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A mechanism for restoring broken symmetry in a system periodically driven above and below its
instability point is discussed by studying the homogeneous, n-component, time-dependent Landau-
Ginzburg model. We report numerical simulations for the n =1 case and an analytical solution for
the spherical limit n — . In both cases the results show that fluctuations are enhanced by bringing
the system near an unstable state periodically and as a consequence a well-defined shift in the insta-
bility point occurs. This shift can alternatively be characterized through the limit of the metastable
behavior of the order parameter or by the large increase in the order-parameter fluctuations.

I. INTRODUCTION

The decay of unstable states is one of the fundamental
problems of nonequilibrium statistical mechanics in
which the understanding of the interplay of nonlinearities
and fluctuations is crucial.>? In most theoretical studies
the unstable state is taken as a given initial condition, i.e.,
it is assumed that the initial condition is obtained by an
instantaneous variation of a control parameter that brings
the system from a stable to an unstable state. The effect
of the finite velocity in the change of the control parame-
ter has also been studied in particular cases.>* A related
situation is the one in which a system is periodically
brought to an unstable situation by changing the control
parameter back and forth through the instability point.

This situation might be achieved in experiments, e.g., in "~

the case of the decay of a laser unstable state’ and in the
spinodal decomposition of a polymer binary mixture.’ By
describing the above experiments in terms of Ginzburg-
Landau models with the spatial inhomogeneities neglect-
ed, the processes can be related to the overdamped motion
of a Brownian particle in a time-dependent potential.”8
In an interesting series of papers, Onuki® has considered
the problem of spinodal decomposition!® in a system
periodically brought above and below the critical tempera-
ture. From an analysis of a time-dependent Ginzburg-
Landau model, Onuki has concluded that the periodic
variation of temperature leads to a strong enhancement of
the fluctuations that causes nontrivial effects (for a sum-
mary, see Ref. 10). First, the critical temperature is shift-
ed, and second, the transition becomes first order. These
effects are also obtained when spatial inhomogeneities are
neglected. Onuki states that his results cannot be con-
clusive due to the rather crude approximation scheme. In
this paper we elucidate this problem. ,
Qualitatively, the combined effect of periodic modula-
tion of the control parameter and fluctuations can be un-
derstood in the following way. In the absence of modula-
tion, and beyond the instability point, the phase space of a
finite-size system is divided into subspaces which corre-
spond to the regions of symmetry breaking of the deter-
ministic solutions. The system remains confined in one of
these regions on physical time scales.!!
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This corresponds

to a metastable state that decays by the mixing of phase-
space regions caused by fluctuations which restore the
broken symmetry. This in general a very slow process.
For example for an n-component vectorial Ginzburg-
Landau model the mixing process is caused by Kramers
escape for n=1 and by phase diffusion for n541.12 In the
presence of modulation a new mechanism of phase mixing
appears. This mechanism leads to an enhancement of
fluctuation effects. It can be explained in terms of the
behavior of the stochastic trajectories. When the system
is periodically brought close to an unstable state, a small
fluctuation causes the escape from one phase region to
another. This reduces drastically the lifetime of the other-
wise metastable states. For this mechanism to be effective
the system must spend a sufficiently long time around the
unstable state. Essentially a time of the order of the mean
first passage time is needed to leave the unstable state.
The latter gives a lower bound of the period of modula-
tion for which the new mechanism of phase-space mixing
becomes important. It results that the transition from a
metastablelike state to the disordered state occurs in a
quite narrow range of the control parameters.

In this paper we show the above qualitative picture to
be valid for a symmetric n-component model with a
periodic modulation of the control parameter. We present
the results of a numerical simulation for the n=1 case
and we give a complete analytical solution of the problem
in the spherical limit #= c. In this limit the two basic
factors, nonlinearities and fluctuations, are taken into ac-
count in a nonperturbative way. In the spherical limit all
the main features of the phenomenon previously described

 are maintained. The qualitative results are also in a

reasonable agreement with the numerical simulation as far
as the averaged field and intensity are concerned. Our
calculations allow the qualification of Onuki’s con-
clusions: the definition of the shifted instability point is
related to a given observation time and it is shown to be
meaningful only in an intermediate time scale which is
much smaller than the decay rates of metastable states.
The character of the transition cannot be properly estab-
lished since there is no physical limit in which it becomes
sharply defined.

The outline of the paper is as follows. In Sec. II we
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describe the symmetric n-vector model that we use in our
calculations. We recall elementary facts about the model
in the case in which the control parameter is constant in
time. We also discuss the deterministic solution of the
model when the control parameter becomes a periodic
function of time. At the deterministic level the stability
properties of the system remain unchanged. From the
form of the deterministic solution we give an estimate of
the value of the parameters and of the intensity of fluc-
tuations for which they are expected to produce macros-
copically large effects. In Sec. III we present the result of
a numerical simulation of the n=1 model. It is shown
that fluctuations modify the deterministic trajectories in a
drastic way. As a consequence metastable states, which
are long lived when the control parameter is constant, de-
cay now after a few periods. The limit of metastablity
(given an observation time) is quite well defined and coin-
cides with the estimate in Sec. I. We obtain a
fluctuation-modified phase diagram for the time-averaged
order parameter which shows an effective shift of the in-
stability point and a steplike growth of the averaged order
parameter at the shifted instability point. In Sec. IV we
discuss the analytical solution of the spherical limit of our
model. We first describe the shift of the instability point
in terms of an effective susceptibility and of a
fluctuation-modified phase diagram. Second, we calculate
the decay rate of metastable states. The analysis of the re-
sults for the decay rate gives an independent description
of the enhancement of fluctuations. The shifted instabili-
ty point is identified with the point at which the decay
rate shows a pronounced change of magnitude. From this
calculation we recover our first heuristic estimate. Details
of the calculations are given in two appendixes.

II. THE MODEL

In this paper we consider the dynamics of a symmetric
n-component model'? defined by the following Langevin
equation:

a<I>(t)

@i(t)=— Pr0) +VeE (), i=1,. 2.1)
(z)
o(n="2= 3 gl + 2.2)
. i=1 l—l
The components @; of the vector g={@,,...,p,} are

taken to be real numbers. The normalized modulus (in-
tensity) of @ is

1/;(:)—— 2 o, (2.3)
ni=
and ¥(t) satisfies the following equation:
¢m=—umm+wﬁwm+nﬁ, (2.4)
F(t)= (DE;(t) . 2.5

i=1

The stochastic driving forces &;(¢) are assumed to be in-
dependent Gaussian white noise with
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<§i(t))=0 R
<§i(t)§j(t" ) =5;;8(t—1").

The parameter € measures the noise strength. The coeffi-
cient ry(z) is assumed to be a periodic function of time.
We are specifically interested in studying the role of fluc-
tuations in the presence of such a modulation.

We first recall basic elementary facts of the model in
the case in which ry(¢) has a constant value ry. In this
case the system shows an instability at ro=0: In the
deterministic limit €é=0, Eq. (2.4) has stable stationary
solutions at ¥,=0 for ry >0 and Y= —r( for 7, <0. The
stationary solution 1,=0 becomes unstable at r,=0 (Fig.
1). In the same limit it follows from (2.1) that the initial
direction of the vector @ is kept fixed in time. Therefore,
deterministically the model reduces to the n=1 case in
which the stable stationary solutions of the variable ¢ are
@o=*+v",. In the presence of fluctuations the process is
better described in terms of the probability distribution
P(@,t). This distribution obeys a Fokker-Planck equa-
tion whose stationary distribution is

Py (§)=Ne /9% @.7)

(2.6)

where N is a normalization constant. This distribution is
peaked around the degenerate minimum of ® and be-
comes sharply peaked as €—0. For the mean value of ¢,
small fluctuations only produce a rounding of the deter-
ministic behavior (Fig. 1). Only for e=0 is the instability
defined. The effect of fluctuations is more dramatic for
the mean value of a component of the field
m(t)={(g;(#)). Owing to the symmetry of the problem,
m(t)—0 as t— oo: fluctuations restore the symmetry
which is broken in the deterministic limit by initial condi-
tions. Nevertheless, for small fluctuations the restoring of
the symmetry only occurs in a very long time scale. The
phase diagram remains meaningful in the sense that the
states with m=£0 correspond to very long-lived metastable
states. The decay of these states occurs via a different
mechanism in the cases n =1 and n#1. For n =1 the
different time scales of evolution of the systems are quite
well understood.”> The decay of metastable states occurs
in the largest time scale given by Kramers escape time.
For ns£1 one can distinguish two well-separated time
scales. In the first, ¥ reaches its stationary value. In the
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FIG. 1. Stationary value of the intensity v, in the absence of
modulation in the deterministic limit e=0 and for e=10"2
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second, a slow process of phase diffusion occurs. As a
consequence the system will appear as “ordered” if the ob-
servation time is short in comparison to the typical decay
time associated with phase diffusion. An explicit calcula-
tion of these time scale in the limit #— o is given in Ref.
12.

An alternative mechanism for symmetry restoring
could appear in the case in which ry(¢) is a periodic func-
tion of time such that the system is swept periodically
above and below the instability point ro=0. If the system
comes sufficiently close to the unstable state, fluctuations
are expected to be able to produce a transition to the
disordered state restoring the symmetry in times which
are much smaller than the diffusion time. For simplicity
we consider instantaneous changes of ry(2) at times ¢; as
shown in Fig. 2. We have

ro(t)=ro+f(2), (2.8)

where f () is a periodic function of period T given by

flt)= R, b 1<t<trj=t) 1+

-—R, t2j<t<tzj+1 .

R is the amplitude of the periodic modulation. We define
three dimensionless parameters

To ,__€
R V= R
u and v measure the amplitude of the modulation and the
intrinsic fluctuations, respectively. For |o| <1 the sys-
tem is periodically driven through the instability. For
0 >0 or o <0 the system is, in the absence of modulation,
below or above the instability point, respectively.

In order to see under which conditions the system is
periodically brought close to the unstable state we first
analyze the solutions of (2.1) and (2.4) with r(z) given by
(2.8), in the deterministic limit v=0. In this limit, Eq.
(2.4) can be written in linear form, defining a new variable
x(2):

. u=RT, o= (2.10)

T I T T

1 2 3 4 t/7

v __¥(0)
x(t)= oo (2.11)
x(8)=2r¢(t)x (2)+2¢(0) . (2.12)
o(t)
[] S
-2 FE o
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0

FIG. 2. Modulation ro(¢) of Eq. (2.8) with yo=—1.8, R =2,
T=2. ‘
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The equation for the field (2.1) is also brought into linear
form defining

(P,'(t)

2

z(t)= (2.13)

The variable z (z) satisfies the same equation (2.12) for any
i. The solution of (2.12) for t— « diverges for 74> 0 and
goes to a periodic solution for ry <0. This indicates that
we still have an instability point at ro=0. At this point
¥(¢) and @;(z) change from a constant zero value to a
time-dependent periodic function that we denote by ¥*(¢)
and @{°(t). The limit-cycle state for 7o <0 is’

x °(£)=29(0) fow ds exp 20,u—;—,—2 ftt_zds’f(s’)] .

(2.14)

Taking into account that

f Ow ds eJ;p

t—s 00
ZU;LiT—th ds'f(s") =j§01j(z) (2.15)
and

Ly 4 t—s
Li(t)= szj ds exp 2;10—;;——2_[; ds'f(s')]

=e[; (1), (2.16)
we have
» 2 (0) T s t-s
x (t):l—_—l_eLZW— fo ds exp 20;13:——2 ft ds'f(s )l .

(2.17)

Substituting the explicit form (2.9) of f(s) we obtain from
(2.13) two solutions of opposite sign for ¢*(z) that we will
denote as @¥(¢). The behavior of these solutions is better
understood by considering in limiting cases the values of
[p=()]? at time t=ty;,t;;_1. Wefind (0 <0)

(a) for u <« 1,

[p=(tyj_1)1P=—r¢ 1+12‘7 +0(u?), (2.18)

[p= (1)) =—ro ll—Lz‘— +0u? , (2.19)
M foru>>1, |o| >1,
[p=(ty; 1)~ —(ro—R) 1—0+1e”“'-”] , (220
[@(ts) P~ —(ro+R) |1— aj—l Mo+l | | 2.21)
(©foru>>1, |o]| <1,

[§0°°(t2j—1)]2z—(ro—R) 1— 0_2*_1 ez‘“’J ) (2.22)
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—a
etlo+1)

[ (ta)) Prcro (2.23)
These results indicate that for small values of u, () os-
cillates with a small amplitude around —r,. For large
values of p, and |o| > 1, 3 () reaches a value close to
[—(ro—R)]'/? at the end of a first semiperiod and close
to [—(ro+R)]'”? at the end of the second semiperiod.
For |o| <1 the behavior is the same in the first semi-
period but at the end of the second semiperiod % ~0 be-
cause ro(t)>0 for #,;_; <t <ty;. We conclude that for
large values of u the variable @%(¢) follows the periodic
modulation going at the end of each semiperiod to a value
close to the corresponding equilibrium one. In Fig. 3 we
show this behavior of the deterministic periodic trajec-
tories as obtained from (2.17).

In order to have a phase diagram for the model we de-
fine averaged quantities over a period T in the limit-cycle
state:

_oo_l T ©
po=0 [ dtveo, (2.24)

- 1 pT -
The explicit calculation of these quantities is carried out
in Appendix A.

We find (ry <0)

=P >)N =+(—

That is, the averaged quantities have the same value as in
the absence of periodic modulation. Therefore, the modu-
lation does not change the phase diagram of the system if
Yo,¢o are replaced by ¥ =, *

It is easy to understand that small fluctuatlon can pro-
duce important changes in the above deterministic pic-

UL

(a)

ro)/%. (2.26)

1 1 l
0 1 2 3 U 4
FIG. 3. Deterministic trajectory in the periodic stationary

state (solid lines) and stochastic counterparts for v=0.25x 10~2
p=100. (a), o=—1.1; (b), o= —0.75.
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ture. For u>>1and |o| <1 it follows from (2.23) that a
small fluctuation at time ¢ =t,; can drive a trajectory @3
into @2 and vice versa. This change of the deterministic
behavior cannot be described perturbatively. The value of
the parameters for which fluctuations have a nontrivial
effect can be identified with the point at which perturba-
tion theory breaks down. The perturbation expansion

around the deterministic trajectory is
P(O=@=(t)+Vep(t)+ - - - 2.27)

Perturbation theory breaks down when the stochastic
trajectory changes signs. This happens most probably
when

[p=(ty)) Pre(@ity) .

The computation of ¢, is straightforward and the result
gives

(2.28)

” €
o (tz,-)]zz; , (2.29)

which can be easily derived as a dimensional estimate.
Taking into account (2.23),

2
e—mo+n1=0
2

Asymptotically for large u and small v

=v. (2.30)

Iny
At

o, is an estimate of the value of o for which fluctuations
are expected to modify the macroscopic behavior of the
system. It is worth noting that in the limiting case oc—0.
Equation (2.30) gives

(2.31)

O'Cz—l—-

Tr—Liny—— il

R (2.32)

R2

This result can be interpreted as a lower bound for T for
the existence of phase-space mixing. The right-hand side
of Eq. (2.32) is actually an asymptotic estimate (for very
small v) of the mean first passage time!* that the system
needs to leave the unstable state.

III. FLUCTUATIONS AND METASTABILITY
IN THE n=1 CASE

In order to get a better understanding of the effect of
fluctuations, it is convenient to look at the stochastic tra-
jectories of the process (2.1). We made a numerical simu-
lation of this process with ry(¢) given by (2.8) and (2.9),
following the method of Ref. 15. (See also Ref. 16.)
Representative stochastic trajectories are shown in Figs. 3
and 4. For small values of u, fluctuations only produce
small deviations from the deterministic trajectory. For
p>>1 the effect can be more dramatic depending on the
values of . We distinguish four cases.

(i) o < —1 [Fig. 3(a)]. The control parameter ry(t) os-
cillates but always being negative, that is, beyond the
deterministic instability point. Starting from a deter-
ministic periodic and positive trajectory, fluctuations pro-
duce small deviations around it. We assign to this
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FIG. 4. Same as Fig. 3 (v=0.25X10"% p=100), but (a)
0=0.75, (b) o=2.

behavior an “ordered” state characterized by positive tra-
jectories which are, on the average, periodic. Of course,
this is not a stable state: After a long time there will al-
ways occur a sufficiently large fluctuation that will drive
the trajectory to negative values. For small fluctuations
this only happens for very long times so that very long-
lived metastable states exist. The main effect of fluctua-
tions is to change the stable periodic “ordered” state to a
long-lived metastable state. This is completely analogous
to what we discussed in Sec. II for the case with constant
control parameter ry <0.

(ii) —1<o <0 [Fig. 3(b)]. The average value of the
control parameter r is still negative but now the system
is swept periodically through the deterministic instability
point ro(#)=0. The difference with the previous case is
that the deterministic trajectory ¢*(¢#) now takes a very
small value for t=t,;. At each of these points a very
small fluctuation can destabilize the trajectory driving it
from positive to negative values or vice versa. This does
not happen in (i) because there ¢*(¢,;) is a finite quantity.
The effect of small fluctuations is to destroy the “or-
dered” periodic positive trajectory, producing a trajectory
that goes randomly from positive to negative values. We
assign to this behavior a “‘disordered” state characterized
by a mixture of the two possible deterministic ordered
states. The mechanism of mixing of the positive and neg-
ative regions of phase space is here different, and much
more efficient, than Kramers escape over a barrier. It
leads to the decay of a metastable state after a few
periods. The time average over the trajectory of ¢(z) is
zero in this situation. The existence of this disordered
state for ry <O will produce an effective shift of the insta-
bility point due to fluctuations. We remark that the
difference between the cases of o< —1 and —1<o <0 is
only a matter of time scales of observation. For t— o
both situations coincide, but there is an important physi-

'
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cal difference for a large but finite observation time.

(iii) 0<o <1 [Fig. 4(a)]. The deterministic trajectory
@>()=0. The system is periodically swept through the
instability point r((#)=0 but now with r5>0. Again the
fluctuations change the qualitative form of the deter-
ministic trajectory. Small fluctuations allow large depar-
tures of the trajectory to values close to +[ —(ro—R)]'/%
These excursions are forbidden in the deterministic limit.
The time average over the trajectory is zero. The main
difference with the deterministic case is that the time
average of the intensity ¢ is nonzero and much larger
than v.

(iv) o> 1 [Fig. 4(b)]. For this value of o, ro(?) >0 for
any ¢ and the deterministic trajectory is ¢*(¢)=0. Fluc- -
tuations produce small deviations around zero.

A quantitative characterization of the above description
can be given in terms of the following averaged quantities:

+T
mi(t)—;—lf f: dt'{@.(t')), 3.1
T
Ami(t)ziT o dt’[(qzi(t’))—(%(t'))z],
(3.2)
i 1 t+T ’ '
@oy=— [ dr'(gan) . (33)

@+(t) indicates, respectively, a stochastic trajectory with a
finite positive or negative initial condition. The quantity
(@+(1)) is the ensemble average over these trajectories,
and . (f) is the time average over a period of this en-
semble average. The quantity defined in (3.2) is the vari-
ance of 7 (¢) and {¥(t)) is the average over a period of
the ensemble average of the intensity ¥(¢z). Owing to the
symmetry of the model we know that for very long times
the fluctuations destroy the memory of the initial condi-
tion, so that

lim 4 ()=0. (3.4)

t— o
The difference between cases (i) and (ii) above is given
by the decay time of 77, to zero. In case (ii) we expect
that after an initial transient of a few periods 77 4 (#)~O0.
In case (i) we expect that after an initial transient 7, (¢)
reaches a plateau value and then decays very slowly to
zero. Given a finite observation time 7>> T we define

ML= (t=r). (3.5)

This quantity is the stochastic counterpart of the deter-
ministic ¥ [Eq. (2.26)]. Its value is expected to depend
weakly on 7. The two cases that we are discussing are
separated by a fuzzy region in which 7% becomes
nonzero. The explicit behavior of 7, (¢) is shown in Figs.
5 and 6 for two representative cases together with
A (t). In these figures 7 +(2) is calculated as the time
average over a single stochastic trajectory

— 1 4 ’ 1
s(t)=—- [ atpse’). (3.6)

We note that it is only for 7>>T that the time average
over a period is a physical meaningful quantity. For
u>>1, 0 <0, and 7 of the order of a few periods, we are
just observing repeatedly the decay of an unstable state.
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§ Ami(1)

andg

0 f
m.(t)

L I 1
0 5 10 15 t/r 20

FIG. 5. A typical trajectory ¢(z) for p=20, =0, and
v=0.25X10"2? and the corresponding time average () and
variance AT (¢). ‘

We have calculated 7} for different values of the pa-
rameters U, v, o. The resulting “phase diagram” is shown
in Fig. 7. This diagram cannot be taken in a strict sense:
There is no well-defined instability point and the values of
m & depend on the observation time and on the value of
fluctuations.!” Nevertheless, it is clear that fluctuations
change the “phase diagram” in a nontrivial way. There
exists a narrow region of values of around a “critical”
value o, (—1 <o, <0) in which 7 % goes from zero to a
finite value close to the corresponding deterministic one
(2.26). This phenomenon can be interpreted as an effec-
tive macroscopic shift of the instability point, from o=0
to o., induced by fluctuations. The value of o, cannot be
defined unambiguously since for v=0 the whole effect
disappears. But it is not a small effect, since it happens in
the absence of periodic modulation. The quantity o, plays
a role here analogous to the “cloud point” in the nu-
cleation problem.!® It is a stability limit which depends
on the observation time. As shown in Fig. 7 this stability
limit also manifests itself in a large increase of the vari-
ance Am(t=7) for o~0,. From the results shown in
Fig. 7 it is seen that the numerical value of o, is in agree-
ment with our estimate (2.31). The width of the transition
region around o, diminishes when increasing u or de-
creasing v. Also |o,| becomes larger in the same cir-
cumstances, in agreement with (2.31). Another important
feature that distinguishes the behavior of 77, from that

4 My (t)
°
AAANAANLANALALNAR
2 MRARAARTARRAARAA
0 amt)
_..2 -
L L L
0 5 10 15 t/T 20

FIG. 6. Same as Fig. 5 for 0 = —2; u=20, v=0.25X 102
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FIG. 7. “Phase diagram” for the time average over a period
m% (W) for u=100, v=0.25X10"2% and the corresponding
variance A ;(@). The solid line is the deterministic result.

of @ is that while $ ® grows continuously from zero at
o=0, M7 has a steplike growth at o=o,. Since
@ >=m 7 for o <o, the effect of fluctuations is pictori-
ally summarized as a cut of the phase diagram at o ~o,.
They are not important for o <o, and they reduce the or-
der parameter to zero for o > 0.

We finally discuss the results of the numerical simula-
tion for ((z)). After an initial transient this quantity
reaches a steady-state value and it remains constant for
t— . This value practically coincides with the deter-
ministic one 3 * for |o| > 1. As we discussed before, the
steady-state value for 0 <o <1 is macroscopically dif-
ferent from the zero value of the deterministic case. In
this sense, the instability point for the intensity is effec-
tively shifted by fluctuations in the opposite direction as
compared to @ *. It is worth noting that this shifted
point is not accompanied by an increase of the variance of

‘the intensity fluctuations. For —1<o <0, (#(t)) also

has a larger value than in the deterministic case. The
behavior of ((¢)) can be interpreted as an enhancement
of fluctuations caused by the periodic modulation.

IV. SPHERICAL LIMIT

A. Equations

We have already mentioned in Sec. II that the effect of
fluctuations in the presence of a periodic modulation of
the control parameter cannot be studied by a perturbative
treatment. Perturbation theory also fails to describe the
relaxation of an unstable system in the case without
periodic modulation.! The more elaborate quasideter-
ministic theory (QDT) that describes the decay of an un-
stable state! also fails in the case with periodic modula-
tion. The reason is that in QDT, fluctuations saturate
after the initial transient of interest. For t— o0, QDT be-
comes deterministic. In our case fluctuations are impor-
tant at the end of every period of the deterministic period-
ic state. It is then desirable to have a model including the
two basic ingredients of the phenomenon, described in
Sec. III, i.e., nonlinearity and fluctuations, for which a
nonperturbative analytical solution can be given. Such a
model is given by the spherical limit n— « of (2.1). The
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solution of this model will be useful to check the validity
of the estimate (2.31) and it also gives the behavior of the
system for o >0, when perturbation theory cannot be
used. One may only expect a qualitative agreement be-
tween the model and the n=1 simulation because of the
problem of phase diffusion discussed in Sec. II.

In order to take the spherical limit of (2.4) we consider
the properties of the stochastic force F(t) (Ref. 18):

(F(1)) =€, 4.1)
<F(:)F(z'>>=i"f¢m5<t—z'). 4
We can write
172
F(t)=€+2 [% () 4.3)
with 7(z) having zero mean value and (4€/7)
X{ptm(t"))=(F(F(t"')). In the n-—o limit,

F(t)—¢€ and Eq. (2.4) for ¥ becomes deterministic:

P(t)= —2(ro(t)+P()]P(t) +€ . (4.4)

It is important to note that this equation is not the same
as the deterministic limit of (2.4) but it includes the effect
of fluctuations. Equation (2.1) can now be written as

@i(t)=—[ro(t)+ (1) 1@i(1)+Ve&i(2) . (4.5)

Equations (4.4) and (4.5) give a complete description of
the problem in the limit #— oco. In this limit an exact
solution is possible since (4.4) is deterministic and, given a
solution of (4.4), (4.5) is a linear stochastic differential
equation for ¢;(¢). The mean value m (¢) of @;(¢) can also
be directly obtained from a closed linear integro-
differential equation that follows from (4.4) and (4.5). We
have

m(t)=—r(tim(t), . (4.6)
r(t)=ro()+4(t) . 4.7)
We define a new variable y (1),
2
_ | m(0)
y(t)= (e 4.8)

From (4.5) we obtain an equation for y(¢) which, with the
use of the solution of (4.4) becomes

L5 =roltly (O +(0)-+e [ di'y(t"). 4.9)

This equation gives an alternative description of the prob-
lem to the one provided by (4.4) and (4.5).

In Fig. 8 we compare a simulated trajectory for n=1
and a trajectory corresponding to (4.5) with the same se-
quence of random numbers. Two main differences are
shown. An obvious difference is that for the spherical
model @; reaches quite different values in the semiperiods
tj<t<tyj41. A second difference is that the spherical
trajectory changes sign at different times than the corre-
sponding n=1 trajectory. This means that the spherical
model does not give a good approximation of the n=1
trajectories in a one-to-one correspondence. Nevertheless
it will be shown that it reproduces qualitatively the results

-4 | | | I

FIG. 8. Stochastic trajectories for n =1 (positive values) and
n = e (positive and negative values).

of the n=1 case. It also gives a good quantitative agree-
ment for the effective susceptibility defined below Eq.
(4.10).

In the remainder of this section we characterize the
phenomena described in Sec. III in terms of the two alter-
native descriptions mentioned above. We first (Sec. IV B)
give a static description in terms of the behavior of the ef-
fective susceptibility (Fig. 9)

1 pt+T
F*®=lim —; d .
Fr=lim o o asre
Secondly (Sec. IV C), we give a dynamic description in
terms of the eigenvalues of (4.9). These eigenvalues give
the decay rate of the metastable states characterized by
m 5£0. The values of the parameters for which the de-

(4.10)

cay rate is no longer very small characterize the shifted

instability point o.. In the asymptotic limit of large p
and small fluctuations this point becomes well defined
and we recover our first estimate (2.31).

B. Susceptibility

In order to describe the behavior of 7 ®, we first calcu-
late ¥(z). (For details see Appendix A.) Equation (4.4) is
easily solved in each semiperiod ¢;<t<t; 4 in which
ro(t) is constant. Matching these solutions, we obtain re-
cursion relations that give the value of ¢ at the end of a
period as a function of its value at the end of the previous
period

3
Too
2 |-
1
O¢
0 ] ] ]
-2 -1 0 1 o

FIG. 9. Effective susceptibility 7 * as a function of o for
€=0and e=10"2for n =1 (dots) and n = oo (solid line).
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¢(t2j)=F+(¢(t2j_2)) , 4.11)
Y(tj 1) =F(Plty;_1) . (4.12)

The recursion relations have fixed point solutions 3%

YL=F, (%), (4.13)

YL=F_(¢*). (4.14)
For t— 0, ¥(t) tends to a periodic fu;lction P (t)

Yo (t)= tl_lglo P(e) . (4.15)

Discretizing the time in units of 7/2, ¥°(¢) evolves in a
limit cycle of period 2 taking values ¢* and ¢*. For
large values of u and o <1, ¥t(¢) oscillates with a large
amplitude going close to zero at times ¢,;. The periodic
solution ¥ 2(¢) can be expressed, for any ¢, in terms of the
fixed points-¢% and other auxiliary quantities. The aver-
age over a period gives (see Appendix A)

= 0 1 t+T L, ,
ge=- [, dtpa)
R 1 P 1—e -
=3 [(a++a_)+'u1n 1+ R - T
1 P 1—e M+ }
+—In |1+ —a, |/ »
u R " r,
(4.16)
where
ay=5[Cs—(0£1)], 4.17)
Iy=[(ct1P242v]'/2. (4.18)

Y& and P2 (¢) differ from the corresponding determinis-
tic quantities ¥ * and ¢¥*(¢) due to the € term in (4.4).

The effective susceptibility 7 * (4.10) is given by
?w=r0+$:’ . (4.19)

We recall that in the case without modulation (R=0)
(Ref. 12),

Fo=2[ro+(ri+2¢)%]. (4.20)
In the deterministic limit e=0 (4.20) gives

_ 0, ro<0

re= ro, 7o>0. (4.21)

which indicates that the system undergoes an instability at
ro=0. For €540 the instability is not sharply defined but
7 * deviates from (4.21) only in small quantities of the or-
der €72, In the case with periodic modulation of ry(z)
and in the deterministic limit, we obtain from (4.19) and
(2.26) the same result (4.21). That is, a well-defined insta-
bility at 7o =0 independently of the value of R. The com-
bined effect of a periodic modulation of 7y(7) and fluc-
tuations of the system is described by 7 * obtained from
(4.19) and (4.16) (Fig. 10). The small effect of fluctua-
tions for R =0 is now enhanced, producing a macroscopic
shift, from o =0, of the value of o at which ¥ ® becomes
significantly different from zero. This value of o is iden-
tified with o,. It shows the same qualitative behavior dis-
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FIG. 10. Eigenvalues A of the equation for y vs o for dif-
ferent values of € for R =2, T =10 and 50.

cussed in Sec. III. It is also seen that the value obtained
from (4.16) and (4.19) agrees very well with the one ob-
tained from the numerical simulation for n=1. We note
that 7 * is a stationary quantity independent of any obser-
vation time: The effective shift of the instability point is
described here without reference to metastable states and
intermediate time scales.

Finally, it is worth remarking that the averaged intensi-
ty ¥ 2 itself is macroscopically modified by fluctuations.
This is in fact what causes the behavior of 7 * that we
have discussed.

C. Metastability and decay rates
Taking the time derivative of (4.9) we have
1 O=ro 5O +ep(o) . (4.22)

In a given semiperiod, 7((¢) is constant and we construct a

" matrix that, when applied to the vector V(¢)=(y(¢),(¢))

at the beginning of the semiperiod, gives the values of v
at the end of the semiperiod:

V(t2j+l)=/_1 —‘7“2;) ,
Vityj12)=A4,V(ty41) .

We diagonalize the matrix 4 , 4_ by a transformation U

(4.23)
(4.24)

Ay O
B=UAd .4 _U-'= o A_ |’ (4.25)
so that
. Moo
Wi(zy;)= 0 M W(t=0), (4.26)
where
W=Uv. (4.27)

Note that by definition V(¢ =0)£0. The two eigenvalues

A4 and A_ of B govern the dynamics of the system. Ata

time #,j, y is a linear combination of A/, and AL,
y(ty)=aM, +BA_ .

The explicit calculation of these eigenvalues gives (see Ap-
pendix B)

(4.28)
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Ay =eP[Q+(Q2—1)1?], (4.29)
where
O (1—82_)cosh(,u8_2)—(1—§2+)cosh(u6+) . 430)
85, -8 .
+ -—
r,+r_ v
ai=—i2—— (4.31)

I, are defined through (4.18).
The eigenvalues A, are plotted in Fig. 10 for several
values of the parameters. Since A_ <1, for large j
y(ty)=al, . (4.32)
For lérge i, A, changes quite drastically from a value
near 1 to a large value. This change, which occurs in a
narrow region of values of o for u>>1 and small v, ex-
plains the two main effects discussed in Sec. III: the ef-
fective shift of the instability point and the fact that 7 7,
has a steplike growth from O to a value close to the deter-
ministic one. First, for A, near 1, y grows very slowly
with j, which means that m () decays very slowly to zero.
This corresponds to the metastable states in which
m .50. When A, becomes very large, m (¢) decays very
fast. Therefore the region of values of o for which A,
starts to grow abruptly must be interpreted as the instabil-
ity region o~o, in which for fixed and large observation
time 7, m § becomes nonzero. This region coincides with
the one of Figs. 7 and 9. It shows in a different way the
same macroscopic shift of the instability point from o=0
to o,. The steplike growth of 7 % at the instability point
o, is also clearly explained.

For o <o, A, is close to one, which is its deterministic
value (see below), so that m7 is close to its deterministic
large value. For o>0,, A, becomes very large and 7 %
close to zero. A better understanding of the problem is
obtained considering some limiting situations of (4.29).

(i) We first consider the case in which 7, has a constant
value (absence of modulation, R=0). In this case (4.29)
reduces to

Ay =ey[ai(0'2+2v)l/2] .

(4.33)

In particular A_ < 1. Repeating the discussion above for -

A, we conclude the existence of a smoothed instability at
0=0. In the limit v=0

|1 for 0<0

Ay (4.34)

e%* for 0>0.

This shows how the instability becomes well defined for
R=0 and v=0 as we already discussed.

(ii) In the limit of vanishing fluctuations v=0 (but
R+#£0) we recover again (4.34) in agreement with the
deterministic discussion of Sec. II and the behavior of 7 ©.
We note that in this limit A, is independent of R.

(iii) The interplay of periodic modulation of ry and
fluctuations is made explicit considering the value of A
at 0=0. For small fluctuations v we obtain the following
from (4.29):
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1+ve# for u>>1

- 1+v2vu for p<<1. (4.35)

+
For p <<1, A, only has a small increase from the deter-
ministic value, but for large u the effect of fluctuations is
amplified by an exponential factor in u. This amplifica-
tion is another way of understanding the failure of any
perturbative treatment around the deterministic trajectory.
For v« 1 and u ~ 1, we obtain

Ay =142V%(coshu—1)/2. (4.36)

These results for A, and the general ones shown in Fig.
10 make it clear that only for large p and small fluctua-
tions is the effect of fluctuations amplified in a nontrivial
sense. In fact, the lower bound (2.32) for T is here
recovered from (4.35). Therefore we now study the value
of A, in the limit u >>1. Since in this limit A (0=0)
can already deviate significantly from 1, we only consider
the case o <0.

(iv) For u>>1, v/(o+1)* << 1, and o <0, (4.26) reduces
to

__u[ve/(1—o?)] Z—V ulo+1)
Ap=e + e .

(1—0?)

This formula is not valid near o ~0, a situation which we
have already studied, nor in a small region of the order of
v near 0= —1. For realistic values of 1 and v we can as-
sume that uvo/ | 1—o? | << 1. In this case,

_(4.37)

2v

1 ——
+ (1—0?)?

et for |o| <1

Ay = (4.38)

1+TVE'—2 for |o| >1.
—0

Equation (4.38) implies a large increase of A, for o> —1.
For o < —1 there is only a small correction to the deter-
ministic value A, =1. For o> —1 the effect of a small
fluctuation is again amplified by an exponential factor in
plo+1). From this expression we obtain an estimate of
the value o, for which A becomes significantly different
from one. This is fixed by

2v wlo,+1)
2,2 =a
(1—07)

’

a being a finite quantity larger than v. In the asymptotic
limit in which (4.38) is correct, the value of o, is indepen-
dent of a and we again obtain (2.31). This value of o,
first obtained as a limit of stability of deterministic trajec-
tories against small fluctuations is again obtained as the
point at which metastable states become short lived.

V. CONCLUSIONS AND OUTLOOK

In this paper we have shown that in a periodically
driven unstable system, fluctuations produce an important
macroscopic effect. There is a change in the limit of me-
tastability of the system that can be interpreted as an ef-
fective shift of the instability point. The change in the
limit of metastability is a consequence of the existence of
a mechanism which restores the broken symmetry in time
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scales much shorter than those of the Kramers escape or
phase-diffusion processes. Although results in that case
seem to be quite general, we have given an estimate of o,
only for a particular form of the periodic modulation and
with the neglect of inhomogeneous fluctuations.

The phenomenon we have studied can be of importance
in discussing the nature of asymptotic metastable states.
In general, however, is a further analysis of the role of in-
homogeneous fluctuations needed. In particular, the role
of the dimensionality of the system should be investigated.
In the case where the system is not driven periodically,
symmetry is not restored for dimensionality d >2 and
metastability disappears. In the case we consider here, the
mechanism of symmetry restoring for —1 <o <0 seems
to be independent of dimensionality. We finally point out
that the phenomena we have discussed may be relevant to
provide evidence for the role of metastability in disor-
dered systems.

APPENDIX A

The recursion relations for 3 can be obtained by solving
Eq. (4.4) in each semiperiod. The result is
]
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—b_e Mty —a_b_(1—e *T-)

(a_
Pty 11)= _ ,
" (1—e = )t3)—(b_—a_e ")

(@y—bye ™ )ty _)—a b, (1—e *T+)

¢(t2 )"_“ — — 3
" (1—e T+ ) (1) — (b, —a e ™)

with ,
a;=—5(0+1-T.),

bi—=-‘;‘(0i1+ri) Iy
and
Fi=[(c£1)?+2v]'?,

from which one obtains Egs. (4.11) and (4.12). The
fixed-point solutions result then from the conditions

Wit)=Y(t2_1)=9"% ,

Witan 1) =Pltgg ) =0 .
Explicitly, the first equation is

[(l—e—”r+)(a_ —b_e_”P‘)—('l——e*“r‘)(bJr —a +e"”r+)](¢1)2

by —a e ™ )b_—a_e ™ )—(ap—~be *THNa_—b_e Tyt

——;-(a+—b+e_”r+)(l—e

”r‘)+‘§‘(b_ —a_e M )N1—e ") =0,

and analogously for ¢* . Then within the semiperiod t,, <t <?,, for large n

[a_—b_e_mr‘(t-tz")]t/r"f,_%-—E—[l—e

2

—2RI‘_(t—t2n)]

P& ()= tli{x; PY(t)= —RT

[1—e K- 21ys _[p _a_e

—2Rr_(t—t2,,)]

and similarly for ¢,, . <t <t,,,. Thus it is possible to calculate the average over a period for large n

7 o 1 t2”+‘ 1.400( 41
U =']—~ f,z,‘ ar'ye(t’)

resulting in Eq. (4.16).

APPENDIX B

Equation (4.9) can be solved in a semiperiod ¢, <t <t,, 1, Where r¢(2) is a constant given by ro—R, by taking the

time derivative [Eq. (4.22)] with the result

2b_y (t3)+y(t24) 2Rtz 2a_y (t24)+y(t2n) B RU—1y)

y(t)=—

2r_ 2T

in terms of the values of y and its derivative at the beginning of the semiperiod. In particular for ¢t =¢,, ,,

2b_y (ty,)+y(t3,) e He- 4 2a_y(tyn)+y(t2,) e—pb_

Yty p1)=— T TR

and from Eq. (4.9)

tll
5 (t20)=2(ro—R)p (t2) +200(0)+2€ [ "dt'y(z") .

’

With the use of an analogous formula for the semiperiod #5, ;1 <t <y, 4, and after some algebra, we get Egs. (4.23) and

(4.24) with the matrices 4+ given by
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a —yb+_bie—ua¢ e—.ubi_ —Kayt
r. 2RT.
4= 2;5 0?1—22’; e Mt —1,1: oFl1— 2;; et
- 21?:: oF1— 2;’1 THex —Fl—_— oF1— 2‘:1 }f‘ﬁ“i

The product 4 , 4 _ is then given by

k[b_Bi—a_B,—b_Bs+a_B4]

A, A_= |2Rk[—b_(a, +2)B1+a_(a, +2)B,
\ +b_(by +2)B3—a_(by +2)B4] +(
with
e%*
k= r,r_’

B1=(1_8+)e_"8+ N
By=(1—8_)e "~

‘2%[314-32—53+ﬁ4]
k[—(a, +2)B,+(ay +2)B;

by +2)B3—(by +2)Bsl

[
By=(1—58_)""-,
Ba=(1+5,)e">*
det(4, 4 _)=e’" .

The calculation of the two eigenvalues A is then straight-
forward with the result given by Egs. (4.30)—(4.32).
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