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One-dimensional Ising madel in an incammensurate field

R. Schilling
Institut fiir Physik der Universitat Basel, CH 40-56 Basel, Switzerland

(Received 9 April 1984; revised manuscript received 18 June 1984)

For the one-dimensional Ising model vrith a special incommensurate field, the ground-state mag-
netization as function of the field exhibits a staircase with an infinite number of almost exponential-
ly decreasing steps. With increasing temperature, the steps get smoother and disappear successively.
The specific heat resembles that of the Ising model vnth a constant field.

I. INTRODUCTION
3ao, —p&t & —p

where cr; =-+1, N represents the number of sites, and the
magnetic field h; at the site i is given by

h;(a) =h(i)+a) (2a)

with h(t) being a periodic (period equal to 1) piecewise
constant function:

In the last few years one-dimensional incommensurate
systems have been studied intensively by several authors.
For earlier references we refer to the review by Bak. '

One of the most striking features of the investigated
systems seems to be the existence of a devil's staircase.
The first explicit expression for a complete devil s stair-
case was given by Aubry for the Frenkel-Kontorova (FK)
model with piecewise parabola potential. Recently, Bak
and Bruinsma have proven rigorously that the ground-
state magnetization as a function of the external field for
a one-dimensional Ising model with long-range antifer-
romagnetic interactions exhibits a complete devil s stair-
case too. The equivalence of both models has been shown
by Aubry.

With this equivalence, the low-energy excitations of the
FK model with parabola potential can be described, as
shown by Aubry et al. , by a one-dimensional Ising
model with long-range antiferromagnetic interactions and
an incommensurate field. The low-temperature specific
heat which was deduced from that (Ref. 5) for an incom-
mensurability ratio equal to P=(v 5 —1)/2, the inverse of
the golden mean, exhibits as a function of the temperature
an infinite number of peaks. These were interpreted as
transition points (not real phase transitions) between com-
mensurate phases related to the continued fraction expan-
sion of P. This anomalous low-temperature behavior was
already found before by Pietronero and Strassler.

Two questions may arise now for one-dimensional in-
commensurate systems.

(i) How generic is the existence of a devil's staircase?
(ii) How generic is the anomalous behavior of the

specific heat at low temperatures?
The following incommensurate Ising model leads to ex-

act answers:

N
H = g (Jo;o;+,—h, o, ), o„+,=o.,

h(t+1)=h(t), P=(v 5 —1)/2
(2b)

with ao and a~ representing constants. The phase a in
Eq. (2a) (0&a & 1) can be chosen arbitrarily for the in-
commensurate case. We take +=0. Studying the incom-
mensurate Ising model may also be motivated by extend-
ing recent work by Derrida et al. , ' Williams, Doman
and Williams, ' Bruinsma and Aeppli, " and Aeppli and
Bruinsma' for the Ising model with a random field.

II. FINITE TEMPERATURE

We calculate the partition function for (1):
N

Z(P, N) =tr g T(i P), P=(k~ T)

with the use of the transfer matrix

exp{ —[K—H(t)] I

exp fK—H(t) ]

K=PJ, H(t)=Ph(t)

exp[K+H(t) ]
exp{ [ K+H(t)] I—

(4)

which is related to the one-dimensional Schrodinger equa-
tion with incommensurate potential, given by (2). This
was recently studied independently by Kohmoto et al. '

and Ostlund et al. ' From Eq. (4), it follows that detT(t)
is independent of t. We define

k
M~'~=(detT)-"" g T(ty), (5)

M(t)= ~

Mo, —P&t& —P
—y'&t &y'

where the matrix elements of Mo and M~ are constant.

for which detM'"'=1. From this, it follows that M'"'
can be obtained recursively:

M ' ' (t) =M ' (t+k P)M ' (t), (6)

with M"'(t)=M(t) and where M(t)=(detT) '~ T(t).
Then, Eq. (2) implies
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Thus, for arbitrary t, M(t) is equal either to Mo or to
M &, which is a result quite similar to that of Ref. 13.

Therefore it follows from Ref. 13, that the recursion re-
lation (6) for k& and kz, restricted to the Fibonacci num-
bers Fl, becomes 0

1 ~ 5

K/H=-20

0
C. 5 -2.5 2, 5

Ml+, ——Mr, ~l,
where C (P.K/H)

1
K/H=-10

0, 5
K/H=2

Mt =M ' (t =0),
M =M( —P ), Mt =M(0)

and Ft are defined by

0
0

K/H=- 0 ~ 1

0
-2 ' 5

0, 5
K/H=

2.5

Fl+1——Fl+Fl 1, l &1, with Fo——1 and F1 ——1 . (8)

Using (7), it is easy to prove that the following identity
(Ref. 13):

M i+1+M l —2=~ l —1~l+~ l —1~ l
—1 —1 (9)

Xl+1=XlXl —1 Xl —2 ~ (10)

where we have used trM t
——tr(M t ') and

Mt+M~ =(trM~)I (I is the unit matrix) which holds
for 2&(2 real matrices with a determinant equal to l.
Taking the trace of Eq. (5) and k =Ft we obtain for the
partition function Zt =Z(P, N =Ft ):

F

ZI(p, K,H,H, ) —=tr g T(ip)

is true.
Let Xt ——trM t (notice that we have omitted the factor

—,', compared to Ref. 13), then taking the trace of Eq. (9)
we obtain

0
-2.5

0
2.5 -2, 5 2 ' 5

-In
P

FIG. 1. Specific heat (in units of ks} as a function of 1np (p
in units of J ') for different EC/H and I =30.

ly such that for i=30, F& '1nZt —f. From th—is, one easily
obtains the specific heat per spin:

82
c(p,K,H)= kgp 2

—[pf(p, K,H)] (14}

[Pf(P K H)]

and the magnetization (per spin} with respect to the local
field direction:

j'I

~'(P,K,H)= lim Ft ' g (o;)sgnh;
l~m 1

=(detT) ' trMt

=(detT) '
X& .

detT follows from Eq. (4). Then, substituting Xt from
Eq. (11) into Eq. (10) and using (8) we find

Zt+& ——ZtZt &

—[2sinh(2K)] ' 'Zt ~, l ) 1

which are represented in Figs. 1 and 2. Whereas the
specific heat resembles that for the Ising model in a con-
stant field, the "magnetization" exhibits a peculiar
behavior which can be understood by the exact results for
the ground state, which will be discussed now.

P= 0.1

Z
&
——2cosh(Ho —H& ),

Z; =2 exp( —2K)coshH;, H; =Pa;, i =0, 1 .

The asymptotic behavior of Zt, for l —+ Do, is

Zt ~exp(
, PfFt ), —

(12)

(13) , (t}
M' (I3, K/H)

0
-5

0
0 0 15

where f(P,K,Hc,H&) is the free energy Per sPin.
We have not succeeded in deriving an analytical expres-

sion for f but Eq. (12) can easily be iterated on a comput-
er. Performing only l =30 iterations, the partition func-
tion for N =F3o-= 1.3 && 10 spins is obtained for given K,
Ho, and H1. To our knowledge there is no other example
apart from the exactly solvable models where this can be
done with such little effort.

Because of Eq. (13) we have iterated inZt. This was
performed for Ho= H& H. F& 'lnZt c—onverges rap——id-

0
-5

0
0 0

0, 5

15

0
-5

0
0 0

K/H

15

FIG. 2. Magnetization as function of X/H for different tem-
peratures and I=30.
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III. GROUND STATE

For this purpose, some properties of the sequence

(Pl) si is the union of si i and si

si=si i Usi 2, l&5 (16)

Ie (0}ji=Isg» (0}
I
1&i &Fi j

will be crucial. Because of the periodic boundary condi-
tions [we have chosen in (1)], two sequences Ih;j and
Ils =h;+„j (b'av+, ——h„n is an arbitrary integer) are
physically equivalent. It is easy to prove that in that sense
Ie;(u)ji and Ie;(0}ji are equivalent for arbitrary phases

For convenience, we choose a=2/ —1=/ . The se-
quence si = Ie;(P ) I i has the following property.

with

$3= —+—
S4= + +

For simplicity we omit the union symbol in the explicit
representation of si by plus and minus signs, as for s3 and
s4 given above. We only sketch the proof of (Pl), which
is analogous to that of Eq. (7). Using Eq. (2) with a=/
and Eq. (8), we obtain

si=Ie;(P }js(,~z, ——I&i(P )js(i(~, , U Ie~, ,+i(4' ) js(i(s, , 'si——i U [sgn" (Fi i0+i0+P ) ji(i(~, , (17)

Using a further property of P (Ref. 15),

Fie Fi i=-( 1)iC'+-s, (18)

I

Using Eq. (16) (n —1) times, si can be composed as the
union of only s~ „+~ and sI

one can easily prove that s, =s, „+,Us, „U . Us, „+, , (20)

sgnh(Fi sP+iitp+P )=sgnh(i/+$3)

for 1 &i & Fi 2 and l & 5. Then, we obtain, from (17),

i —i U Isgn~(il'+4' }j i(i&F

=si i Usi 2 for l&5,
/

which was what we set out to prove.
(P1) implies the following properties.

(P2) In si the plus signs are always isolated, the minus
signs are either isolated or appear in pair and the largest
subsequence of si(l & 4) with alternating signs is s4.

(P3) The number of minus and plus signs in si is equal
to FI ~ and F~ 2, respectively.

(P3) follows from (Pl) and Eq. (8) by induction.

with 2(n &l —3. Representing sI „+& by a minus sign
and si „by a plus sign in Eq. (20) the obtained sequence
si"' has the following property.

(P4) si"' is equivalent to s„.

This again is easily proven by induction. These properties
are related to the "irrational decimation" discussed by
Feigenbaum and Hasslacher. '

Now let us investigate the ground-state problem of (1)
for N=Fi. We take the phase a=/ without restricting
generality.

For IC/H=O, the ground-state spin configuration is

oI '=sgnh;(P ) . (21)

From (Pl) it follows that this has the form

( —+ —)(

I

+ + )( + + )( —+ —)( —+ —+ —) . . (22)

which we represent as

F3F4F4F3F4 (23)

because there are only blocks of F3 and F4 alternating
spins. For J&0 the modulated ground state (22) becomes
unstable if

2J+a =0
(we have chosen ao ———as ——a} because then the energy to
flip the isolated up spins [because of (P2)] vanishes. Thus
for the ferromagnetic case there is a transition at

K/H = —0.5

from the modulated state (22) with mo' '=1 to the fer-
romagnetic state with all spins down and m' '=(Fi

Fi 2)IFi [where (P3—) is used]. m'"~P for i~00.
The antiferromagnetic case is much snore interesting.

Because the F3 and F4 blocks in (22) (displaced by

I

parentheses) are antiferromagnetic, they already have
minimum energy. But the bonds between two adjacent
blocks are frustrated. Decreasing the snagnetic field, the
modulated ground state becomes unstable at a critical
value (K/H)s where flipping the F3 blocks does not cost
energy. Representing in (22) the Fs block by plus signs
and the F4 blocks by minus signs, one obtains a sequence
which is equivalent to si 3, because of (P4). Therefore
the sequence (23) consists of only two types of "alternat-
ing" blocks [(P2)]:

and

(F4F3F4)

(F4FsF4F3F )

Therefore, when the F3 blocks flip a new ground state
with only two types of antiferromagnetic blocks is ob-
tained. These blocks consist of
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2F4+F3 ——F6 use (see Ref. 15)

3 3„——( —I)"E3,EI+(—1)"+'F3,+IF&

(F3.+IF3.F3.+ I }

and

(F3n+I 3.F3.+IF3.F3.+I } .

Thus at (K/H)„ the E3„blocks fiip forming two types of
antiferromagnetic blocks with

2F3n+ j. +F3n F3(n+1)

and

3F3n+]. +2F3„——F3(n+ $)+1

spins and are called the F3(n+]) and F3(n+])+~ blocks.
(K/H)„ is determined by the condition that the energy to
flip RII E3 block just vanishes. This happens if

—2J'+(x„a)=0, (26)

where (x„a) is the field energy of an F3„block. (We
would like to remind the reader that we have chosen
ao ———aI ——a.} With (y„a), the field energy of the F3~+I
block, we obtain the recursion relations:

&n+) =2' &n~

3'n+1 =33'n 2xn n ~ 1

x) =3, g) =5
from which one finds easily

xn=4n —1, n &1 .

Equations (26) and (27) yield finally,

(K/H)„=2n —2, n & 1 .

(27}

(28)

The ground-state magnetization m'„'' for (K/H )„
&K/H & (K/H)„+I is just m'„''

I reduced by twice the
magnetization of an F3„block, which equals 2x» times
Et 2 3„/Et, the numbers of F3„blocks per spin:

m'„=m'„'
&

2(4n —1)E—t 2 3„/Et (29)

for 1 & n & [(I—2)/3] ([x] is the integer part of x). If we

3F4+2F3 ——F7

spins and are called the F6 and F7 blocks, respectively.
Thus, the new ground state is represented as

F6F7F6F7F7F6 .

At (K/H}2, the F6 blocks become unstable, forming
larger antiferromagnetic blocks. This procedure continues
until the ground state is built up of antiferromagnetic F3„
and F3„+~ blocks:

F3nF3n+iF3nF3n+iF3n+i '

Representing in (25) E3„and F3g+I by plus and minus
signs, respectively, the obtained sequence is equivalent to
st 3„[because of (P4)]. Therefore (25) consists of only
two types of "alternating" blocks [because of (P2)):

lim Et IIEI=Q
l~ ao

we obtain for the infinite system from (29),

m'„'"'=(1 +4' )P ", n ) 1 .

IV. RESULTS AND DISCUSSION

For a special incommensurate external field the parti-
tion function can be determined recursively. Performing
only l =30 iteration steps on a computer, we obtained the
specific heat and the magnetization for a system with
%-=1.3&10 spins.

The specific heat as a function of temperature does not
exhibit a number of peaks but resembles the behavior of
the Ising model in a constant field. The flat region occur-
ring for K/H =2 and K/H = —20 may be related to the
existence of two typical energy gaps in the excitation spec-
trum leading each to a Schottky anomaly such that super-
imposing both may result in such a flat behavior.

Whereas the ground-state magnetization as a function
of K/H has only one transition point (no real phase tran-
sition) for J&0 it exhibits for J&0 and for the infinite
system an ordinary staircase, i.e., first-order transitions
with an infinite number of decreasing steps, according to:
(28) and (30). Thus, there is no devil's staircase. This re-
sult is quite similar to that obtained by Williams for the
random-bond Ising model, but there m'„'-1/n for
n ~ oo which is different from (30).

Fol. flic co111IIlcIlslll Rtc CRsc, IcplRclllg p by FI I/Et
only [(l —2)/3] steps appear and the ground state is
periodic with period F~. This is quite similar to the
Frenkel-Kontorova model. ' We would like to mention
that a similar behavior has been found by Nadal et al. '

for h(t)=hcos(2mgt).
For increasing temperature the steps become smoother

and disappear one after the other, first the smaller and fi-
nally the largest ones (Fig. 2). The "transition" points are
still given by (28) for i=1,2,. . ,no, where n.o depends on
the temperature and the "magnetization" is well approxi-

. mated by (30) for not too high temperatures. The same
smoothening of the steps was found by Doman and Willi-
ams' for the random-bond Ising model.

Thus the magnetization for the incommensurate Ising
model with nearest-neighbor interactions differs qualita-
tively from the Ising model with long-range interactions
studied in Ref. 3 or equivalently the Frenkel-Kontorova
model in Refs. 2 and 5, but resembles that for the
random-bond Ising model studied in Refs. 9 and 10.
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