}, and G~(t, v=O)
=g (t}; the latter is determined from the correlation
function of the total spin o. In the static v=O limit, the
fields are frozen and we obtain, as by Hayano et al. ,

g~(t)=(, o, (t)o, (0)) =.1 —(2b, /cop)[1 —exp( ——,'6 t )cos(copt)]+(2b, /cop) f exp( ——,'5 r )sin(cop~)d~,
0

(6)

g+ (t)=(o+(t)cr (0))=(1 6 /cop—)exp( —26 t ico,—t)+(i—b, tlap)exp( —,'5 t icopt)——
(b, /cop) f —exp( —,' b, v )sin(cop~)d~—+b, /cop,

where cop yH, „. The rela——xation functions in the static limit are simply the Fourier transforin of (6} and (7), and are
given by

and

f (co) =(1 2h /cop)li—co+26, a(ico)/icopco+bb(ico)/cop,

f+ (co)=(1—b, /cop)(~/2)'~ W[cop —co)/v 2h]

+(i /cop) [1 i(cop co)(m/2)—' W[—(cop co)/v 26]/b, I
—[6 a(ico)li—cocop]+b, /icopco,

where

a(z)=(V m/2W2)ib, j W[(iz+cop)lv 2h] —W[(iz —cop)/v 2h] J,

b(z) =(V m/2V 2)b, I W[(iz+cop)IV 2b, ]+W[(iz cop) /~25] J, —

(10)
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and W(z) is the complex error function.
In order to include fluctuations in the random fields,

we employ the "strong-collision" model" of Hayano
et a/. In the fast-modulation (large-v) regime, this result
agrees with the diffusion method of Kubo and Toyabe. '

However, the diffusion method is not amenable to direct
calculation in the low-field, slow-modulation limit, re-
quired here. By strong-collision dynamics, we mean that
the system is viewed as developing in time in a random,
but static field, and then jumping after a mean time v
to a new configuration of static fields. In fact, our
current picture of a spin glass, in which large blocks of
spins make infrequent jumps between nearly equivalent,
metastable states, conforms well to the strong collision
model. The statistical independence of the random field
configurations before and after the jump was exploited by
Hayano et al. to derive averaged relaxation functions for
fluctuating random fields in terms of those for static ran-
dom fields. Because we are interested in the frequency
dependence, we have used the analytic properties of the
complex error function to continue the results of Hayano
et al. to complex frequencies. The final results are

F~(co,v) =f~(co iv)/[1—vf~(co —iv)], — (12)

I~(cop~b~v) =(1/4~)Re[F+ (cop, 4,v)+F +(cop~4~—v)] ~

(14)

I (cop, b, v)=(1/2m. )ReF (cop, h, v),
where F + (cop, b„v)=F+ ( —cop,b„v). Therefore, the
theoretical line shapes can be produced by evaluating nu-
merically the relaxation functions. Note that a longitudi-
nal absorption mode is predicted from this model as a re-
sult of the static splitting induced in the slow-modulation
limit.

In the spin-glass regime, the position of the resonance
has been predicted to shift from Htc ——co/y to7

(16)

F+ (co,v) =f+ (co iv)/[1 —vf+ (co—iv)] . —(13)

Then, the transverse line I~(cop, b„v) and the longitudinal
line I~(cop,h, v) can be expressed in terms of these relaxa-
tion functions as

previously by us and others only when 6/v«1, a condi-
tion that is not met close to Tf.

IV. DATA ANALYSIS
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Fitting the ESR data with the theoretical resonance
lines of the Kubo-Toyabe model, we determine the param-
eters of interest: the relaxation rate v, the rms width of
the random local fields b„and the additional shift co, in
the spin-glass phase, from which we can extract the static
anisotropy field co;. The solid lines in Figs. 1 and 2
represent fits to the data above, near, and below Tf. The
data and fitting functions have been normalized to unity
at the maximum absorption. The fitting function includes
a baseline value since the extreme broadening does not
permit an accurate determination of the baseline at either
high or low fields.

The line-shape function was calculated numerically us-
ing standard programs for the complex error functions.
The parameters were varied within a standard least-
squares fitting routine to obtain values of the parameters.
Above Ty, suitable fits were obtained with co, =0, indicat-
ing that both the broadening and shift can be explained by
purely dynamical effects. Below Ty, however, the shift
greatly exceeds the broadening, and fits can only be ob-
tained for co,&0.

The relaxation rate at both 9.3 and 1.1 GHz, as seen in
Figs. 3 and 4, respectively, decreases strongly as the tem-
perature approaches Tf. The data can be fitted by
v=c(T Tf) for T—) 1.15Tf. For both samples
c=9.1 X 10 s ' K ' at 9.3 GHz and c =2.95
&(10' s 'K ' at 1.1 GHz. Below T=1.15Tf, v de-
creases more slowly as the temperature is reduced and has
a nonzero value at Tf. It is surprising that c is strongly
field dependent. This effect has been noted previously
and taken as evidence against a dynamical origin for the

where co;/y=v'K/X is the anisotropy field and co„/y
=Htt is the resonance field. To treat this, we linearize
(16) by introducing co, =co—co,

" represent the shift in
center frequency and take for the line shape

I (cop b v co+ )= ReIF+ [(cop+co+ ) 6 v]
1

4m

+F + [(cop —co, ),h, v] J . (17)

This choice guarantees that the absorption signal is sym-
metric in the applied field cop/y, as it must be. The width
b and relaxation rate v are associated with cod and ~ ff',
respectively, in the conventional exchange narrowing
model. However, it must be emphasized that the width
and position agree with the extreme-narrowing limit used

2.0—

j.o—

~~o &~~~
l

0.2 0.6 i.o I.4
T/Tf

t.8
I

2.2

FIG. 3. The relaxation rate v at 9.3 GHz is a linear function
of temperature for T) 1.15 Tf, v=c(T—Tf ), where
c=9.1&(10 s 'K ' for both samples. It has a nonzero value
at Tf and decreases slowly with temperature in the spin-glass
phase.
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FIG. 4. The temperature dependence of the relaxation rate v
at 1.1 6Hz is similar to that at 9.3 6Hz. v=(.'(T—Tf} for
T) 1.15Tf, where c=2.95~10"s-'K —' for both samples.

FIG. 6. The rms amplitude of random local fields 6 at 1.1
GHX has an approximately g temperature behavior for both
samples and it is approximately equal to that at 9.3 QHz for
T& Tf.

shift and broadening. We note that the change in relaxa-
tIon I'Rtc scRlcs RppIoxlMRtclp Rs Hg ~ Rlt4ogg4 1t ls
dangerous to take this seriously with only two frequency
points.

The width 6 of the random field distribution at both
9.3 and 1.1 GHz shows an approximately X ' tempera-
tUx'c dependence Rs sccA ln Figs. 5 Rnd 6, I'cspectivcbf. Fox'
both samples, it is roughly frequency independent for
T) Ty. Below Tf, the HIls value 6 at 1.1 GHZ 18 only
slightly larger than that at 9.3 GHz. The Beld indepen-
dence of 5 indicates that the magnitude of the random lo-
cal fields, from the anisotropic interaction between spins
in the spin system, is little affected by external field, while
the dynanucs, characterized by v, are strongly affected.

The temperature dependence of co, at 9.3 and 1.1 GHz
is shown in Figs. 7 Rnd 8, respectively. As expected, u, is
zclo in tbc pRfRIDRgIlctlc p4Rsc bQt, in t4c spin-glRss

pose, incI"cRscs Rs the tcIIlpcIRtuIC .reduced. FI'oln thc
definition of ro„ it is simple to show that

2
co( /co, co(( (ro

6)g~ Q)~ 0 QP ~

BRIncs bRs RI'gQcd t11Rt N; is pfopoItionR1 to tbc spin-
glass order parameter q-(1 —T/T~), while Sompolinsky
et al. have shown the static anisotropy constant to be
proportional to q . However, in this model the anisotropy
is a remanent effect, and its behavior depends on the time
scale of the measurement. If the anisotropy frequency we
observe were dominated by the remanent susceptibility,

f =9.56Hz

G.l.—

0 I ( I ( I. ( I (
'

I

0.2 0.6 I.G l.4 I.B 2.2
T/Tf

0.2 0.4 0.6
T/ Tf

0.8 I.G

FIG. 5. The rms amplitude of random local fields 6 at 9.3
GHz has an approximately g ' temperature behavior for both
samples.

FIG. 7. The additional shift Ap~ at 9.3 GHX has a zero vahle
in paramagnetic phase, but u~ =k(1—T/Tf) in the spin-glass
phase, where k=2.5X10'o s ' for Feswi72P20 and k=2.1&10'
s-' for Fe„Ni70P20.
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FIG. 8. The additional shift co, at 1.1 GHz also has a zero
value in paramagnetic phase. m, = k(1 —T/Tf) as co, &0.5 co,

where k =1.1)&10' s ' for Fe8Ni72P2p and k=8.8&&10 s ' for
Fe]pNi7pP2p. co, changes to q' behavior for co, )0.5 m, where

q is the spin-glass order parameter and q -(1—T/Tf).

V. DISCUSSION

In order to make contact with the phenomenological
parameters b, and v of the Kubo-Toyabe theory, a micro-
scopic model is required. The calculation of Levy et al.
for the Mori.-Kawasaki parameters may be used to deter-
mine 6 and v as well. We take the random fields of the
Kubo-Toyabe model to be the same as those induced by
the Dzyaloshinsky-Moriya interaction and study the time
development of their correlator. We find that the Levy
et al. approach predicts a constant value of 6 for T& Tf
while v decreases toward finite value at Tf. The tempera-
ture dependence is not as strong as observed.

More recent studies'~ of spin-glass dynamics indicate
that spin correlations exhibit power-law, rather than ex-
ponential, decay. If this is so, then there is no obvious
characteristic time with which to associate v or zdf.

then the result of Sompolinsky et a/. would also give a
linear dependence on q. Close to T~, we find that
co, =k(1 —T/Tf), with k=2. 1X10' s ' and 2.5X10'p
s ' at 9.3 GHz for Fe&pNi7pP2p and FesNi7zP2p respec-
tively. At 1.1 GHz, the linear regime is smaller, but we
estimate k=8.8X10 s ' and 1.1X10 s ' for the two
samples, respectively. Our data support the argument
that the anisotropy frequency is linear in the spin-glass or-
der parameter. The tendency for the anisotropy to in-
crease with applied field was also predicted by Sompolin-
sky et al. ' Note that co, changes behavior when
co, /co & 0.5, as expected from (18b). Writing E(0)
=kcoX/y, we find IC(0) to be 8.8X10 and 9.5X10
ergs/cm at 9.3 CHz, and 3.9 X 10 and 4.0 X 10
ergs/cm at 1.1 GHz for FesNi72P2p and FeipNi7pP2p,
respectively.

One possibility is that the most important Fourier corn-
ponent of the power spectrum is that at the Zeeman fre-
quency. If this were so, then the characteristic time might
scale with a power of the Zeeman frequency. The
square-root dependence we see in our limited frequency-
dependent data support this possibility.

An important effect, almost always ignored in ESR
studies of spin glasses, is the dramatic change in line
shape. ' Generally, this has been taken into account by ar-
bitrarily changing the proportion of dispersion and ab-
sorption (mixing ratio) in the fits. There is no justifica-
tion for doing this. Rather, these line-shape distortions
signal important changes in the spin dynamics, from fast
modulation (exchange narrowing) to the slow modulation
described here. It is one of the most significant successes
of the Kubo-Toyabe approach that it explains in detail the
line-shape changes we have observed. '

The combination of the derivative technique and severe
distortion of the line can lead to spurious results. Using
thick samples and field modulation at the temperature of
c, Fig. 1, we found anomalous low-field modes. These do
not represent new modes of the system, but rather the re-
sults of the zero-field absorption evident in c, Fig. 1 com-
bined with skin-effect mixing. We recommend caution in
interpreting resonance curves such as those in Ref. 6 to be
due to a second mode.

In summary, the Kubo- Toyabe dynamics described here
provide a detailed phenomenological description of the
ESR data above Tf, including the shift in resonance posi-

' tion, linewidth, and line shape, using only two parameters.
The parameters are qualitatively the same as those deter-
mined by Levy et al. from the simpler Mori-Kawasaki
formalism, and strongly support our earlier assertion that
exchange narrowing plays an- important role. An unusual
feature is the rather strong field dependence of the relaxa-
tion parameter which gives a slower relaxation at higher
spectrometer frequencies (applied fields). We have sug-
gested that this results from the mapping of power-law
decays appropriate for the spin-glass problem onto the ex-
ponential decay assumed in the dynamical models. An ef-
fort is presently underway to extend the Kubo-Toyabe ap-
proach to more general forms for the relaxation of local
fields. Finally, inclusion of dynamical effects accounts
for all the shift in resonance position for T ~ Tf. Failure
to do so results in an anisotropy field that extends above
Tf. Clearly, a proper treatment 'of spin dynamics in
spin-glass systems will have to consider both static aniso-
tropy and the persistence of fluctuating local fields below

Tf e
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