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Structure and evolution of quenched Ising clusters
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The properties of domains generated following a quench from very high temperatures (T» T,) to
low temperatures are studied for an Ising model evolving under conserved or nonconserved dynam-

ics. Before the quench the clusters satisfy percolation statistics, since T is too large for the interac-
tions to be relevant. However, after the quench to low temperatures, we observe that the largest
clusters are still percolationlike for large distances in that they are described by the same Hausdorff
dimension as percolation clusters. For short distances the clusters are compact. At intermediate
distances, the large clusters appear to be more fractal than percolation clusters. We interpret this in-

termediate regime as a crossover between a constant density at short distances and percolationlike
low-density regime for large distances, not as a new type of fractal.

I. INTRODUCTION

The kinetics of an Ising system which has been rapidly
quenched from a high temperature, far above the critical
te mper ature, T, to a final temperature less than T, has
been well studied. ' We know that the time evolution of
the system depends in a crucial manner on whether the
spin direction is conserved and satisfies Kawasaki dynam-
ics or is nonconserved and satisfies Glauber dynamics. In
the latter case, the correlation length R grows algebrai-
cally as t' in both two and three dimensions, where t is
the time. This result has been well documented by both
analytical and computer simulation studies, ' ' as well
as by experimental studies on ordering alloys (e.g., Fe-Al
and Cu-Au). The corresponding result for the conserved
case is less clear. It is widely believed that for the
very late stages, the growth of clusters is by evaporation
and condensation and, as first suggested by Lifshitz and

Slyozov, the average domain radius R grows as R =t'
again for both two and three dimensions. However, this
regime is difficult to reach and most Monte Carlo simula-
tions' as well as experimental measurements ' usu-

ally do not reach this late stage of growth. Instead,
growth is dominated by coalescence and dissociation of
small clusters which move with an effective diffusion con-
stant. In this regime, it is often observed that R=t",
where n is in the range 0.1—0.2. Simulations' suggest
that n =—0.2 for quenches near the critical concentration
(equal concentration of up and down spins), though there
are suggestions that n =-0.3 when the concentration of the
minority spins is small, and the Lifshitz-Slyozov mech-
anism should be more applicable. There is a suggestion'
that at the critical concentration, R=lnt for long times,
as the symmetry between the up and down spins is never
broken and there is no reason that Lifshitz-Slyozov type
behavior should occur. Our results for the conserved sys-
tem support this idea.

In addition to studies of the domain-growth. kinetics, it
has been shown that for both the conserved and noncon-
served Ising models, the structure function, S(k, t), which
is the angular averaged Fourier transform of the non-

equilibrium spatial correlation function, satisfies dynamic
scaling' of the form

S(k, t)=a. (t)I'(klan(t)), tarp .

Here k is the wave vector measured relative to the Bragg
positions of the ordered structure, a(t) is a characteristic
time-dependent wave number, d is the dimensionality, and
tp is an initial transient time. F(x) is a scaling function
which is different for conserved and nonconserved
models. Scaling has been observed in both Monte Carlo
simulations' ' and experimentally. ' ' lt also can
be shown to be valid analytically. ' While this formula-
tion of the problem describes many of the macroscopic
features of domain growth, it would be of interest to study
in more detail the properties of these two systems in real
space. By so doing, we hope to be able to understand the
growth mechanisms more completely, particularly for the
conserved model, where the long-time Lifshitz-Slyozov
regime is so elusive.

Our earlier work on the Q-component nonconserved
Potts model suggested that the topology and domain
shapes evolved continuously with Q. As Q decreases, we
observed that the grains become less compact. In the lim-
it that Q is 2, the domains are no longer topologically
connected and the Potts model reverts to the Ising model.
In the present paper we examine the shape properties of
the clusters in the Ising model as a prototypical case of
the very weak topology limit. In such studies it is neces-
sary to examine very large lattices in order to avoid boun-
dary effects at very early times. For this reason, we have
carried out studies for a 1000X1000 system for the non-
conserved Ising model. We were also interested in the
cluster properties for the conserved model. In this case,
the growth is much slower and we are able to use a small-
er lattice, 400&400. In this paper we report several in-
teresting features of the cluster evolution which we ob-
served for these two systems.

II. PROCEDURE AND RESULTS

The model we studied is the ordinary Ising model,
described by the Hamiltonian:
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H= —JgS;SJ
NN

where S;=+1. The sum is over all nearest-neighbor pairs
and the exchange constant J&0. Clusters are groups of
neighboring up or down spins. If we consider up spins as
occupied sites and down spins as empty sites, then we
have a lattice gas model of a fluid. In all simulations we
start from a high-temperature state with equal fraction of
up and down spins and rapidly quench to T & T, . For the
nonconserved Ising model, we performed the simulations
for both the triangular and square lattices of size
1000X1000 with periodic boundary conditions. For the
conserved case, we used a 400X400 triangular lattice.
Glauber spin-flip dynamics are employed in the noncon-
served Ising model, in which a trial spin is chosen at ran-
dom and an attempt to flip it is inade. The transition
probability is given by

exp( EEiki—i T), b,E & 0F=
1, DE&0,

where b,E is the change in energy resulting from the spin
flip and k~ is the Boltzmann constant. Kawasaki spin-
exchange dynamics are employed for the conserved Ising
model. In this case the transition probability is for the ex-
change of two neighboring, unlike spins. The transition
probability is

exp( AEIkz T)—8'=
1+exp( EE /k' T)—

In either case, a transition is accepted provided that 8'is
greater than or equal to a random number r (0&r & 1).
For 8"~ r, the old spin configuration is retained. %'e de-
fine the unit of time as 1 Monte Carlo step (MCS) per
spin which corresponds to X microtrials or spin-flip at-
tempts for the nonconserved model or JV spin-exchange
attempts for the conserved model.

Our starting state for high T is that of a random distri
bution of up and down spins. For a given configuration
of the spins, the distribution of cluster sizes is just that of
site percolation. Since the percolation threshold p,
equals 0.50 for the triangular lattice and 0.59 for the
square lattice, the initial state is either at its percolation
threshold or below it. Ising clusters in thermodynamic

equilibrium have been studied extensively, particularly
near the critical temperature. z Here we are interested
in understanding how these initial ramified, percolation
clusters evolve into ordered domains after the temperature
is suddenly quenched to low T beIow T, . It is known that
as the transition temperature is approached from above,
the percolation threshold on the square lattice decreases
from 0.59 to 0.50 at T, . The percolation threshold
remains unchanged for the triangular lattice. Above T„
one can describe a new percolation problem, ' known as
correlated site percolation, where one studies the effect of
temperature correlations on the percolation problem. This
new percolation problem has the same critical exponents
as ordinary percolation.

In this paper we are interested in what happens well
below T„where the large clusters grow at the expense of
the smaller ones. %'e observe that a length Lz exists such
that for L & Lz, clusters have the same fractal dimension
as that of percolation clusters, i.e., D=1.90. This is true
for the large finite clusters and the two spanning clusters
(one of up spins and one of down spins). However, Lz
increases very rapidly, and for distance smaller than LJ
the clusters appear to have a lower fractal dimension,
not higher. As time proceeds L~ increases, thereby indi-
cating that change from one fractal regime (percolation
D=1.90) to another is a kinetic process. Simultaneously,
a second length scale I., is also growing. For L &L„the
clusters are compact, D=2. Both L~ and L, must in-
crease with time, but for L intermediate between these
two lengths, the clusters are surprisingly more ramified.
We observe similar results for the conserved model, but
because the clusters evolve much more slowly, L& grows
slowly.

Section II A summarizes our data for the nonconserved
Ising model. Similarly, the data for the conserved Ising
model are presented in Sec. II B.

A. Nonconserved Ising model

In Figs. 1 and 2 we show the evolving. spin configura-
tions for the triangular and square lattices for the noncon-
served Ising model, quenched rapidly from T= ao to
T =0. The two largest spanning clusters are shaded. As
is clear from these figures, the number of clusters de-

FIG. 1. Evolution of the domain boundary for the nonconserved Ising model quenched from T && T, to T=O on a triangular lat-
tice of size 1000)& 1000. The two spanning clusters are shaded.
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FIQ. .2. Evolution of the domain boundary for the nonconserved Ising model quenched from T» T, to T =0 on a square lattice
of size 1000&& 1000. The two spanning clusters are shaded.

creases rapidly and we do not have sufficient statistics to
determine the cluster-size distribution function. After
only 200 MCS/spin, there are only a few clusters remain-'

ing and approximately 80%%uo of the spins are in one of the
two large spanning clusters. As seen from the figures, the
large clusters have many features of percolation clusters
on long scales, but not for short and intermediate dis-
tances. In particular, there are no weak one-dimensional
channels which typically connect percolation clusters.
These are unstable and either become thicker or break.
When they break, large pieces of the cluster are often
disconnected, thereby leaving the clusters more ramified
on an intermediate scale than the original percolation
clusters. This picture can be justified by determining the
fractal dimension of the clusters. One way to measure D
is to tabulate the mass M (r) of a cluster within a radius r
For a D-dimensional cluster M(r) should scale as r
In Figs. 3 and 4 we display our results as 1nM(r) versus
lnr for the two large spanning clusters (solid circles) as
well as for large finite clusters, for the triangular and
square lattices, respectively. For t =0, we find that
D=1.90+0.02, in agreement with tlie known fractal di-

mension of a percolation cluster. However, after only 10
MCS/spin, it is clear that the region where D=1.9 moves
out veg quickly and holds only for L &Lp. For L &Lp
the eventual long-range order has not had time to propa-
gate over distances larger than I.z and the clusters retain
features of the original random-site percolation clusters.
For shorter length scales, the clusters appear to be more
fractal. Fitting a straight line to the region L &Lz, we
find D= 1.74+0.04 for both the triangular and square lat-
tices. This value of D does not seem to depend on time,
but we are only able to measure D between 10 and 100
MCS/spin. For longer times, the clusters are very much
affected by the periodic boundary conditions, as seen from
the 200-MCS configurations plotted in Figs. 1 and 2.

To check whether this lower value of D is real and not
a crossover effect, we calculated the density p(r) of sites
within a given cluster. For a fractal object p(r) should
scale as r, where d is the dimension of space. In the
present study d =2. Results for lnp(r) versus inr are
shown in Fig. 5 for three times after the system was

quenched to T =0 on the triangular lattice. The t=0 re-
sults are for the largest spanning cluster and yield a Haus-
dorff dimension of D= 1.90+0.02. For t=50 and 100,
p(r) has the same slope as the percolation cluster (t =0),
confirming the discussion above. However, there is no
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FIG. 3. 1nM(r) versus lnr for one of the large spanning clus-

ters (solid circles) and four finite clusters at three different times

after the quench from T» T, to T =0 on the triangular lattice
for the nonconserved Ising model. Results for t=50 and 100
are displaced vertically for clarity. The same finite clusters are

not shown for all three times. Results for the iwo spanning

cluster fall on top of one another.
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FIG. 5. 1np{r) versus lnr for three different times after the
quench from T »T, to T =0 on the triangular lattice. The
solid circles are for t =0, before the quench. The results for
t=100 are displaced vertically for cIarity. The open circles for
t=50 and 100 are for one of the spanning clusters, while the tri-
angles are for the largest nonspanning cluster. The line through
the points has a slope —0.10 for all three curves, which is ex-
pected for percolation clusters {i.e., d —D = —0.10).
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FIG. 4. lnM{r) versus Jnr as in Fig. 3 for the square lattice. '

clear intermediate region, where Inp(r) can be fit with a
straight line, indicating that the spatial region where we
obtained D=1.74 from the mass M(r) is more correctly
interpreted as a crossover region. From Fig. 5 we see that
for very short distances, the density p(r) seems to be ap-
proaching a constant. This is easy to understand, since
the domains are growing, and for long times the spins sur-
rounding a given spin are very likely to be within the
same cluster. For L ~L„ the clusters are compact and
p(r) scales as r (i.e., D =d =2). Evidence for this lower
cutoff can be seen for t=50 and 100 MCS in Fig. 5.
However, in all of the present simulations L, was at most
a few lattice spacings.

Though it is possible to interpret the regime where
D =-1.74 as a true fractal region, it is more likely a cross-
over effect. Since the short distance behavior has D =2,
which means constant density, and the long-distance re-
gime is fractal, which means p(r) is a decreasing function
of r, the only way these two regimes can be connected is
by an intermediate regime which has a lower fractal di-
mension. %'hat is very interesting is that the percolation
properties of the clusters can still be detected at large dis-
tances. Presumably this will be true for all stages of the
growth.

In addition to studying the cluster properties, we also
examined the boundaries of the dusters. In particular, we
measured the correlation p(r) between lattice sites on the
domain boundaries. We found that for short distances,
p(r) scaled as r ', indicating that only one boundary is
being sampled and the Hausdorff dimension is D =1.

For large distances, p(r) scaled as r, suggesting compact-
ness. The crossover between these two regimes occurred
at a length scale intermediate between L, and L&. The
observed crossover in p(r) versus r was very sharp com-
pared with those seen in Fig. 5. While the two values of
the Hausdorff dimension observed may be simply under-
stood, the sharpness of the transition is a surprising
feature.

B. Conserved Ising model

We have carried out a similar study of the properties of
the clusters for an Ising model evolving according to con-
served or Kawasaki dynamics. In this case, the time scale
of the growth is considerably slower than for the noncon-
served case. For this reason we used a smaller system
(400)&400) than for the case above. Figure 6 shows the
evolving spin configurations on a triangular lattice for the
conserved Ising model, quenched rapidly from T= oo to
T =0.6T, . The concentration of up and down spins were
equal, @=0.50. The two largest spanning clusters are
shaded. As is clear from Fig. 6, the system evolves much
more slowly when the spins satisfy conserved dynamics
rather than nonconserved dynamics. Even after 30000
MCS/spin the clusters still have random percolation
features at large distances. This is seen from a plot of the
mass M(r) of a single cluster within a circle of radius r
(Fig. 7). For L &Lz, we find that D=-1.90, as expected
for random percolation clusters. Note that Lz is still
rather small even after 30000 MCS/spin. If we fit a
straight line to the short-distance behavior, we find
D=-1.66, but as in the case of the conserved spin, we be-
lieve this is a crossover effect from a compact structure
for small L and that of the more open percolation cluster
for L &L~. For the conserved model the short-distance
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t =16QOO t =30000
FIG. 6. Evolution of the domain boundary for the conserved Ising model quenched from T» T, to T=Q.6T, on a triangular lat-

tice of size 400&&400. The two spanning clusters are shaded. Note the difference iri time scales between this figure and Fig. 1.

cutoff l., is barely detectable, even from a plot of 1np(r)
versus lnr.

From the results shown in Figs. 6 and 7, we believe that
one can see why it is likely that the Lifshitz-Slyozov re-
gime is not applicable for p=0.5. Below T„ in two di-
mensions, both the up and down spins are at their percola-
tion threshold, independent of the type of lattice. This
means that for an infinite system one can find arbitrarily
large clusters of either up or down spins. Since the
Lifshitz-Slyozov regime depends on the existence of iso-
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14.0

lated domains which grow due to evaporation and conden-
sation of single spins, it seems unlikely that this late-stage
regime can ever be reached when p=0.5. Mazenko, Valls,
and Zhang have suggested' that the long-time exponent
for quenches at the critical concentration should grow as
& =int, instead of r '~ as suggested by Lifshitz and Slyo-
zov. Our simulations are not long enough to test this
prediction, as we find that n =0.17, slightly lower, but
consistent with earlier Monte Carlo simulations on small-
er lattices. For @&0.5, it is likely that the late-stage ex-
ponent would be —,', as the symmetry of the up and down

spins no longer holds and the Lifshitz-Slyozov mechanism
is likely to come into play. Of course for p near 0.50, the
crossover to this late stage is likely to be unreachable both
experimentally or in computer simulations.
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FIG. 7. 1nM(r) versus lnr for the two spanning clusters
(solid and open circles) and three finite clusters for the con-
served Ising model after the quench T» T, to T =0.6T, . Re-
sults for t =30000 are displaced vertically for clarity. The line
through the data for large distances has slope equal to 1.90,
while the slope of the line through data for small I. has a slope
of 1.66. Note that the distance I.~, where these two hnes cross
is rather short, even after 30000 MCS's/spin.

III. CONCLUSIONS

We have shown how random percolation clusters evolve
after a quench from high T to T & T, for the case for ei-
ther conserved or nonconserved dynamics. %"e find that
for distances larger than a characteristic length I.&, the
clusters have the same fractal dimension as the original
percolation clusters. As time evolves, the clusters become
compact on distances shorter than I, At intermediate-
length scales, the clusters appear to be more fractal than
either the compact clusters or random percolating clus-
ters. The decrease in the Haussdorf is attributed to the
capillarity induced breaking of the weak bonds which
hold the original cluster together. Though it is possible
that this intermediate regime corresponds to a true fractal,
we believe it is better understood as a crossover from the
short distance, compact regime to the large-distance, per-
colation regime. For the nonconserved Ising model, this
growth is extremely rapid. After only 200 MCS/spin, the
effects of the finite size of our lattice (1000X 1000) were
becoming very important. In order to study these systems
at longer times, it is necessary to employ systems with size
of at least 2L~ However, for . the case of conserved
dynamics this condition is obviously satisfied since the
time evolution of the system is so slow. Even after 30 000
MCS/spin, I.z was only of the order of 16 lattice spacings
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and our 400 X400 lattice was more than adequate.
While our simulations were carried out in two dimen-

sions, me expect similar rests in three dimensions, with
one difference. Since @=0.50 is now far above the per-
colation threshoM, both the Long- and short-distance
behavior of the density is a constant, independent of r.
However, since the value of this constant will be lower for

L &Lz than for L (L„we still expect to find an inter-
mediate regime which appears to be more fractal.
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