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Lattice gas with random-site energies and theory of novel amorphous metal hydride phase
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A lattice gas with random-site energies is investigated as a model for hydrogen in amorphous met-
als. The author s recent theory for calculating the chemical potential in a system with many com-
peting interactions is modified to include the random-site energies. Results are qualitatively dif-
ferent from those recently presented by Griessen using simple mean-field (MF) theory. Whereas MF
theory predicts no phase separation above a critical value of the site energy width 6, the present
model gives a finite critical temperature T,al/5 for large h. It also predicts the critical concentra-
tion to decrease proportionally to 1/6 and yields a closed-loop, retrograde-solubility phase diagram.
Thus, analogous to binary liquids with orientation-dependent interactions, there is a maximum con-
centration above which no phase separation occurs. For interactions and spread in site energy ex-
pected for Pd-based amorphous hydrides, the critical temperature is predicted to be approximately
200—250 K, which 'may be detectable by heat-capacity or spectroscopic techniques even if it is too
low for pressure-versus-composition studies.

I. INTRODUCTION

Hydrogen in crystalline metals is a system which pro-
duces a variety of phase transitions and complex hydride
phase diagrams. ' These have been described with some
success by lattice-gas models with pairwise hydrogen-
hydrogen interactions. Hydrogen in amorphous metals,
however, generally does not exhibit phase changes, even
in systems for which a crystalline alloy of the same com-
position does. Griessen (referred to as RG) has shown
that the lack of critical behavior can be explained by a lat-
tice gas with random-site energies, as expected for the
amorphous metal. His simple mean-field (MF) treatment
predicts no phase transition above a critical value of 5/Jo
(b, is the width of site energy distribution, Jo is the
mean-field interaction strength). The MF result is analo-
gous to the Stoner theory of itinerant ferromagnetism
with the spread in site energies here playing a similar role
to the kinetic energy in a Stoner magnet.

Although RG has successfully explained the basic qual-
itative feature, there can be quantitative questions (and it
turns out qualitative differences) because of his use of the
MF approximation. Indeed Hill showed some years ago
in studies of adsorption on a heterogeneous surface that
although MF predicts no phase transition above a critical
6/Jo, the improved quasichemical approximation does
predict phase separation at sufficiently low temperature
for any finite b, /Jo. MF is known to have severe limita-
tions for lattice gas models as applied to hydrides. It al-
ways gives a critical concentration co ———,

' unless there are
concentration-dependent energies which we ignore here
(co is the number of hydrogen atoms per available inter-
stitial site which is usually less than the hydrogen to metal
concentration ratio x), whereas in experiment and in more
refined theory co can be significantly less than —,. MF
theory also generally overestimates the critical tempera-
ture T, . Both of these shortcomings can be traced to the
strong (comparable to k+T, ) interactions of alternating

sign which characterize the elastic interactions used in lat-
tice models. I have recently employed a technique (Ref.
7 referred to as I) which gives more reliable results while
maintaining much of the analytic simplicity of MF. In
particular co and T, were found in I to agree with Monte
Carlo calculations to within better than 10%%uo for the same
interactions used to model PdH„and NbH„.

The methods of I are extended here to the case of ran-
dom site energies. Detailed calculations are performed us-

ing the PdH„ interaction parameters, and analytic expres-
sions are obtained valid for large b, and to second order in
the interaction strength (MF is valid to first order only).
In contrast to RG, I find T, ~ b. ' for large 6 rather than
being zero above a critical b, . This nonvanishing of T, is
consistent with the quasichemical result derived for
nearest-neighbor interactions. Further, the critical con-
centration co, which is always —,, independent of 6, in
MF, is shown to decrease as 6

The calculated phase diagrams are closed loops (retro-
grade solubility) for large 6 so that there is a finite con-
centration, of the order of co, above which phase separa-
tion does not take place no matter how low the tempera-
ture; and the mixed-phase region is reentrant versus tem-
perature. Such diagrams are well known ' for binary
liquid mixtures and have been successfully described by
lattice models. ' ' The diagrams here are novel, howev-
er, in that they are for a one-component system and have
the lower critical point at zero temperature and concentra-
tion (see Fig. 5) rather than at finite values.

The theory of I is extended in Sec. II to include
random-site energies. Numerical results for a fictitious
amorphous PdH„, that is hydrogen-hydrogen interactions
the same as, in crystalline PdH„, are presented in Sec. III.
Analytic expressions are given in Sec. IV for the large-b„
weak-interaction limit. These display the features found
in the detailed PdH„calculation. The results are dis-
cussed in Sec. V, with emphasis on the physics of the
unusual phase diagrams and on the possibility of observ-
ing phase separation in random metal hydrides.
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II. THEORY

where P; is the site occupation number (P; =1 or 0), JJ is
the interaction, and e; is the random-site energy. Follow-
ing I, the expectation value of P;, defined as c;, is calcu-
lated from the grand-canonical partition function,

@=Tr exp PH—+Pp QPJ (2)

c;=g 'Tr P;exp PH+—Pp QPJ. (3)

where P= I/k~T and p is the chemical potential deter-
mined from the self-consistency condition

The lattice gas Hamiltonian is the same as used in I ex-
cept for the addition of random-site energies:

H , g—JgqPtj g—e;P;,

The chemical potential p is of course the same at each
site so that the complete rhs of Eq. (9) is not variable; but
the separate terms on the rhs do change from site to site.
We therefore take an average over the random distribution
of site energies, indicated by curly brackets [ j, on both
sides of Eq. (9) to obtain

Pp= jln[c;/(I —c;)]j—g [in(1+ Ujcl, )j, (10)

where we have selected the arbitrary zero of energy to be
such that [e; j =0 (as noted in I, a nonzero [e; j can sim-

ply be lumped into a redefined p ~@—[e; j ).
We proceed to compute the necessary averages by not-

ing that Eq. (5) may be written as

c; =[1+exp( —zo —t; }]

where

N

g c;=Ntc=NMx, '4' and

zo = [ln[c;/(1 —c;)]j = [ln V~ j +Pp, (12)

c; = V,e~"/( V,e~"+1)
[see Eq. (6}of I], with

V;=e ' g (1+Ugqcj, ),
J

(5)

(6)

where Nt and N~ are the number of interstitial and metal
atom sites, respectively, and c and x are the concentra-
tions of hydrogen per interstitial site and hydrogen per
metal atom, respectively. We had c;=c in I since all sites
were equivalent, but here c; varies from site to site. The
two approximations employed in I are also used here. The
first, neglect of correlations (P;PJ ) =c;cj for i&j, allows

c; to be written as

tt ——ln V; —[ In V; j .

The quantity zo is then determined by the condition

[ c; j =c=f dt p(t)[1+exp( —zo —t)]

(13)

(14)

where p(t) is the probability distribution for the random
function t. Solution of Eq. (14) gives zo(c) which can
then be inserted in Eq. (10) to give p(c) provided the
second '(interaction) term on the rhs of (10) can be ex-
pressed in terms of c.

Before dealing with the more complex treatment em-

ployed in I it is instructive to consider the MF solution as
obtained by RG. MF is equivalent to taking

~ UJ
~

&&1
and cj;=cj in Eq. (10) whereby it reduces to

where Pp MF =zo +PJoc (15)

(7)

Pp=ln[c;/(I c;)]+Pe;—$—1n(1+U,j.cz, ), .(9)

which is the same as Eq. (18) of I except for addition of
the site energy e;.

and c-; =(,PJ. ); is the expectation value of PJ in an en-

semble in which site i is absent or, equivalently, in which

P; is constrained to be zero. The second relates the re-
stricted average to the complete ensemble average by

cJ;/(1 —cJ;)=(1+U;Jc;J) 'cj/(1 —c~) .

The reader is referred to Eqs. (7)—(16) of I and the sur-

rounding discussion for the meaning of these approxima-
tions and the derivation of Eq. (8). An important differ-
ence between Eq. (8) here and Eq. (16) of I is that in I it
was legitimate to replace c;J by cJ; since sites i and j
were equivalent. With c;J——cJ; on the right-hound side
(rhs) of Eq. (8), one has a single equation for cj; whose
solution is Eq. (17) of I. This simplification cannot be
made for inequivalent sites. Use of Eq. (6) allows the
determination of V; in terms of the site-occupation proba-
bilities and p is then given from Eq. (5) by

for . the mean-field solution with Jo =g.JJ for

~ UJ ~
&&1, which implies P

~
J,J ~

&&1. The fluctuation
in'; is

[t; j =p [e;j+g [[ln (1+U; c;)j—[ln(1+U; c;)j2]

if e; and cj; are uncorrelated, which must be true since by
its definition [see under Eq. (7)] cJ, cannot depend on
properties of site i. A further simplification of MF is that
terms of the order of UJ are ignored so that the interac-
tion term does not contribute to jt; j. Thus in MF the
distribution of t; is the same as the distribution of Pe; so
that p(t) in Eq. (14) may be replaced by whatever has been
chosen for the distribution of site energies. Thus zo in
(15) is a given function of c and the site energy distribu-
tion, and p(c) is thereby determined.

Improvement upon MF consists of using Eq. (8) and
not making the small UJ approximation in Eq. (10), and
also of using a "true" p(t) whose width is enhanced by in-
teractions according to (16) rather than po(t), the distribu-
tion of site energies only.

A configurational average of Eq. (8) is obtained as fol-
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x (u) =(1+e ")

which leads to an integral equation for zJ;. Note that we
have taken tf(c; J)j = If(cj,.}j for any function f of the
variable. This is correct for the average as long as
UJ ——UJ, although, as remarked under Eq. (8), it is not
true before averaging.

Use of (18a) in (10) gives

pp =zo —g (zo zz., t
)—

J
(19)

lows. Assume by analogy with Eq. (11) that

cJ;= [1+exp( —zj; t~;—)]—1 (17)

where zj, ——I cj,./(1 —cj,. ) j and the random variable tj, has
the same distribution as tj in Eq. (11) for cj. [Examina-
tion of the expression for cj, in Eqs. (11) and (12) of I
leads to the conclusion that

( &~ j —
I tj, j = I ln (1+UJ c;J ) j —

I ln(1+ U~ c; 1 ) j 2,

which is a negligible difference when there are many in-
teraction terms UJ contributing to I t; j in Eq. (16), which
is the case of interest. ] The average of Eq. (8) then be-
comes

zJ &
=zp —

I lil( 1 + U&J'CJ & ) j

I ln(1+UJcf, ) j =I dt p(t)in[1+ UJx (zj, + t)], (18b)

with

III. CALCULATION FOR RECTANGULAR
DISTRIBUTION

For a rectangular

1/(2Pb, ),
~

t
~
(Ph,

O, gati) Pb, , (20)

the solution to Eq. (14) is

zo ——ph+1n[(1 —e ~ ')/e ~ " '—1)] (21)

as given by RG. Another useful result is for the fluctua-
tion o„

where zj;. is a function zj;(zo) from solution of Eqs. (18)
and zo is a function zo(c) from solution of Eq. (14) in
which p(t) has been determined self-consistently via Eq.
(16). Thus in principle we have obtained the desired solu-
tion p(c), although it is not entirely satisfactory in terms
of a simple closed form expression. To make the situation
more tractable we consider, as did RG, a rectangular p(t)
which allows analytic solution of Eq. (14) and replace cj,.
by cJ in Eq. (16), which greatly simplifies calculation of
the width of p(t). Results based on this are presented in
Sec. III, and Sec. IV presents an analytic expression valid
for the rectangular distribution and to the order of UJ
(next highest order in the interaction beyond MF).

cr, —:[c; j —c =c/(1 —c)—e [sinh(ph)/ph]/[I+e +2e cosh(pb, )] . (22)

Equation (16) may be written as

b /3=6, o/3+a
where 5 /3 is the second moment of the site energy distri-
bution and o is the enhancement due to interactions.

The tacit assumption has been made that the variable
t=pe lnV ha—s a distribution whose mean-square width
is given by the sum of the squares of the widths of the
separate distributions, which implies Gaussian distribu-
tions. lnV is expected to have a Gaussian distribution be-
cause of the large number of terms (many interactions
UJ ) which comprise it, and the given distribution of e can
reasonably be chosen as Gaussian. Thus the rectangular
distribution is meant as a convenient approximation to a
Gaussian of the same mean-square width whereby simple
analytic expressions can be obtained.

A completely self-consistent treatment would require cr

to be determined by simultaneous solution of the system
of Eqs. (21), (23), and (18) for each ej, Considerable sim-
plification is achieved by replacing cJ; with cj in Eq. (16}
so that o becomes a function o. (zo, h) whereby solution
of the single set of two equations (21) and (23) gives
b =h(c) which is then used for the distribution p(t) for
each cj,. in Eqs. (18). This is exact to order UJ, which is
sufficient to describe all the qualitative differences from
MF and is unimportant in the interesting region of very
large 6 as discussed in Sec. IV.

The required averages of ln(1+ Ujc;) and ln (1+UJc;)
cannot be done analytically even for the rectangular distri-
bution. It is not overly time consuming to perform the
necessary integrals numerically. However, useful and suf-
ficiently accurate approximations are

Iln(1+ Ujcj ) j =(1—e)ln(1+ Ujc)+ec ln(1+ UJ ),
(24)

Iln (1+U~jcj) j —Iln(1+ Ujcj) j

=cr, [(l—e'~ )U,z+e'~ ln (1+U,J )], (25)

where

e=o2/c(1 c) (e~—0 for b~O, e~l for h~oo)

U„=U„/(1+ U;,e) .

Equation (24) is good to more than 1% and Eq. (25) is
good to more than 10% for a wide range of values of in-
terest.

Having obtained b, as a function h(c), the transcenden-
tal Eq. (18a) is solved for each z,j and the result put into
Eq. (19) for the chemical potential. The procedure has
been carried out for the set of interactions used in I to
characterize PdH„. These, found in Table II of I, give JJ.
for the first 11 shells and range from —123

I
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FIG. 1. Critical temperature T, vs site energy width 5 for
PdH„ interactions. Both normalized and actual values are
shown. [T,(0)=611 K is T, at 6=0; 5=60/2T, (0).] Solid
curve, results of calculation described in Sec. III. Dashed curve,
mean-field (MF) theory as given in Eq. (26}

0
0.00 0.05 0.10 0.15

FIG. 3. Spinodal (dp/dc =0) boundary for same model as in
Fig. 1 at 6=0.15 eV.

&JJ./kq &400 K. The remaining long-range elastic in-
teractions, as in I, add an MF term —chic to p. It takes
about 0.05 sec on a Control Data Corporation model
CDC Computer 7600 to compute p at a given c and T.

Results for the critical temperature T, and critical con-
centration co, defined as the points where 5 p/Bc
=By/t)c =0, are shown in Figs. 1 and 2 as a function of
60. Also shown is RG's result

T,(h)/T, (0)=25/In[(1+5)/( I —5)), (26)

where he has 5= —2b,o/a with a the mean-field interac-
tion such that k&T, (MF)= —a/4. A natural way to
transcribe his result is to replace T, (MF) with T, (0), the
calculated T, at 50——0, so that 5=ho/2T, (0), which is
used for the plot of Eq. (26). The calculated T, (h) agrees
with RG in this manner for 5&0.7 but there is strong
departure for larger 5. Whereas RG has T, =0 for 5).?,
the PdH„model calculation shows T, is only reduced to
about 0.64 of its initial value (from 610 to 390 K) at 5= 1
and there is no indication of a finite cutoff 5 above which
T, =O. The spinodal boundaries (dp/dc=0), shown in
Fig. 3, have the unusual property of giving a maximum c
above which there is no phase separation and a reentrant

mixed phase. A typical p-versus-c curve below T, is
presented in Fig. 4.

IV LARGE ~~ SMALL Ji~LIMIT

We obtain here a solution valid to second order in
Uz

——exp( —PJJ ) —1 which displays analytically the
features T, o:6 ', co~A in the large-6 limit. The
condition

~
J~ ~

/k~T, (0) & —, is satisfied in the PdH„
model, so an expansion in UJ is reasonable. MF corre-
sponds to going only to first order in JJ and gives poor
results for competing interactions because
(g.J~)' -Q.JJ. so that, as in spin-glasses, significant
differences can result from going to 0 (Jz ). For example,
the PdH„model (Table II in I) has

r 1/2

Q J~~J /kg ——1.56X10 K
1

g J; /kg ———3.37X10 K
J

while

0.3 -8

O

Z0 0.2—
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I
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0.0 Q. 1 0.2 0.3 0.4 0.5

FIG. 2. Critical concentration co vs normalized site energy
width 6 for same model as in Fig. 1.

FIG. 4. Chemical potential p vs concentration c for same
model as in Fig. 1 at b, =0.1S eV, T=200 K.
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—g ~J ~/k, = —17.8X10'K
J

(the MF term a has been included in g.JJ and

g.
~

Jj ~

}. Thus if all interactions were the same sign the
lJ

0 (J;J ) term would be an order of magnitude smaller than
the 0(J,J ) term and one might expect MF to be reason-
able, but with them alternating in sign the 0(JJ ) term is
reduced considerably with a concomitant worsening of
MF.

Equation (9) shows that CJ,. need be obtained only to
0(UJ) in order to have a solution for p valid to 0(UJ).
Since CJ, is determined from zj,. by Eq. (17), it follows
that zj, is only needed to 0 ( U,J ) whereby the rhs of Eq.
(18a) can be replaced by

dPp/dc =0=2PE/(1 —e ~ ') —Ui

d Pp/dc =0=4PE—Uz(1 —e ~ ')

The critical concentration from Eq. (35) is

Cp —— (ki—iT, /2b, )in[i 2(b,—/kiiT, U2)'~ ],
and the equation for T, becomes

2(UzbP, )'~ =Ui

(34)

(35)

(36)

(37)

upon inserting (35) in (33) where U2 and Ui are functions
of temperature to be evaluated at T, =. 1/kiiP, . In the
same spirit of keeping terms up to 0 (P J ),

ln(1+ Ujcj, )= UJCJ+0(UJ ),
and thus Eq. (18a) becomes simply

Ui = Np+—2P'~e

Uz =O'Je

(38a)

(38b)

zji ——zp —U,Jc +0 ( U,~j } . (27)

This enables one to compute the average of any function
of CJ; in the same way as he would compute the average
of the function of CJ with zp replaced by zp —U&jc.

To the desired accuracy, Eq. (10) thus becomes

PP =zp —g U 1c (zp —U jc}+ T~
I c ] g U J. (28)

where c(zp —Uj.c) is the concentration determined from
(14) with zp replaced by zp —U~jc, and since it is only
needed to 0 ( U,z. ),

dcc (zp —Uzc) =c Ujc —=c—Ujc [c;(1—c;)),
dzo

(29)

the second equality following from differentiation of Eq.
(14). Using Eq. (29) in Eq. (28) gives the form valid to
0(U,2j),

Pp, =zp Uic+ ,
'

U2[3—c —2c +o,—(1—2c)], (30)

where Jp ——gjJJ is the mean-field interaction and

J, =Q.J~j. The solution to Eqs. (36) and (37) for
b, & i Jp j /2 has

AT, =(J,b, /Jp)[1 —(1—
~
Jp

~

/26)'~ ] . (39)

For
~
Jp

~

&&b„k~T,=J, /166, and cp ——J, ln2/326, so
there is a transition for finite b, even with zero mean field
( Jp ——0).

As mentioned, the above critical-point expressions are
valid only if b. =hp. We can examine the conditions for
this by inserting the results obtained from Eqs. (36) and
(39) into Eq. (33). For b, »

~
Jp ~, so that the limiting ex-

pressions under Eq. (39) may be used, we find

6 =bp/I 1 —96cp[21n2{1—cp) —1]/21n 2] .

The maximum enhancement occurs at co ——0.185 where
6=1.34hp. If cp &0.01 the concentration dependence of
5 can safely be ignored and p may be expressed in the
normalized form

where Ui ——g UJ, U2 ——gjUJ and o, is the fluctuation
given by Eq. (22). We now take the limit Ph»1 for
c& —, so that e ~ " '&~1 but do not assume e ~ '&g1,
i.e., allow for c «1. Equations (21) and (22) then reduce
to

Pp =in[{1—y)/y] —4(1—y)/r,

1.0

(41)

zp- —Pb, (1—2c)+ln(1 —e ~ '),
o, =c(1—c)—(1—e ~ ')/2PE .

(31)

(32)

0.8

0.6
The above may be inserted into Eq. (30) to obtain an ex-
pression for p which is still complicated because 6 is not
the "bare" site energy width 6 but is enhanced by in-0
teractions as in Eqs. (16) and (23). In the same 0(UJ)
approximation these equations become

0.4

0.2
b. =6p+3U2[c(1 —c)—(1—e ~ ')/2PE] (33)

upon use of Eq. (32). The correction can be neglected for
sufficiently large hp, in which case the concentration
dependence of 6 can be neglected in considering the
necessary derivatives of p for the critical point relations.
With this simplification we have, for c«1, Pb, »1
(b.=b,p),

0.00.0 0.5 1.0 1.5 2.0 2.5
C/C o

FIG. 5. Normalized phase boundary given by Eq. (41).
Dashed curve, spinodal boundary; solid curve, boundary from
Maxwell construction. Temperatures T2 and T~ are upper and
lower boundary points in connection with Fig. 6.
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where t= T/T, and y =exp( —c ln2/t) with c =c/co,
from which the isotherms can readily be plotted. One can
show from Eq. (41) that c& ~t, cz o:tin(1/t), and c cct,
where c&, cz, and c are, respectively, the two roots of
BPp/Bc =0 and the value of c where 8 Pp/Bc =0. Thus
T =c =0 represents a lower critical point so that the dia-
gram is a special case of a closed loop with upper and

- lower critical points. The resulting phase diagram for both
the spinodals and Maxwell equal areas construction' are
presented in Fig. 5.

I

!

!
ORDERED SEGREGATED
MIXTURE I SAA. ~ SAB

~ JAB~ ~ ~JAA&

!

!

!
I

RANDOM
MIXTURE

T~ T2

FIG. 6. Schematic free-energy difference vs temperature for
AB mixture. F(AB) equals free energy with A uniformly
mixed in B; F(AA) equals free energy with A molecules
clustered together. J and S refer to respective interaction ener-
gies and entropies. See text for further details.

V. DISCUSSION

The above theory has predicted phase separation at ar-
'

bitrarily large values of the site energy width b„whereas
MF gives no separation for 4 larger than the mean-field
interaction energy. A closed-loop, retrograde-solubility
phase diagram is found for large 5 instead of the dome-
shaped figure generally associated with lattice-gas models.
As mentioned in the Introduction, closed-loop diagrams
with a finite lower critical temperature and concentration
are often found in binary-liquid mixtures. They have been
explained' ' by orientationally-dependent interactions
between molecules of the two species. The following ar-
gument, borrowed from the Introduction of Ref. 12, gives
a physical picture.

Suppose the system consists of type-A and type-B mol-
ecules. There are A-A and A-B attractive interactions
—J~ and —Jz&, respectively, with —Jz» —J~~ so
that an AB mixture is energetically favored over an AA

segregated phase. (For the purpose of making later analo-

gy with the amorphous hydride, we ignore any BB in-
teraction. ) Suppose further, however, that the reduction
in entropy associated with ordering via the AB interaction
is much greater than that associated with the AA interac-
tion. Then although AB ordering is favored energetically
over AA and thus is the lowest temperature configuration,
its free energy is disfavored so that AA ordering can be
preferred at higher temperatures. The resulting free-

energy difference at a fixed A concentration is as sketched
in Fig. 6, where temperatures T& and T2 are as shown in
Fig. 5. Above T2 the AB system is mixed with maximum

I

entropy, i.e., the sites are randomly occupied. Below T&

there is again the AB mixture, but it is now ordered so as
to take advantage of the AB attraction and has a lower
entropy than in the phase separation region T& & T & T2,
where AA attraction dominates the free energy. The large
entropy reduction associated with AB interaction is ac-
complished in the binary liquid by having a Jz~ only
when the molecules are properly oriented. Thus advan-
tage can be taken of the strong AB attraction only at the
expense of a sharp reduction in the number of possible
molecular configurations.

For the present situation we identify the B "molecules"
with rigid lattice sites so that Jzz corresponds to the site
energy e, while J~q is the hydrogen-hydrogen interaction.
For large b„J„& is the dominant interaction but, if there
is to be an analogy with the binary liquid, there should be
a greater lowering of entropy associated with ordering
among the low-energy sites than with ordering to take ad-
vantage of attractive hydrogen-hydrogen interactions. It
is not immediately obvious that this is true. Consider,
however, the partial ordering which can occur with com-
peting interactions. If the concentration of hydrogen at
sites which interact attractively with a central occupied
site is increased by a small amount e, and the concentra-
tion at repulsive-interaction sites is decreased by e, one
can show that the energy is lowered by an amount of the
order of JE while the entropy is lowered by the order of
E . Thus 5S~~ -5E /J gives the reduction in entropy
required to lower energy by an amount of 5E. On the oth-
er hand, a small increase in the concentration of hydrogen
at lower energy sites produces the same order changes in
entropy and energy; so 5S~~-5E/b, for the reduction in
entropy associated with a lowering of site energy. Hence
for a sufficiently low change in energy 5E &J /b„a
greater entropy reduction is required for the AB interac-
tion and analogy with the binary liquid model is establish-
ed Note th. at for 5E-k~T the condition 5E &J /b, is
roughly equivalent to T & T, [see Eq. (39)].

The spatial distribution of hydrogen may look random
both for T»Tz and T «T&, but the entropy is quite
different. Well above T2, any site may be occupied and a
large number of configurations are possible. Well below

T&, only a small number of configurations are allowed
which minimize the total site energy, but if the static posi-
tions of low site energy are arranged at random the hydro-
gen locations will appear as random also. Only in the in-
termediate region T~ & T & T2 is there a relative ordering
of the hydrogens.

What is the likelihood of detecting phase separation in
amorphous or random metal hydrides? This depends on
the values of interaction J and site energy width A. The
latter has been predicted' ' to be

6 ~KVH,

where E is the bulk modulus and V~ is the volume
change upon addition of hydrogen. Measurements' show
6 to be between about 0.16 and 0.23 eV for Pd-Si and Ni-
Zr amorphous hydrides and in numerical agreement with
the above relation when various constants are put in.
Thus if the interactions are the same as used in the PdH„
model for Fig. 1, we should expect to see phase separation
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below 200—250 K. This is lower than generally studied

by pressure versus composition isotherms but still suffi-
ciently high for the hydrogens to establish thermal equili-
brium without being "frozen" into a quenched distribu-
tion. Thus one might see the phase separation by thermo-
dynamic measurements, such as heat capacity, which are
not hindered by surface effects and/or too low a hydro-

gen equilibrium vapor pressure.
Spectroscopic techniques, such as NMR, Mossbauer,

and neutron scattering might also be able to detect local
variations in the hydrogen concentration. The retrograde
feature presents a problem in that no phase separation will

be seen if the hydrogen concentration is too high. Based
on Fig. 3, one should keep c & 0.15. Since c is the concen-
tration per interstitial site, the relation to H/M ratio x is
not obvious. If hydrogen occupies tetrahedral sites, of
which about 2.5 per metal atom have been estimated to be
occupiable, ' ' the criterion would imply x (0.4. But if,
for Pd dominant systems, hydrogen, as in the crystal, oc-
cupies only octahedral sites' of which there are only
about 0.25 per metal atom, ' the figure is reduced to a
very small x & 0.04.

The elastic interaction strength J is of the order of

J~ P /K ~ KVH

where P-Kit is the dipole force constant. As a conse-
quence the parameter J/6 which measures relative im-
portance of the randomness is given by J/b, 0: VII.

Since Vtt is nearly the same for all hydrides, ' we ex-
pect J/b, to be about the same for all amorphous hydrides
which have the same relative width of the radial distribu-
tion function, the other parameter which determines' '
h. This would imply that, according to MF, if one amor-
phous hydride shows no phase separation down to 0 K, all

will have similar vanishing of T, . The model here, how-
ever, predicts T, ccJ /5 for large b, and therefore

Tc ~XV

so that one should look for amorphous hydrides with a
large bulk modulus. Based on properties of the elements'
this, for example, would favor Rh and disfavor La as con-
stituents.

The above argument, however, assumes that the elastic
interaction is dominant. The picture could change if elec-
tronic interactions are important or, as proposed by RG,
there is an additional concentration dependence of the
chemical potential from a hydrogen-dependent electron
density of states.

The calculation presented here is unrealistic in the sense
that the interaction J,J has not been taken as random.
However, this should not make much difference for the
many competing interactions since we already have large
variations in JJ. In particular, the results of Sec. IV
would apply with the simple replacement J,

g Jz~+.IJJJ where IJtJI represents a configura-
tional average, and it was already shown there that a riet
mean field, such as might be destroyed by random in-
teractions, is not required to produce the novel phase dia-
gram.
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