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Bond-cluster approximation to the axial next-nearest-neighbor Ising model
I
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The three-dimensional simple-cubic spin- 2 axial next-nearest-neighbor Ising model is studied by

means of Kikuchi s cluster-variation method employing a new technique described previously [J. S.
Desjardins and O. Steinsvoll, Phys. Scr. 28, 565 (1983)] for the solution of the general equations of
equilibrium. The particular solution employed in this paper is equivalent to Bethe s first approxima-
tion and yields a surprisingly rich phase diagram with modulated structures appearing up to a repeat
distance of 15 planes {the highest studied}. The phase diagram obtained by our technique resembles

closely the mean-field, spin- T phase diagram of von Boehm and Bak with some significant differ-

ences: The second-order boundary of the paramagnetic region is at a significantly lower tempera-
ture with a minimum at

~
tt

~

-0.4, where s is the ratio of the antiferromagnetic to the ferromagnet-
ic coupling constant. In addition, we are able to follow the temperature dependence of the shape of
the modulated solutions from the squared-off, low-temperature behavior of Selke and Fisher to the
sinusoidal behavior of the high-temperature, mean-field results. The position of our Lifshitz point
is in good agreement with previous results, as is the conclusion that transitions between phases are
of first order. By contrast, in two dimensions the same approximation completely fails to reproduce
reported features of the phase diagram.

I. INTRODUCTION
I

The vast bulk of work on tnagnetically modulated
structures has been done in two or three dimensions,
though very general models have been proposed which
cover all integer dimensions. Probably the best known is
the axial next-nearest-neighbor Ising (ANNNI) model and
its variants, proposed by Elliot' and subsequently
elaborated by Redner and Stanley, Selke and Fisher, von
Boehm and Bak, ' and others. In the ANNNI model,
one considers a d-dimensional lattice with ferromagnetic
nearest-neighbor interactions and an antiferromagnetic
next-nearest-neighbor interaction along one special axis.
The ferromagnetic interactions along this special axis
need not have the same strength as those in the (d —l)-
dimensional layers normal to it. Considering a three-
dimensional (3D) cubic lattice, the Hamiltonian can be
written

1

2 g( JQSx,y, z x+ 1,y+ i,z+ 1 x,y, zSx,y, z+ I

Xgz

+J2Sx,y,zSxy, z+2) ~

where Jt &0 for a ferromagnetic interaction, and the
modulations occur along the z axis.

This model has been treated in a variety of ways.
Redner and Stanley have performed a high-temperature
expansion to obtain the general form of the phase dia-
gram. Selke and Fisher have performed a Monte Carlo
simulation to obtain. a more detai1ed diagram as we11 as a
low-temperature expansion. von Boehm and Bak used a
mean-field calculation and further calculations which in-
clude the effects of interacting solitons. In what follows,
we show that this very complicated phase behavior in
three dimensions can be reproduced by the method
devdoped in Ref. 7.

II. EQUILIBRIUM EQUATIONS
AND METHOD OF SOLUTION
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FIG. 1. Approximate entropy construction for the 3D
ANNNI model employed in the present calculation. Using
Kikuchi's terminology {Ref. 8) lattice point A is placed so as to
make the bonds BA, CA, DA, and EA have approximately the
"right distribution. " EA is a next-nearest-neighbor bond along
the chosen axis of magnetization.

A'general method of solution for the equilibrium states
of any Ising model has been described in detail in Ref. 7
and only those points germane to the present calculation
will be discussed here. The simplest possible entropy
beyond the mean-field approximation is based on bonds as
basic clusters. To make our bond approximation clear,
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refer to Fig. 1, which considers the buildup of a simple-
cubic lattice along the 100 direction. In "placing" a typi-
cal point A on a given plane we consider points B, C, D,
and E to have been already placed.

Since the whole calculation rests on a particular choice
of entropy, we transcribe that choice here for reference,
using the shorthand notation of the cluster-variation
method:

PB Pc I. t PD y I PE I. t

X X X
BAB BAC PA BAI3 PA BAE PA

P and 8 stand for "point" and "bond" in the language of
Ref. 8, while the expression given above denotes the ap-
proximate number of ways used by us for placing a typi-
cal point A to maintain "right distribution" for an ensem-
ble of L lattices. We now impose the requirement that
the magnetization must repeat after m planes along the
axis EA in Fig. 1. This necessitates introducing separate
magnetization and bond probability variables for each of
these planes or distinct pair of planes. A set of Kikuchi
relations can be written for each of these which automati-
cally satisfy the lattice sum rules, an essential step in the
method:

le1=T+er
l

e2 = —er,

m

S=—g (7' —2I'i —Ui —8'i),
teal

(3)

where

2

EI ——g e;lne;,

Ui= g u lnu

4
Wi= g w lnw;,

and

Yr ——y1lny1+ 2y 2lny 2+y 3lny 3
l l l l l l

The configurational energy per site is given by the expres-
sion

plane of its lower member. The up-down degeneracy of
the in-plane bonds is broken for the out-of-plane bonds.
As an example of the sum rules satisfied identically,
ei ——wi+w2, etc. Also, in accord with Ref. 7, all the in-
dependent variables have been chosen to vanish in the
infinite-temperature, random spin state.

Proceeding to the entropy which is essentially the loga-
rithm of the number of ways of arranging the lattice given
above, we find that the entropy per site in units of
Boltzmann's constant is given by

y1= 4 +el+yl
ly2= 4

—yl ~

l
y3 4 er+yl

E= — g(2yi —4y2+2y3+ui uz u3+u4)l l l l l l l

m

r r rg(wi —W2 —W3+W4),
m r

(4)

l2u1 2 +el+el+1+ul
l +er —el+1 —ul

l2u 3
———,—el+el+1 —ul,

2u 4
———, —el —el+1+ul

l2w1= 2 +er+er+2+wr

+el —el+2 —wl

l
2w3 ———,—el+el+2 —wl,

l
2W4 ————er —el+2+ wl .

Here the variables ei, y&, ui, and w&, (l =1,2, . . . , m) are
the so-called independent variables labeled x1, . . . , x„ in
Ref. 7. e ~ is the probability of finding a spin up on any
of the planes labeled I with e2 the corresponding term for
spin down. yi, 2y2, and y3 are the probabilities of find-
ing an up-up, up-down, or down-down neighboring pair
within any of the planes labeled l, while u; and w; are the
corresponding probabilities for neighboring-plane bonds
and next-neighbor-plane bonds along the special axis. We
note that each of the bonds is denoted according to the

where the special choice has been made of the same fer-.
romagnetic nearest-neighbor coupling between planes as
within planes, and we assume throughout that the external
magnetic field is zero. We have considered only the case
of Ji ferromagnetic and J2 antiferromagnetic. Since each
cluster introduces one new independent variable, it is clear
from the probability relations that when we look for
modulated solutions with a repeat length of m planes, we
will be dealing with 4m variables, which will require us to
solve 4m simultaneous nonlinear equations of equilibri-
um. Froin Ref. 7 these equations result from minimizing
the free energy per site f, where

f= pa;x; —TS(xi, . . . , x„)

and n =4m. Here we have ordered the independent vari-
ables into a single set xi, . . . , x„. In Eq. (5) the dimen-
sionless temperature parameter T is kT(K)/Ji and the
function S(xi, . . . , x„) is the entropy per site given by
Eq. (3) in units of Boltzmann's constant k. The a; are ob-
tained from the configurational energy (4) by expressing
the probabilities in terms of the independent variables.
Minimizing f with respect to the x; leads to the equilibri-
um equations

a;/T=dS/Bx;, i =1,2, . . . , 4m'.
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Those x; values corresponding to e~, . . . , e are the
long-range order parameters; the rest are short range. Our
procedure is first to make a choice for m and then to ap-
ply our general algorithm for the iterative, simultaneous
solution of Eqs. (6) beginning with the known solution at
T= 00. A key element in our method is to monitor the
eigenvalues of the symmetric matrix D;J ——8 S/Bx;Bxj.
evaluated along the solution trajectory x

& ( T),
xz( T), . . . , x„(T) in the hyperspace of the variables
x&, . . . , x„. Initially, in the paramagnetic region, the
long-range order parameters remain equal to zero along
the solution while the short-range order parameters begin
to depart from their initial zero values. As the solution
proceeds, we can also keep track of the local values of the
quantities X; defined in Eqs. (7) of Ref. 7 as

Xj g UgJXJ
j=1

Here the orthogonal matrix U(x&, . . . , x„) diagonalizes
the D matrix at a point x in the hyperspace. Writing the
basic differential equation governing the temperature
dependence of the solution [Eq. (4) of Ref. 7] in vector
form, we have

e

x =pa
where

X=D ', x =dx/dt

Thus

X=A 'A+ UUX,

where

A= Ua and A= UDU .

Each point along a trajectory defines the position vector x
of the lattice solution. We imagine that the order parame-
ters x&, . . . , x„are the components of this vector in a
fixed coordinate system while the quantities X~, . . . , X„
represent the components of this vector in a rotated sys-
tem of principal axes for which the matrix D;J is diagonal
with eigenvalues A. &, . . . , A,„. Similarly a~, . . . , a„and
A ~, . . . , A„are the components of a second vector, deter-
mined by the coupling constants, in the two base systems.
As the temperature varies, the principal axes rotate since
the matrix U( x ) depends on position. At a critical point,
one or more of the eigenvalues making up the diagonal
matrix A vanish. We will refer to the quantities X; as the
principal order parameters and reserve the term order pa-
rameters for the set x&, . . . , x„. If Ak/A, k should diverge
at a critical point, Eq. (8) tells us that Xk becomes critical
with a divergent temperature derivative. Finally, the heat
capacity C and the free energy can be computed along a
solution, the former being (in appropriate units)

We can show that any phase for which every eigenvalue
is negative must be considered to be a thermodynamically
stable phase, although it may be only metastable. Our cri-
terion is that a stable solution must be an entropy max-
imum against adiabatic fluctuations in the order pararne-
ters. For an arbitrary fluctuation in the order parameters
the change in the entropy can be written to second order

5S=g(a;/T)5x;+ —,
' g QDJ5x;5x~, (10)

where use has been made of Eq. (6). Since the first term
represents the energy change induced, it vanishes for an
adiabatic fluctuation and we are left only with the qua-
dratic term to lowest order. Since we are considering
fluctuations around a definite point of solution in x
space, we may take the U,j matrix elements to be constant
and write 5X= U5x. Hence

25S=gA, ;(5X;) (adiabatic fluctuations),

and if all the eigenvalues are negative, we may take the
phase as stable. All phases selected by us for incorpora-
tion into our final phase diagram satisfy this criterion.
We will not examine here the question of whether or not
it is necessary for all eigenvalues to be negative to produce
stability. It is clearly sufficient from the argument given
above. If several stable phases in the above sense exist at
the same temperature, then we have chosen that phase
with the lowest free energy to represent the actual state of
the lattice.

As we solve Eqs. (6) for decreasing temperature we gen-
erally encounter a critical value T, at which one or more
of the eigenvalues vanish. In the case of a second-order
phase transition, a bifurcation occurs. It is possible in
three dimensions to continue following the unstable,
long-range, disordered trajectory below T, . However, it is
also possible to search for a new solution, that is, a new
set of x; which correspond to a long-range ordered phase.
Once a set of order parameters is found which is a new
solution of (6), one may continue to follow this new trajec-
tory in order-parameter space by our numerical technique
described in Ref. 7.

One possibility for finding a new solution below a criti-
cal point is to make an orderly scan of the order-
parameter space keeping the noncritical principal order
parameters fixed while varying only the critical principal
order parameters just under T, . However, a more effi-
cient method has been devised for use with the ANNNI
model which takes advantage of an unusual phenomenon
that occurs just above T, . For T &&T„ the long-range
order parameters are zero to within the accuracy of our
solutions to Eqs. (6). This means in fact that they are typ-
ically —10 and exhibit no sign of a modulated
behavior. As we approach within about 10 " of T, on
the high side a modulated behavior begins to show up in
the disordered paramagnetic solution but at a very low
level. The order parameters rise from —10 to —10
and even though still negligibly small, are plainly modu-
lated. If we follow the disordered curve through T, these
tiny modulations disappear once again far enough below
T, . Since two degenerate eigenvalues vanish together at
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the onset of a modulated phase as will be explained in
more detail below, we can invariably cause the computer
to lock on to the modulated solution below T, by simply
increasing both critical principal order parameters by a
factor that multiplies their tiny but well-defined values
above T, to bring them into the range [0.1,0.4]. All other
(noncritical) principal order parameters remain unchanged
in this process. Once the proper factor has been found by
trial and error, the iteration homes in on the new solution
and we can follow it down in temperature. Usually, one
or two. tries at a multiplying factor is sufficient to bring
us onto the new phase trajectory. We have no reason to
believe that there could be any actual feedthrough of a
modulated solution into the paramagnetic region above T,
and attribute it to a purely numeric effect which proves
useful to us when dealing with a large number of indepen-
dent variables (up to 60). From this it is clear that the
grouping of order parameters into the particular linear
combinations that represent the principal order parame-
ters is an essential part of our procedure. Obviously, it
would be a hopeless task to grope around in a 60-
dimensional space for new solutions without a "homing"
device of some sort.

III. T =0 STATES AND THE ORDERING VECTOR

In three dimensions the eigenvalues form four distinct
sets above T, consisting of m eigenvalues each. There are
three sets composed of m degenerate eigenvalues, and one
special set in which the eigenvalues occur as degenerate
pairs or singlets. If the number of planes m is even, there
are two singlets; if odd, only one. The special set always
contains the least negative eigenvalue. The eigenvalues in
the special set are associated with the long-range order of
the system, and the remaining eigenvalues with the short-
range order. The m independent long-range order param-
eters define a subspace of the 4m-dimensional order-
parameter space. This subspace contains the long-range
ordering vector. The distribution of the eigenvalues above
T, can be understood as follows, allowing m =3 for the
sake of clarity. The body diagonals in this 3D Cartesian
subspace define four (nonorthogonal) axes. We denote
these "zero-temperature" axes. For example, if the long-
range ordering vector lies along [111]or [1 1 1] the state is
ferromagnetic. If instead it lies along [111],the state is
modulated in such a way that each plane has the same
value of the magnetization but the direction alternates
up-up-down, and so on for the other zero-temperature
axes. If the vector does not lie on one of these axes, the
state is again modulated with a repeat distance of three
planes but with differing magnitudes of magnetization on
different planes. Any vector lying in the plane orthogonal
to the ferromagnetic axis can be described as having com-
ponents along the other three axes. Since these three axes
all correspond to modulated states of "wavelength" A, =3,
there is a natural division of the long-range order eigen-
values into a singlet associated with the ferromagnetic
axis, and a pair associated with the two principal axes ly-
ing in the orthogonal plane. Similar considerations apply
for all values of m. The sets of m equal eigenvalues are
associated with short-range ordering involving a specific

type of bond.
Above T, the long-range ordering vector is zero. Just

below T, it grows rapidly within one of the subspaces de-
fined by the different types of ordering already described,
each associated with a distinct eigenvalue or eigenvalue
pair at T, . As the temperature decreases, this vector in-
creases in length and rotates toward one of the zero-
temperature axes, lying along one of them at T=O. As
the long-range ordering vector rotates, it must take on
components in the different modulated subspaces, each
being associated with a different wavelength modulation.
Thus, the modulated long-range ordered states take on ad-
ditional Fourier components as the temperature is
lowered, in agreement with Monte Carlo results of Selke
and Fisher.

IV. 3D PHASE DIAGRAM

The general program is to assume values for m and a.

and then determine the sequence of ordered states that ap-
pear as T is decreased by solving Eqs. (6). The resulting
phase diagram is shown in Fig. 2. Our Lifshitz point is
estimated at

~

v
~

=0.27 and the region in the near vicinity
of this point is shown in the inset. Our notation gives ei-
ther the simple repeat distance in units of the plane spac-
ing along the special axis or indicates, as for the —", phase
for example, that the modulation undergoes three full cy-
cles in 14 planes. A translation between our notation and
its corresponding identification near T=O by Fisher and
Selke as the modulation becomes squared off is given in
Table I. These identifications have all been made by
direct observation of the computer output of each modu-
lated solution from its first appearance in sinusoidal form
at T, down to a sufficiently low temperature to allow an
unambiguous identification of its final shape at T=O.
After observing several of these metamorphoses, one
learns rapidly to predict the correct low-temperature form
from that of the high temperature as soon as it appears.
In this case it has proved very useful to us that our itera-
tive technique will follow any solution and not merely the
one with the lowest free energy, since a given modulated
solution does not in general remain the most stable one as
the temperature is lowered.

By taking constant a. slices sufficiently close to each
other and by considering a wide range of m values, we be-
lieve that a reasonably accurate phase diagram has been
constructed. However, practical considerations of com-
puter time have prevented us from increasing m beyond
15. This made it impossible to locate important longer-
wavelength phases. Actually, m mould have to be allowed
to increase without limit in our method in order to con-
struct a complete phase diagram and, in particular, to
study such phenomena as the expected continuous varia-
tion of wavelength along the paramagnetic boundary or
the occurrence of "devil's staircase" behavior.

The first and most obvious point of consideration for
the phase diagram is the ~=0 slice, which corresponds to
the simple nearest-neighbor Ising model. There is only a
single transition herc, from the high-temperature
paramagnetic phase to the ferromagnetic phase at lower
temperatures. The value of T, found by us for a=0 is
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FIG. 2. Resulting 3D phase diagram obtained with the entropy construction of Fig. 1. Integers represent repeat distances of stable
phases in units of the lattice constant. Fractions such as 2 indicate two full cycles in nine lattice spacings, etc. Inset shows detail of
the phase diagram near the Lifshitz point at

~
Jq/J~

~

—=0.27. Structures with repeat distance & 15 plane spacings were not comput-
ed. Table I compares our notation with the corresponding low-temperature, squared-off modulations of Fisher and Selke.

TABLE I. Translation between Fisher and Selke notation
and wavelengths.

Fisher and Selke

(23)

(4)
(2'3 )
(2'3)
(2'3)
(23')
(4'3)
(s6)

(67)
(3'4)
(34)
(4s)

(7g)

Wavelength

4
5
6
8
13
3
9
2
14
3
11
2
15
2

11
12
13
13
2

7
9
10
14
15

4.9326, the Bethe approximation value for the 3D Ising
model. The T, found here is an improvement over that of
von Boehm and Bak, which is equal to 6. Accurate series
estimates give a reduced Curie temperature of 4.513.

Making an overall comparison of the results obtained
here with the phase diagrams of Bak and von Boehm and
Fisher and Selke is quite interesting. First, all three phase
diagrams indicate the presence of a Lifshitz point. This is
a point in the T-versus-x space at which paramagnetic,
ferromagnetic, and sinus oidally modulated phases all
coexist. At such a point, the coefficient of the squared-
gradient term in the Ginzburg-Landau free-energy func-
tional vanishes. 'o" Mean-field theory gives a Lifshitz

. point at
~

a
~

=0.25. As mentioned earlier, our analysis
yields a value 0.25&

~

a
~

&0.275, where
~

v
~

appears to
be closer to the lower bound. Fisher and Selke's second-
order estimate for the interfacial tension between the fer-
romagnetic and (3) phases gives ~a

~

=0.27 for the
Lifshitz point, ' also, their earlier Monte Carlo study in-
dicates that this is the correct position. There does not
appear to be a Lifshitz point for

~

a
~

& —,
' .

The next point of interest is the multiphase point at
T =0,

~

a
~

= —,'. Fisher and Selke's low-temperature ex-
pansion shows a confluence of an infinity of modulated
phases at this point. Their study indicates that, except for
the ferromagnetic and (2) phases, only phases of the type
described by the notation (213) occur at low tempera-
tures. We find that the phases studied by us of the type
(213), namely —', , —', , —', , 5, and 6, together with the 4
phase and the ferroinagnetic phase, all behave in accord
with this confluent result at the multiphase point. For

~

v
~

& —,', Refs. 5 and 12 show that the ferromagnetic
phase goes directly into the 6 phase at low temperature.
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In contrast to the more easily interpreted behavior for

~

a'~ & —,', we could not directly verify, for example, that
the 8 and —', phases did not remain stable into the multi-

phase point. These phases, as well as all the other phases
shown in Fig. 2 are, however, degenerate in energy with
the (2J3) phases at T=O,

i
»

I
=0.5.

Bak and von Boehm's soliton-based studies indicate the
existence of incommensurable phases at higher tempera-
tures. Our method, due to the built-in choice of repeat
distance, is not capable of finding such modulations in its
present form.

Duxbury and Selke, ' using a mean-field approach,
have demonstrated the existence of phases of the types
((2 3) (2 +'3)") and ((23 ) (23 +')") at higher tempera-
tures for ~~~ & —,'. Our —", phase is one of these, and

occurs between our 6 and 5 phases, as they predict. Also
in agreement with previous work, is our bulbous (reen-
trant) region of 6 phase more or less centered on the

The phase diagram obtained here thus has some of the
properties of,all of the above-mentioned diagrams, though
it seems to resemble most closely Bak and von Boehm's
mean-field diagram. This seems quite natural, since the
bond approximation is a higher-order mean-field tech-
nique. As expected, the lower limit of the paramagnetic
region is a line of second-order critical points, while all
transitions between modulated phases are of first order.

V. THE TWO-DIMENSIONAL (2D) ANNNI MODEL

The 2D ANNNI model is constructed by simply elim-
inating one of the dimensions perpendicular to the z axis
in the 3D ANNNI model. The Hamiltonian is readily de-
rived from (1), eliminating either the x or y indices from
the spins. The system becomes a stack of lines instead of

a stack of planes.
Monte Carlo studies by Selke' indicate the existence of

an incommensurate phase between the (2) and paramag-
netic phases. Also, the Lifshitz point for

~

~
~

& —,
' disap-

pears. This form for the diagram agrees with a transfer
matrix result of Villain and Bak. ' Findings of Rujan
et al. , using a variety of techniques, indicate a similar
diagram, with the inclusion of a paramagnetic, incom-
mensurately oscillatory region between the ordered incom-
mensurate and strictly paramagnetic regions. This region
is characterized by oscillations in the spin-spin correlation
function, but not in the magnetization itself.

In view of the incommensurate behavior which has
been predicted, it is clear that the approach used by us in
three dimensions, which is the main subject of this work,
should fail to produce the correct behavior in two dimen-
sions; we look only for commensurate solutions by this
method. This expectation was borne out by calculations
using a direct adaptation of our previous 3D entropy
down to two dimensions; not even the correct T=O
behavior was found. This is clearly an extreme example
of the effect of dimensionality on a generally accepted
method of approximation. Only near

~
a

~

=0 do we re-
cover the expected behavior with T, =2.885 at the fer-
romagnetic Curie point, compared to 2.268 for the On-
sager solution.
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