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We examine the low-temperature electrical resistivity of a hypothetical quantum plasma
comprised of light fermions and heavy nonzero-spin bosons. The system corresponds to a possible
quantum liquid metallic phase of highly compressed deuterium (electrons and deuterons). Bose con-
densation is assumed and in this state a new quadratic quasiparticle branch is present even with non-

magnetic bare interactions. The consequences of these impurity-like excitations for electric current
degradation are explored using the variatioual treatment of the Boltzmann equation. Quasiparticle
collision rates among all possible types are analyzed. We find that the low-temperature electrical
resistivity will exhibit an unusual —T behavior and is attributable to electron scattering from the
impurity-like excitations.

I. INTRODUCTION

The possible existence of low-temperature liquid metal-
lic phases of highly compressed hydrogen and deuterium
has recently been discussed. ' Liquid metallic phases of
hydrogen and deuterium will represent, respectively, ex-
amples of a two-component light-fermion and heavy-
fermion liquid (electrons and protons) and a boson-
fermion liquid (deuterons and electrons). Low-
temperature liquidity in these systems will be associated
with high ionic zero-point motion stemming, in turn,
from a very low ionic mass. Quantum effects in the ionic
degrees of freedom are of special interest in these liquids,
which may thus be regarded in this context as quantum
liquid metals.

The equilibrium and transport properties of an assumed
normal liquid metallic phase of hydrogen were analyzed
earlier using a two-component Landau —Fermi-liquid
theoretic approach. ' A further study (referred to here
as paper I) considered equilibrium properties of a hy-
pothetical Bose-condensed, but otherwise normal, liquid
metallic phase of deuterium. The present paper extends
this theory and presents results both for the electrical
resistivity and the relevant quasiparticle interactions for a
similar model of liquid metallic deuterium {LMD).

As noted in I, a novel feature of LMD is the presence
of nonzero boson spin (the deuteron has spin 1). We also
noted there that nonzero boson spin leads to a new Gold-
stone quasiparticle excitation branch in the non-nuclear-
spin-polarized, Bose-condensed phase, even though there
are no explicit magnetic terms in the Hamiltonian.
These modes, which may be referred to as "impurity-like
modes, " have quadratic dispersion and actually dominate
the specific-heat and thermal-expansion coefficients for
all but the lowest temperatures. The presence of
impurity-like modes qualitatively distinguishes LMD

from He- He mixtures, another boson-fermion liquid, but
one in which the boson has zero spin. A major goal of
this work is to elucidate the interesting role the impurity-
like modes play in electrical transport of a possible liquid
phase of metallic deuterium.

The paper is organized as follows: In Sec. II we
describe the model and provide background for analyzing
the transport properties of liquid metallic deuterium. A
variational calculation of the impurity-like excitation and
phonon contributions to the electrical resistivity is
presented in Sec. III. An examination of the many possi-
b.e types of quasiparticle interactions is given in the Ap-
pendix, the purpose of which, in part, is to justify some of
the assumptions made in Sec. III. Discussion and con-
clusions appear in Sec. IV.

II. LIQUID METALLIC DEUTERIUM —BACKGROUND

The system under consideration is a neutral ensemble of
N electrons of mass m, and X deuterons of mass m4.
We assume all mutual interactions to be Coulombic; we
ignore spin-dependent interactions. We also assume that
there is no nuclear-spin polarization and that Bose con-
densation has actually occurred (case "A" of I). The
Bose-condensation temperature Ttt of an ideal Bose gas'
corresponding to LMD is 43 K at r, =1.6 (the choice"
r, =1.6 is thought to be relevant for a possible liquid
phase ). The Bose-condensation temperature for the in-
teracting system Ttt is very probably of the same order of
magnitude as this; we restrict our attention to tempera-
tures much lower than Ttt, say, T&5 K. Aside from
Bose condensation, we also assume for this analysis that
the system is electronically "normal, " i.e., there is no elec-
tron Cooper pairing, no electron ferromagnetism, no
charge-density-wave distortion, etc.

The low-temperature equilibrium and near-equilibrium
states of LMD may be characterized in terms of the dis-
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and

eph(p) sp i (1b)

p2
e;(p) = 2' .

In Eqs. (1), m,
' and m are the fully renormalized-

electron and impurity-like excitation effective masses (we
simply take m, =m, and m; =2m'), PF is the Fermi
momentum [pF ——A'(3m n )', where n is the number den-
sity of each species], and p, is the electron chemical po-
tential. The fully renormalized sound speed s may be
estimated from the Bohm-Staver relation: s = (pF /
3m,*m~)'~ =4X 10~/r, cm/sec. We note that at r, =1.6
the electron Fermi temperature is roughly T~ -2.3 )& 10
K and the Debye temperature is Tz -5.5 )& 10 K.

The transport properties are governed, of course, by the
interactions among quasiparticles. There are nine relevant
independent relaxation rates, each appropriate to a quasi-
particle of a given type decaying through interaction with
the distribution of one of the three types of quasiparticles.
The assumption "Bose-condensed but otherwise normal"
means that the quasiparticle interactions within the
electron-phonon subsystem are qualitatively the same as
those encountered in the usual treatment of low-
temperature quantum plasmas. Accordingly, we expect a
—T behavior for the phonon contribution to the electri-
cal resistivity. ' Collisions among electron quasiparticles
in a liquid do not degrade the electrical current, and there-
fore do not contribute to the electrical resistivity. It
remains, therefore, to consider the new impurity-like exci-
tations and their contribution to the electrical resistivity.

To solve three coupled Boltzmann equations describing
the three quasiparticle distribution functions, allowing
collisions among all possible pairs of quasiparticles and
including superfluid effects, would be a formidable task

tribution functions for the three types of quasiparticles
present. There are fermion quasiparticles corresponding
to dressed electrons (e), phonons (ph), and impurity-like
excitations (i). Each type of quasiparticle is considered
here to be fully normalized by interactions among all
types of particles. For our model the quasiparticle ener-
gies of momentum p are of the form, respectively,

Py
&e(p) =

~ (p pz)—+pe~ p =pF
Ple

and will not be attempted here. Instead, our approach is
to obtain reasonable estimates and to use the variational
formulation for the transport coefficients. Furthermore,
we initially assume that for purposes of calculating the
phonon and impurity-like contributions to the resistivity,
the phonons and impurity-like excitations are themselves
effectively in equilibrium. The legitimacy of this assump-
tion will be examined further in the Appendix.

The effect of possible superfluid behavior of the
screened ions upon the electrical resistivity is not con-
sidered, and we specifically ignore possible phonon- or
impurity-like excitation —"drag" effects' associated with
electrical current flow. In paper I it was shown that
within a Bogoliubov approximation the impurity-like
mode is a linear superposition of bare-particle modes in
different s'pin states. We expect a very similar spin coher-
ence aspect to be evident in the impurity-like modes re-
normalized beyond the Bogoliubov approximation. It
therefore seems physically reasonable that impurity-like
drag will be a small effect: One can easily imagine that
on a time scale set by the electron-impurity —like excita-
tion scattering time, the interaction between an impurity
like excitation and a wall will be such that the wall will be
unable to generate properly spin-superposed combinations
at the end of the "wire" at which electrons enter. In other
words, too few new impurity-like excitations will be gen-
erated to sustain a significant drag.

It remains, however, to estimate the matrix elements
describing the scattering of impurity-like excitations by
electrons or other impurity-like excitations. The spin-
coherence aspect of the impurity-like excitations notwith-
standing, the relevant physical picture for collisions be-
tween impurity-like excitations and electrons or other
impurity-like excitations is still one of the two "particle-
like" quasiparticles colliding with a short-range interac-
tion F". An example is the case of an electron which can
scatter off a spin component (with wave function propor-
tional to e'" ') in such a way as to preserve the spin
coherence. We expect both the impurity-like
excitation —electron and impurity-like excitation—
impurity-like excitation cross sections to be of order
4m. /krF where k~F, the effective Thomas-Fermi wave
vector, is given by krF (4ppm,*e ——/M )' Note that.

the effect of a long-wavelength phonon on an impurity
like excitation can be regarded as a simple modification of
the effective mass m;* through the local-density depen-
dence of m,

* (see the Appendix).

III. ELECTRICAL RESISTIVITY

(V/SktiT) J d pi d p~d P3d p4(@ +@ —@-„—@- )'&(pi, p~, p3&p4)
(2a)Pe-i—

[2eV/(27rh') ] J d p v N (Bn /Be )

with
4

2m .

@&ai+ et 2 &e 3 &t4)— —V
(2m%')

X
I &P»p41 ~

I pi p2& I
'n'(e. i)n '(e ~)[I—n'(e. 3)lll+n '(e 4)]

P ( P i~ P2~ P3» P4) —= 4

We first treat the contribution to the electrical resistivity (p, ;) from scattering between impurity-like excitations and
electrons. The well-known variational principle for the linearized Boltzmann equation' ' leads to the following expres-
sion:
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and with

1&p3 p41~1 pi »& I =,(2~) & (pl+» —p3 —p~) l~(»» p3 p4}1p3
(2c)

and

Bn (e;)
n(e;) =n (e;)—4

ae,
(3b)

Finally, the integrations in (2) are over all momentum
space.

For the present we may evaluate p, ; under the assump-
tion that the thermalization rate for the impurity-like ex-

citation distribution function is much greater than the
impurity-like excitation —electron relaxation rate for resis-
tivity. This allows us to set

=0
P2 P4

(4)

in Eq. (2). The validity of this assumption is established
in the Appendix.

According to the variational principle, the true p, ; will

always be less than or equal to the value computed from
Eq. (2) when an approximate trial function 4 is used.

P
Here we use the standard ansatz

=pu,
P

where u is a unit vector parallel to the electric field. For
this choice the denominator D of Eq. (2a) is readily
evaluated, namely

T

eke
D = V2, (6)

3

Here, V is the volume of the system, kz is Boltzmann's
constant, e is the electron charge, and T is temperature.
The initial and final electron (impurity-like} momenta are
denoted by p &

and p 3 ( p z and p 4), respectively, and v
P

denotes the electron velocity at momentum p. The e k

denote quasiparticle energy for type a and momentum

pk. Furthermore, n (E) and n (e) denote, respectively,
the ideal-gas fermion and boson equilibrium distribution
functions, the latter with a chemical potential set equal to
zero. '" The overall factor of 4 in Eq. (2b) accounts for the
electron and impurity-like excitation degeneracy. ' The

are related to the nonequilibrium solutions of the
linearized Boltzmann equations, n(e) and n(e), by

Bn (e, )
n (e, ) =no(e, )—4

P

(2) From the well-known form for n (e;) we observe
that most of the impurity-like excitations in the system

have energy kqT W. e therefore approximate the actual
n (E&2) by a 5-function form for which all particles have
energy kz T, i.e.,

n o(e;2)~%*5(p2 —(2m kg T)'~2) .

Here, N' is chosen so that the total number of bosons
represented by the right-hand side of Eq. (7) is the same as
that described by IT . This gives

1/2
m,*-kg T

N =2.31
2

It should be noted that the total number of Bose excita-
tions below Tz is temperature dependent. The approxi-
mation (7) should at least preserve the leading-order tem-
perature dependence.

(3} We next observe that at low temperatures a typical
electron interacting with an impurity-like excitation will
have an energy very near the Fermi energy e~. Because
the possible fermion final states are restricted by a factor
1 —n (e,3), the scattered fermion must have a final energy
& Ep —kg T. (We note, incidentally, that the electron
scatters almost elastically at the low temperatures of in-
terest; however, the impurity-like excitations do suffer
large energy changes during collisions. )

We next ask whether the requirements of energy and
momentum conservation, together with the requirement
that e, 3 & ef —kz T, limits the number of impurity-like
targets [all now having energy k&T by Eq. (7)] available
as scatterers. More specifically, for an impurity-like tar-
get of energy e;2 k~ T, and an electr——on of energy e, &

——ez,
do these requirements actually limit the angle of incidence
between electron and impurity-like propagation vectors?

To address this we consider the surface S(p3) described
'by the vector p3 on the momentum and energy shell for
such values of e, &

and e;2. Using the notation of Fig. 1

we conclude, first, that for 83——0,
1 p3 1 &@~ for all angles

82 between p& and p2. This conclusion follows from pa-
rameter values for LMD at r, =1.6: p~

——p~ ——1.2 a.u.

where kz is the Fermi wave vector.
Our estimate of the numerator X of Eq. (2a) is based on

a number of approximations and observations as follows:
Note first that the major purpose here is to obtain the
leading-order temperature dependence and its order of
magnitude. Accordingly, we do the following:

(1) We replace the boson final-state factor 1+n (e;q)
by unity. Inclusion of 1+n (e;4) cannot contribute any
overall factor of T as it does not restrict scattering (rath-
er, it enhances it).

FIG. 1. Scattering geometry and notation used for evaluation
of ~,:;. Diagram exaggerates impurity excitation momenta

p2, p4 in comparison to electron momenta p~, p3. p2,p4&(p&
~p 3 pp. .
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and p2 ——(2m;*ksT)'~ =0.215T'~ a.u. Next we deter-
mine the maximum value of 83 (denoted by 83) for which,
at a given 02, the conservation and phase-space restric-
tions can be satisfied. The value 83 corresponds to setting
eg3 =ej'kII T ( =@i—e2). Using py «pi we then find

'2

X=—cos83=1 — (1—
2 cos Hp) .

P2
(9)

Note that X= 1 and also that the expression for
I
X

I
is

less than unity for all 82. This means that in spite of the
~ requirement that there must exist a maximum angle 83

(which is itself 82 dependent), all 82 are again admissible.
The surface S(p3) as a function of 83 (for fixed 82) then
interpolates between the value p3 &pF for 83——0 and the
value p3 ——[2m;*(eF—ks T)]I~ at 83——83(82). Thus a sur-
face S(p3) exists for all 82, i.e., there are no kinematic or
phase-space restrictions on 82. All impurity-like targets

I

are therefore available as scatterers under the conditions
assumed here.

(4) We approximate the quantity A of Eq. (2c), related
to the matrix element, by a suitable average value A (es-
timated below).

With approximations (1}—(4) now made, the twelvefold
integration in X is carried out at follows: Momentum
conservation is used to eliminate the p4 integration. In
view of Eqs. (4) and (5) we have a factor

I (pI —p3) II
I

in the integrand. Since p, ; does not depend on u, we may
replace this factor by its angular average:

I (pi —p3)'"
I

'~ I I p I
—p3 I

'= I pF'(I —cos80}, (10)

where in the last step we have used the quasielastic nature
of the electron scattering, and where 80 is the electron
scattering angle. Using approximations (1}, (2), and (4),
and Eq. (10), we so far have

2.31V 12

pF(2mj kII T) d pi d p2 d p35('41+ &'2 43 ei4( PI p2 p3}}2 2 + 1/2 3 3 3

6(2~)2 ~Iok, T

Xn (e, I)5(p2 —(2m AT)' )[1—n (e,3)][1—cos80(pi, p3)], (11)

1 —n (e,3(pi,p2, X3)) and 1 —cos80(pi, p2, X3 f3),
with $3 the dihedral angle between the plane containing

p3 and p1+ p2, and that containing p1 and p1+ p2.
In view of approximation (3) we are next led to the fol-

lowing additional simplifications used in the remaining
X3 integration. For f(X3 ) an arbitrary but reasonably
smooth function,

I dX3[1—n (e,3(pi,p2, X3))]f(X3), (12a)

X 1 —n e, 3 p1,p3 X3 X3 12b

0—J dX3[1 n(e, I)]f(X—3) . (12c)

where the arguments of e;4 and 80 are now specifically in-
dicated. %e carry out the e, 3 integration by exploiting
the energy 5-function. Note that because E I 63'
»e;2, e;4, this energy 5-function is comparable in effect
to the presence of a factor -5(e2 —e3). Implementation
of this approximation would, however, be premature at
this point, because it does not take into account the X3
( =cos83) dependence in e, 3, as seen in approximation (3),
X3 is restricted to a small range X &X3 & 1 because of the
final-state fermion factor. Thus, after the e, 3 integration
an additional overall factor of m, pF is introduced, and
the fermion final-state and angular weight factors become,
respectively,

I

then lead to the replacement in the integrand,

1 —COSHO~Q(X2 X3 pi p2)
2

1 p2=1— 1 —— (1—X2) X3 .2

2 p1
(14)

In view of Eqs. (11), (12), and (14), we now readily per-
form the X2,X3 integrations,

1 1 79
—1 X(X 3 2~ 3~P1~P2

4
P2

P1-

(2m;"ks T)
4

pF
(15)

we finally arrive at

From Eq. (12c) we are now led to the following factor
occurring in N:

P1 n ~e1 1 —n te1 = ~By'~e g T . 16

Performing the remaining trivial azimuthal and
I p2 I

in-

tegrations, and using the simple estimate

kTF

Next, with pi+ p3 taken as the polar axis (Fig. 1), we
have

e m (m,*ksT) ~

pe; -1.62~ 10
fi' kTFkF

(T«Ts) .

1 —cos80=cosHicos83+ s11181sln83cos$3 (13)

Clearly, the contribution from the second term of Eq. (13)
vanishes under the $3 integration. Furthermore, we may
express cos81 in terms of pi,p2 and X2 ——cos82, keeping
terms only to order (p2/pi) . These two observations

The —T behavior is interesting and unusual.
For LMD at r, = 1.6 we estimate (with T in K)

p, ;-9.8X 10 T ~ p, Qcm (T&&5 K) . (19)

A resistivity relaxation rate for electron-impurity —like ex-
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citation scattering is given by &e-i +~ pe-i f ~e~ o

e'm,* (m ksT)'~'
7 e") 5'48 10fi kggkgme

(T«Ta), (20)

(ks T)
p, ph-9. 30X 10

3 s (T« TD),
e f2 mgkF$

(22a)

or

p, ph-3. 2X10 ' T pQ cm

( r, = 1.6, T« S.5 X 10 K ) . (22b)

The corresponding relaxation rate is then

(ks T)
7., ph-3. 14X10'

3 q 6 (T«TD),
A' m, mdkFs

(23a)

-3.5X 10 T sec ' (r, =1.6, T«S.SX10 K) .

(23b)

which for I.MD af. r, = 1.6 has the approximate value

-1.06X10"T ~ sec ' (r, =1.6, T &&5 K) .

The contribution to the ?ow-temperature electrical resis-
tivity from the electron-phonon interaction, p, ph is wel1
known. Ziman discusses a variational estimate for pe»
in a solid starting with a form analogous to Eq. (2a). This
result is based on the assumption that the phonon equili-
bration rate is rapid con.pared to the electron-
phonon —resistivity relaxation rate. (The applicability of
this assumption is examined below. ) Transcribing this re-
sult to the present case of LMD we arrive at'

The impurity-like excitation total scattering rate ~, is
seen to receive two very comparable and dominating con-
tributions from scattering between impurity-like excita-
tions and electrons or other impurity-like excitations
(scattering between impurity-like excitations and phonons
is utterly negligible in comparison),

r; '=r(,'+r( (T«Tg),
—1.7 X 10' T (r, = 1.6, T« 5 K) .

(24a)

(24b)

We draw particular attention to the fact that
7e; jr,. '- 10T . Thus at very low temperatures
( T &O.OS K) the assumption underlying the result for p, ;
[Eq. (18)], namely that the impurity-like excitation may
be regarded, as in thermal equilibrium, on the time scale
of the relevant impurity-like excitation —electron scatter-
ing time, would seem to be fully justified.

The phonon total scattering rate wph' is overwhelmingly
dominated by the phonon-electron contribution, with
linear temperature dependence, i.e.,

—1

rph mph p(T«T~)
-2X10'T (T«S K) .

(25a)

(25b)

We then have r, ~z/rz& —1.8X10 'T, a very small
quantity for all temperatures of interest; this supports the
assumption in the derivation of p, ~h [Eq. (22a)] that the
phonon. s can be treated as in equilibrium.

Having justified the preliminary results for p, ; and

p, ph and given the numerical estimates in the Appendix,
we conclude that under the assumed conditions, the elec-
trical resistivity of LMD, p, , is dominated by scatter-
ing between impurity-like excitations and electrons and is
given by

Note that 7e &h-r, m;,„. Thus electron-phonon scattering
is much weaker in a high-density "light-ion" system such
as LMD than in, say, metallic Na. (In fact, for r, N, =4,
mN, —10m~, we ftnd p, ~q /p, '„-10.)

IV. DISCUSSION AND CONCLUSIONS

LMD ze m, (m; k&T)2 + 7/2

p, =p, ; —1.6X 10
A' kTFkF

pQcm (T«5 K) .

( T « Ts ),
(26a)

(26b)

A summary of the results of the Appendix for the re-
laxation and scattering rate appears in Table I.

The T behavior may be physically argued to arise as
follows: (a) The electrons scatter off all available

TABLE I. Relaxation and collision rates in LMD. Numerical values (in sec ) are for LMD at r =1.6. Note the provisos on the
applicability of these formUlas in the text.

m,*(k~T)
w, ,-1.7

ri3kTF

(4.6 X 10'T')

e m, (m; kgT)~; -5.5
A' kTFkPm,

( 1.1X1O"T'")

(kg T)'
g, ph-3. 1)& 10'

A m&pplgkps

(3.5X 1O 'T')

e m, m; (kgT)2~„'-&.2 ', '4
%7k TF

(5.4~ 10'T')

m; (kg T)
&ii 5 9 3A'kTF

(1.2)&10' T )

m; (kgT) (h1+AP)
7i Ph 4.6

7 10As

(1.6&10 ' T )

kgkg T
mph' -0.52

NlgS

(1.9 X 10'T}

(kg T)' (51+hg)
~„h'; -8.0)& 10

A's'

( 1 4 Q 10-11T15/2}

1
+ph-ph 8 P0+S

(5.4X 10-"T')

'7
k~T
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(27a)

—10 T pQcm (r, =1.6, T«10 K) . (27b)

impurity-like targets whose number is proportional to
—T . (b) However, only a fraction -k&T/ez of all
electrons can scatter because of the fermion final-state re-
strictions. (c) For resistivity, the differential scattering
rate must be weighted by the standard angular factor
1 —cos80 which, since the electron scattering angle is
small, introduces a factor of T. Thus r, ; —T7~2.

We emphasize that the T dependence is a direct
consequence of the important quantum behavior in the
ionic degrees of freedom. In particular, it is due both to
the boson character of the ions and the nonzero boson
spin. For example, if the boson spin were zero there
would be no impurity-like excitations and the resistivity
would follow the familiar p, -p, ~h- T . Furthermore, if
the ions were (degenerate) fermions rather (condensed) bo-
sons, as in liquid metallic hydrogen (LMH), then p, —T
as a consequence of electron-proton scattering. s In fact,
we have estimated, for LMH,

zero net deuteron current) taking place as electric current
passes through the sample and other novel superfluid ef-
fects might also be examined using this approach.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under Grant No. DMR-79-24008A02,
and in part by the National Aeronautics and Space Ad-
ministration under Grant No. NAG2-159. One of us
(J.O.}also acknowledges support from IBM.

APPENDIX: QUASIPARTICLE RELAXATION RATES

We now examine the legitimacy of the assumption used
in Eq. (4) and the corresponding assumption for phonons
underlying the result (22a). In particular, we evaluate col-
lision rates of impurity-like excitations and of phonons
against the other quasiparticle distributions (~;~ and

~~h!, a denotes e,ph, i). For order-of-magnitude estimates
of these quantities we assume in the formal expression for
the scattering rates that all quasiparticle types are in
equilibrium. '

Here, mz is the proton effective mass and Tr is the pro-
Ip

ton Fermi temperature. We note that p, /p"MH- T ~ .
We observe that for a corresponding normal (and per-

fect) crystalline metallic phase of highly compressed deu-
terium, the ultimate low-temperature resistivity would
vary as —T as a result of umklapp-mediated electron-
electron scattering. ' However, this fermion contribution,
though of the same form as that encountered in electron-
proton scattering in LMH, would be —10 times smaller
than in Eq. (27b), a consequence of, mainly, the smaller
final-state phase space available to the scattered electrons
as compared to protons. The boson character and
nonzero boson spin will have no significant implications
for the resistivity in an assumed normal crystalline phase.

Further effort might well be directed to understanding
the role of superfluidity in the low-temperature resistivity.
It would be desirable to carry out a hydrodynamic-kinetic
approach' of the kind used for He, together with an at-
tempt to solve the corresponding three coupled Boltzmann
equations for the three types of quasiparticles. The possi-
bility of simultaneous superfluid and normal flows (with

I

The impurity-like excitation —impurity-like excitation
scattering rate may be roughly estimated as (ignoring bo-
son final-state factors)

—1
+i-i Vi 0on (A 1)

m;*(k~ T)=5.86 z (T« Tii),
A'ikr~

(A2a)

—1.2X10' T sec ' (r, =1.6, T«5 K) . (A2b)

2» 7]

The characteristic scattering rate of an impurity-like
excitation of energy k~ T against the electrons may be es-
timated from

where v; =(2kii T/m, *)' is a typical impurity-like veloci-
ty, where era-4m lkqF impurity-like excitation cross sec-
tion, and where n; =0.33(m k&T) /A' is the density of
impurity-like excitations. Thus, —

V

(2M)

3
3- 3- 3- 2'd p2d'Ã3d'p4 1&73p41~ I pip2& I'@~;i+~,2 —~;3—~»4)n'(~, 2)[i+n'(~;3)][1—n'(e, 4)] .

(A3}

ln Eq. (A3), pi ——(2m;*kiiT)' p, and p3 (p2 and p4} are
the initial and final impurity-like excitation (electron) ino-
menta, respectively. The matrix element is the same as
that appearing in Eq. (2c) (with properly interchanged
momentum indices). Note that for a simple estimate it is
not necessary to include an angular weighting factor of
the form 1 —Pi.p3. This is because the iinpurity-like exci-

tations, unlike the electrons, suffer large angular deflec-
tions when scattered by the electrons.

We again approximate the boson final-state factor
1+n (e; 3) by unity, and replace A in the matrix element
[Eq. (2c)] by an appropriate average value A. From the
analysis of approximation (3) (Sec. III), we recall that the
initial and final electron momenta are both very close to
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pF and that all electron targets of momentum

p2 ——p~ I pz I
are available as scatterers. Furthermore,

from approximation (3), but now with X4 ——cos84 playing
the role of the X3 of Sec. III (see Fig. 2), we see that
momentum and energy conservation and the final-state re-
striction for the scattered electron (approximated by the
statement e4 )e~ ktt —T) leads to the restriction
X&X4&1. Note that X is given by Eq. (9) with eo here,
as in Sec. III, denoting the angle between p& and p2. To
evaluate r,. e' we first use momentum conservation [Eq.
(2c)] to eliminate the p3 integration. To this point we
then have

FIG. 2. Scattering geometry and notation used for evaluation
of r,:,. Diagram exaggerates impurity excitation momenta

p ~, p3 in comparison to electron momenta p&, p4. p&,p3
&.(pg p4 ~py.

(2n ) fi J d P2d . P45(~'1+~ 2 s'i3(P1 P2 P4) ~ 4) (~ 2)[1 (~ 4)] ' (A4)

We next perform the e, 4, integration; this brings in a fac-
tor of m,*pz and sets e, 4

——e,4(p~, p2, X4) in the final-state
factor. Proceeding as in Eqs. (12), but utilizing the
characteristic of X4, we have

1J dX4[1 —no«. 4(pt p2X4))l
1

0X4 1 —n e, 2

The $2,$4 and X2,X4 integrals are then easily performed.
From the integrand of the right-hand side of Eq. (A5) and
the result

n (e)[1 n(e)]=ks—T5(e ez), —

the remaining e, 2 integration is also seen to be simple.
With approximation Eq. (17) for A we obtain

p~ BPl.

2 Bn
5p(r, t)

8 m,*.

[5p(r, t)] +
Bn

Note that unlike the He-phonon interaction in He- He
mixtures, there are no terms in 6e. associated with the

density dependence of the "impurity" chemical potential:
Here the "impurity" chemical potential vanishes. In fact,
the presence of the overall factor of p [Eq. (A7)], which
will typically be a very small quantity for the tempera-
tures here, means that the interaction between impurity-
like excitations and phonons will be considerably weaker
than the He-phonon interaction.

The density fluctuation may be expressed in terms of
the phonon creation and destruction operators b and

q

b as"
q

e m,
*

m (k&T)
~, ,'-4.24 (T«TB),

A' kTF
(A6a) 5p4(r) = g 2mds V

q

' r/2
eiq r+bt e

—iq r) (A8)
q

—5.4X10 T sec ' (r, =1.6, T«5 K) .

—13e 1 mph

For the interaction between impurity-like excitations
and phonons we use an idea similar to the "Landau quan-
turn hydrodynamics" method which is suitable when the
phonon wavelength A,~h is very large compared to the
impurity-like excitation wavelength A,;.' Note that for
LMD at r, 1 6, A,~h/A, ;-. 8X 10 /T' . The spirit of this
method is to regard the phonon as the source of effective-
ly uniform density fluctuations on the scale of the
impurity-like packet. This density-fluctuation affects the
impurity-like excitation energy through the density depen-
dence of m; . For a simple estimate we may ignore possi-
ble superfluid effects or local flow effects associated with
passage of the phonon. For the change in energy 5e. ofip
an impurity-like excitation of momentum p, associated
with a density fluctuation 5p( r, t), we have

When Eq. (A8) is introduced into Eq. (A7) the first-
order term is of the form of the usual particle-phonon
Hamiltonian. From this term we easily compute the ma-

trix element for impurity-like excitations to scatter from

p to p', and at the same time absorbing a phonon of
momentum q,

&p'ITi
I p q&=5- -- ]./2 ~ —1

p
2 ()Pl.

2 Bn

(A9)

Note that though the typical impurity-like velocity v; is
much smaller than the sound speed; in fact,
U;/s —10 T'~ for r, =1.6. It is also easily shown that
this makes it kinematically impossible for a typical
impurity-like excitation to absorb or emit a phonon. '

Thus we must consider second and higher-order processes
to understand interactions between impurity-like excita-
tions and phonons.

%e consider then binary scattering processes of the type
where one impurity-like excitation and one phonon are
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present, both in the initial and final states. We analyze
processes (a)—(c) of Fig. 3, which are of this type. For
our simple estimate we need not consider phonon-
mediated processes of this class (these involve the three-
point phonon vertex). Such processes contribute at the
same order as processes (a)—(c), but do not affect the form

I

or order of magnitude of the scattering amplitude.
Process (a) arises in the first-order perturbation treat-

ment of the second term in Eq. (A7), while processes (b)
and (c) arise from a second-order perturbation treatment
of the first term of Eq. (A7). We find, for the total
scattering amplitude from processes (a)—(c),

Bmi
& p', q'I T~

I p, q&=&-+- -,+-, 4 &~+q ~'+q'4sV ~*. BnI

8 m;*
cos8+

P1d Qn
(A10)

where 8 is the angle between q and q '. In deriving Eq. (A10) we have used U; «s, ignored boson enhancement factors
in the intermediate states, and have used the fact that on the energy shell, q'=q. This last approximation follows from
the fact that typical phonon energies are much smaller than mds (or, in other words, mds /k&T-3&&10 /T at
r, =1.6).

The rate s, z'h at which a typical impurity-like excitation of momentum pi (2m,*—k—s T)' is scattered by the phonons
is estimated by

r, ~z — g ] (p', q'( T2
~ p, q) i 5(e +e „. , e , —e.h—, )[1 n(—ez )]n (eq)[l+n (ez )] .

f

(Al 1)

m; (kiiT)9
~, ph-4. 59, (b, i+52),

g7s 10

where

(A12)

We use momentum conservation [Eq. (A10)] to eliminate
the p

' sum. The effect of the energy 5-function in the q'
integration is to set q'=q and to bring in a factor of 1/s.
Moreover, q'=q((p implies e,=e in the in-p+q —q p
tegrand. After some straightforward algebra we find

each(p)=s(p Yp ) . — (A17)

A rough estimate of y for condensed LMD may be
made from a consideration of the polarization propagator
in a joint random-phase approximation for both electrons
and deuterons, and by assuming weak condensate de-
pletion. The co11ective modes are determined by the van-

Here, po is the total mass density and y is related to the
deviation of the phonon dispersion from -p via

3m.

n 8 m;

Pld ~yg
(A13b)

We may obtain a crude estimate of the requisite
effective-mass density derivatives by assuming that m;*

(r, =2)&1.6)=0.5 ;*m(r, =1.6), and m (r, =0.5)&1.6)
=1.5m; (r, =1.6). This then gives

m; (n)=(1.08 —11.1n+2.00n )md
' (n in a.u. ) .

(A14)

Using Eqs. (A14) and (A13) in Eq. (A12) we then estimate

~, &~-1.6)&10 ' T sec (A15)

—14. mph ph

'7
AT1

ph-ph 3 1
5 poys

(A16)

In a study of phonon-phonon interaction in superfluid
He, Khalatnikov gives an approximate expression for the

phonon-phonon scattering rate. ' ' For a typical phonon
of momentum p =k~T/s,

r

- FIG. 3. Three process included in impurity-like excitation-
phonon scattering matrix element. Initial and final impurity-
like excitation (phonon) momenta are denoted by p and p

' (q
and q '), respectively.
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ishing of

Vo(k)Re[II, (k, w)+II' (k, w)] —1, (A18)

where Vo(k) =4m.e /k, and II, (II& ) is the retarded elec-
tron (deuteron) polarization propagator. In our approxi-
mation II, (k, w) is given by the usual Lindhard result, '

whereas the boson propagator is given by'

2ni, e—s (k)
Ilb(k, w) =

2Eb(k) —8 W
(A19)

where es(k)=A' k /2md. Here, nh is the condensate den-
sity, which we approximated by the total density n~ -n.

We are interested in the root of Eq. (A18) with w —k as
k~0. Thus, setting w(k)=e&h(A'k)/A' in Eq. (A18) and
expanding to low order in k, we find, after some algebra,

fi kF
(A20a)

24 e'm, m*'s'

-8X10 g cm sec (r, = 1 6) . (A20b)

This leads to
5.4X10 ' T sec ' (r, =1.6) . (A21)

The corresponding value for He is rz~zh( He)-9X10 T
sec '. The enormous contrast between He and LMD
stems from the facts that (a) the y for He is roughly of
the same order as the for LMD, and (b) r~q'~h-s (for a
typical phonon); s4H /st MD —10

—15. V'ph,

From the standard result for the electron-phonon in-
teraction in jellium with dynamic background, ' we may
readily estimate the rate at which a typical phonon of
momentum q is absorbed due to interaction with elec-
trons,

277
mph-e

2@2

m,*kg g I5(e +e „—e,)5, n (e )[1—n (e, , )]
+

P~P

+5(e e„—e,)—5, n (e )[1—n (e,)]I . (A22)

Here, p and p
' denote initial and final electron moments. The two terms in Eq. (A22) correspond to absorption and

emission. After some straightforward alegebra we arrive at the very simple result ( q =k~T/s),

kgb T
vugh', -0.524 (T «TD),

mgs
(A23a)

—1.9X10 Tsec ' (r, =1.6, T«5.5X10 K) . (A23b)

—16. mph;.

As noted in subsection 3, phonon absorption and emission for typical phonons due to interaction with impurity-like
excitations is kinematically impossible. We thus require an estimate of the rate at which a typical phonon of momentum

q is scattered by the impurity-like excitations,

( (p', q'~ T2
~ p, q) ~

5(e +e —s', —e —,)[1+n (e „,)]n (e. )[1+n (e. ,)], (A24)

where the matrix element is given by Eq. (A10). Momen-
tum conservation eliminates the p

' sum, and under the
conditions here, p'~p in the boson final-state factor.
The effect of the energy 5-function in the q' integration is
to set q'=q while bringing out a factor of 1/s. The
remaining integration is easily performed and we arrive at
(for e „=ksT)

7/2 15/2
~ m; (ksT)

7&h &
8.04X 10

7 (5,+b.2) (T« Ts ),
Rs

(A25a)

the absorption of phonons due to "viscosity" in the
impurity-like excitations (i.e., taking into account interac-
tions between impurity-like excitations) may be an impor-
tant contribution to rpv'. We know, for example, that
viscosity effects in the He subsystem in dilute He in He
mixtures have been shown to play an important role in
low-temperature phonon attentuation. These effects are
not considered here; hence Eq. (A25) should be regarded
as an estiinated lower bound on ~~/';.

7e

—1.4X10 "T' ~ sec ' (T&& 5 K) . (A25b)

It should be pointed out that at very low temperatures

We quote here the standard result for electrons in jelli-
um with an averaged Yukawa effective interaction,
namely
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1.70, 'z (k~T)z (T&&T~ ), (A26a)
A kTF

-4.6XIO'T's~-' (r, =1.6, T&2.3X»'K),
(A26b)

where Tz is the electron Fermi temperature.
e

Note that in the rates rj k the effects of mediated in-
teractions invo1ving the remaining quasiparticle type(s),
l&j,k, are not considered.
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