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Damping of second sound near the superfluid transition of He as a function of pressure
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Quantitative experimental results of the second-sound damping Dq near the superfiuid transition
temperature T~{P) are presented at several pressures P as a function of the reduced temperature-
t = 1 —T/Tq(P). The data cover the entire pressure range of the transition and are for
2)& 10 ( t (0.1. Their experimental uncertainty is in the range of 2—4%. The experimental tech-
nique used in this work is described in detail. It is based on a tone-burst method and includes a
number of novel features such as discrimination against higher harmonics by spectral analysis of the

pulses, rectification before signal averaging to avoid the detrimental effect of temperature noise, a
careful study of finite-amplitude effects, and quantitative corrections for nonparallelism of the cavi-

ty ends. The results are compared with the predictions based on renormalization-group theory and
thermal-conductivity measurements above T~. The intricate pressure dependence of the data, which

changes sign near t =10, is given rather well by the prediction. However, the details of the tem-

perature dependence of the data at a given pressure disagree with the theory in its present form by
deviations somewhat greater than the experimental uncertainty.

I. INTRODUCTION

The study of the dynamics of the superfluid transition
of He has been actively pursued for very many years, and
a number of recent reviews, written from various
viewpoints, describe it in some detail. ' Nonetheless, be-
fore proceeding to a discussion of our experiments, we
would like to outline briefly, from our point of view, the
major events that have motivated us to undertake the
present work.

Nearly two decades ago, the thermal-conductivity mea-
surements near the A, line in 4He of Kerrisk and Keller 6 7

and the simultaneously evolving theory of dynamic scal-
ing, s 9 demonstrated that transport coefficients may
diverge near critical points. This behavior differs dramat-
ically from that predicted by the Van Hove theory, ' in
which transport coefficients are assumed to remain finite
and the diffusivities have the same singularities as the cor-
responding inverse thermodynamic susceptibilities. The
early experimental work ' was followed almost immedi-
ately by quantitative measurements of the thermal con-
ductivity extremely close to the A, point at saturated vapor
pressure"' which appeared to confirm the dynamic-
scaling prediction in considerable detail. These results
and —even more so—somewhat later experiments at
elevated pressure near the A, line' did raise some impor-
tant quantitative questions, however, which were not
readily answered by the phenomenological dynamic-
scaling ideas. Their full significance was, in fact, not gen-
erally appreciated until much later. The issues raised by
the data were as follows:

(1) The measured thermal conductivity could not be
represented by a simple power law even for reduced tern-
peratures t (=

~
T/Tt„1~) as small as 10— . Instead,

confluent singular terms had to be used to fit the data. '

(2) Even when confluent singular terms were included

in the data analysis, the leading exponent derived from the
experiment was larger than the dynamic-scaling predic-
tion by about 0.06.'

(3) The critical region in which the thermal conductivi-
ty rises appreciably above its background (high-
temperature) value is two decades narrower (t &10 )
than it is for the static properties (t & 10 ')."

(4) The thermal conductivity had a strong dependence
upon the cell height h even for h much larger than the
correlation length g."
All except the last of these issues are now understood
quantitatively on the basis of an application to transport
properties' ' of the renormalization-group theory of crit-
ical phenomena. ' 13etailed calculations'"' ' within the
framework of this theory made it clear that an expansion
of the theoretical prediction in terms of the usual power
laws ceases to be meaningful in this case because of the
existence of extremely slow transients. ' ' These tran-
sients explain experimental observations (1) and (2) above.
It was recognized by Hohenberg, Halperin, and Nelson,
and independently by Dohm and Folk, that a quantita-
tive comparison between theory and experiment was pos-
sible nonetheless. These authors proposed a numerical in-
tegration of the renormalization-group recursion rela-
tions' ' in which the initial values for the integration at
some arbitrarily chosen reference temperature are adjusted
until a fit to the measurements is obtained. Such an
analysis was first performed by Dohm and Folk ' ini-
tially using the symmetric planar spin model (model E) of
Halperin et al. '" Model E is expected to represent the
dynamics of liquid helium only approximately and does
not accurately contain the coupling of the specific heat to
the order parameter. An analysis in terms of the more ap-
propriate asymmetric model F (Ref. 14) was presented
soon thereafter by Ahlers, Hohenberg, and Kornblit, and
by Dohm and Folk. Model F is expected to reproduce
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the dynamics of this transition exactly. The comparison
between experiment and theory has revealed quanti-
tative agreement in spite of the complicated dynamics
near this transition. It has also demonstrated that the
narrow critical region for the dynamics [point (3) above]
is a natural consequence of an anomalously small, bare
dynamic coupling constant for liquid helium. (For a
discussion of some of these points, also see the work of
Ferrell and Bhattacharjee. ' ')

The analysis of the thermal conductivity aboue T& fixes
the nonuniversal parameters in the theory by providing
the initial values of the integration of the recursion rela-
tions. This integration gives the two dynamic variables f
and w as a function of t. The second-sound damping
below T~, in principle, can then be obtained from f and w
without any further adjustable parameters. The depen-
dence of D2 upon f and w has been obtained by Dohm
and Folk, ' albeit, so far, only for model E. Combining
this formula with the model-E analysis of the thermal
conductivity has yielded specific predictions of D2 at
several different pressures. ' Experimental measure-
ments for Dz exist only at saturated vapor pressure,
and even there the best data near T& (Ref. 30) have exper-
imental uncertainties as large as 15—20%. This scarcity
of information below Tz is remedied to a large extent by
the present work. %e present measurements at several
pressures up to 28 bars with experimental uncertainties in
the range 2—4%. A brief report of this work has already
been presented elsewhere. Comparison of these experi-
mental results with the predhctions shows that the theory
has been remarkably successful in reproducing the overall
features of the data. Specifically, the rather intricate pres-
sure dependence of Dz, which changes sign at a reduced
temperature slightly less than 10, is given very well.
However, the detaE led tem'perature dependence of the data
at a given pressure is reproduced only approximately. It
will be important to see if this disagreement at a quantita-
tive level can be removed by a systematic calculation of
D2 which uses model F consistently both above and below
TA

More recently, a prediction of D2 has also been ob-
tained from the experimental thermal conductivi-
ty' by Ferrell and Bhattacharjee. This theoretical ap-
proach neglects the dissipative couplings of the dynamic
modes which are associated with the coupling terms in the
free energy, and, therefore, we consider it to be less sys-
tematic than the calculations ' based on the
renormalization-group theory. ' ' Furthermore, Ferrell
and Bhattacharjee restrict their calculations to tempera-
tures not too close to T~ where the weak-coupling re-
gime exists for the dynamics and permits a "high-
temperature" expansion. A correction in the "back-
ground" region which was added later to the original
prediction of D2 has been criticized recently. We shall
compare our experimental results to the theory with and
without that correction. At vapor pressure and for
t &10 the original prediction is numerically not very
different from that based on the renormalization-group
theory, but for larger t, where this theory should be valid,
it predicts a smaller D2 and disagrees with the data by a
considerable amount. To our knowledge, the theory has

not yet been used to predict D2 at higher pressures.
In the next section we describe in detail our experimen-

tal method. This includes, as crucial features to the suc-
cess of the measurements, the design of bolometers an or-
der of magnitude more sensitive than those used previous-
ly for second-sound —damping measurements, careful
quantitative corrections for wedging effects associated
with slight departures from parallehsm of the heater and
bolometer, and a novel half-wave rectification technique
which avoids the detrimental effect of temperature noise
on signal averaging of the measurements. Also discussed
are the application of spectral-analysis techniques to the
measurement of echo intensities, various extraneous loss
mechanisms, and finite-amplitude and bolometer-power
effects. In Sec. III we present our experimental results for
Dz and compare them with previous measurements. Sec-
tion IV consists of a comparison of our data with the
theory. The measurements at vapor pressure are com-
pared with the damping of first sound in Sec. V. A brief
summary is provided in Sec. VI.

II. EXPERIMENTAL TECHNIQUES

A. Techniques for measuring second-sound attenuation
and their relative merit,

Several methods have been used to measure the attenua-
tion of second sound. Hanson and Pellam used a free
traveling-wave system in which the transmitter-receiver
separation could be varied. They made a direct measure-
ment of the sound amplitude after it had traversed dif-
ferent distances in liquid helium. Their measurements,
however, did not extend into the region t ( 10
Worthington et al. measured the damping of second
sound by studying the evolution of the shape of heat
pulses, but their measurements were also made only for
temperatures much less than T~. Tyson, ' Ahlers, and
Crooks and Robinson ' excited standing-wave reso-
nances of second sound. While Tyson and Ahlers mea-
sured the linewidth of resonances in their experiments,
Crooks and Robinson measured the time of decay of the
resonances after the drive was turned off.

One disadvantage of using a resonance method is that
only low-frequency resonances, which are sufficiently iso-
lated in frequency from other resonant modes of the cavi-
ty, can be used. At low frequencies, the surface losses in
the cavity are large compared to the damping in bulk heli-
um. The uncertainty in the measured bulk damping is
thus relatively large. Another disadvantage is that a large
amplitude of second sound builds up in the cavity due to
the high quality factor of the resonances. An extrapola-
tion of results to small amplitudes therefore becomes
necessary in the region near the A, point where nonlinear
contributions to the hydrodynamics become important.

For the experiments reported in this paper we used a
cylindrical cavity with a second-sound generator at one
end and a detector at the other. A tone burst of second
sound was generated which traversed back and forth be-
tween the ends of the cavity. The damping was deter-
mined by measuring the amplitude of the second-sound
echoes at the detector. To improve the signal-to-noise ra-



5118 R. MEHROTRA AND GUENTER AHLERS 30

tio it was necessary to repeat the above process and aver-
age the signal over many sweeps. This technique had
several advantages. When the damping was not too large
we were able to use frequencies as large as 100 kHz. In
that case, the bulk damping dominated extraneous losses.
By improving on the bolometers reported in Ref. 38, we
were able to use lower second-sound amplitudes, where
the effect of finite amplitudes on the damping was negli-
gible compared to the uncertainty in the measurements.
Since no resonant excitations were involved, there was no
buildup of second-sound amplitude in any part of the cav-
ity.

Close to Ti the temperature stability of the measuring
system becomes important. The temperature fluctuations
cause a significant change in the second-sound velocity.
This noise makes an accurate measurement of the damp-
ing difficult when certain techniques are used. For exam-
ple, the frequency of a resonance fluctuates and a true
measurement of the linewidth is difficult to obtain. In the
resonance-decay method used by Crooks and Robin-
son ' it is an important advantage that the temperature
noise does not affect the decay time appreciably because
the amplitude of a freely decaying resonance is measured.
In our method, if we average over many sweeps the tem-
perature noise causes a fluctuation in the arrival time of
the echoes at the detector. This leads to an interference
between the signals received during successive sweeps, and
a true measurement of the echo amplitudes cannot be
made. We were able to remedy this problem and at the
same time retain the advantage of the tone-burst method
by averaging over a half-wave-rectified signal rather than
the full signal. The details of this process are described in
subsection H below.

A disadvantage of the echo method arises if the two
ends of the cavity are not exactly parallel. In that case,
the exponential decay pattern of the echo amplitudes is
modulated by a nonexponential function of the angle be-
tween the two ends of the cavity. However, the nonex-
ponential part can be separated out under favorable cir-
cumstances and the wedge angle can be determined from
it. Thereafter, this angle can be taken into consideration
in the data analysis.

ends with brass caps and indium gaskets. The leads from
the heaters and bolometers were connected to hermetically
sealed coaxial connectors mounted in the brass caps. The
cells could be filled with liquid helium though a fill line
soldered to one of the brass caps on each cell.

C. Design of heater films

The heaters were made by depositing a film of chromi-
um, about 300 A thick, on a glass slide. The glass slides
were 2.5)&2.5X0.32 cm in size. They were sufficiently
flat to produce only a few interference fringes across their
face when placed against an optically flat surface and il-
luminated with yellow light. The resistance of the films
was approximately 350 0/CI. Usual vapor-deposition
techniques were employed with some precautions taken to
make the films uniform. The source-to-substrate distance
was kept large, about 30 cm, and a line source was used as
opposed to a point source. Electrical contact with the
film was made by depositing strips of 300 A of chromi-
um and about 1500 A of gold on top of the chromium on
two edges of the glass slides. Thin copper wires were sol-
dered to the conducting strips using indium and an ul-
trasonic soldering iron. The electrodes were deposited
first, followed by the resistive chromiurti film. As shown
in Fig. 1, the heater films were square in shape to make
the current density, and hence the heating produced, uni-
form over the area of the film.

SCRIBED
BOLOMETER F ILM

B. Design of the cells ELECTRODES CAVITY I.D.

Three cells of 2.03 cm i.d. and 5.08 cm o.d. were
machined out of copper. The lengths of the cells at low
temperatures were 0.404, 1.225, and 3.678 cm, respective-
ly. The cylindrical cavities were polished to increase the
Kapitza resistance between the walls of the cavity and
the liquid helium. This helped in reducing the damping
of second sound due to thermal conduction at the walls.
A second-sound generator was mounted on one end of
each of the cavities. Heaters made out of thin resistive
films of chromium were used as generators. On the other
end of each cavity a second-sound detector consisting of
superconducting gold-lead composite film ' was mount-
ed. Mylar spacers, about 40 pm thick, were used to elec-
trically isolate the heater and bolometer films from the
copper body of the cells. The cavities were sealed at the

/ 8
Sr

5/~
5/~
51~
5y~

INDIUM

COPPER
WIRE

I

~GLASS SUBSTRATE

HEATER F ILIVI

FIG. 1. Schematic diagram of the heater and bolometer. The
circle on the heater film shows the position of the end of the
cavity when the cell is assembled.



30 DAMPING OF SECOND SOUND NEAR THE SUPERFLUID. . . 5119

where P is the power dissipated by the bias current
through the bolometer, and K is the figure of merit de-
fined by

1 R
R dT

(2)

According to Eq. (1), if the power dissipation is to be kept
small, the resistance should be increased to maintain the
signal level. To achieve this the bolometer films were
scribed as shown in Fig. 1. This increased the room-
temperature resistance of the films from about 30 Q to
about 150 kQ. For scribing, the glass slide was mounted
on a milling-machine table and moved against a fixed
carbon-steel scalpel blade. The scribed lines were 25—50
pm wide and 250 pm apart. The bolometers were stored
in a vacuum dessicator until ready for mounting on the
cells.

The resistance of the bolometers dropped by a factor of
2 upon cooling to helium temperatures. %%en biased in
the middle of the superconducting transition, the operat-
ing resistance of a bolometer, hence, was about a quarter
of the room- temperature value, that is, about 35 kQ. The
figure of merit was measured to be 45 K '. The magnet-
ic field required to shift the transition temperature from
2.2 K in zero field down to about 1.7 K was 700—800 G.

Second-sound signals of about 10 nK amplitude could
be resolved directly with the bolometer. A resolution of 1

nK was achieved with the help of signal averaging. The
limiting factor for the resolution was the Johnson noise.

D. Design of bolometers

The bolometer films were deposited in a similar way as
the heaters. The electrodes were deposited first. The
bolometers consisted of a lead film deposited on top of a
gold film. The ratio of the thickness of the lead to the
gold film was 1.55. The total thickness of a bolometer
film was approximately 200 A. This thickness ratio gave
a superconducting transition between 2.18 and 2.23 K.
The same precautions were taken as in the case of heater
films to make the bolometers uniform. In addition, since
two materials, gold and lead, had to be deposited in this
case, the gold was deposited first and then the gold source
was replaced by a lead source in the same position instead
of mounting the two sources side by side. A few hours
after the deposition, the room-temperature resistance of
the gold-lead films became constant and was about 30
Q/H.

The signal 5V generated by a temperature change 5T in
a bolometer of resistance R is given by

COMPUTER

WAVE FORM
SYNTHES I ZE R

TRIGGER SIGNAL
AVERAGER

FILTER

perature. A superconducting solenoid of 30 cm length
and 8.9 cm i.d. surrounded the cells and provided the
magnetic field necessary to tune the transition tempera-
ture of the superconducting bolometer films in the cells to
the working temperature. The superconducting magnet
was operated in the persistent mode to avoid the modula-
tion of the bolometer transition temperature by noise and
ripple from the magnet current supply. Coaxial and other
leads were brought down a stainless-steel tube which sup-
ported the apparatus.

The temperature of the bath was measured by monitor-
ing the vapor pressure in the bath with the help of an
MKS pressure gauge with a Baratron model 145 BHS-100
pressure head, and also by measuring the second-sound
velocity. ' The bath temperature was regulated by using a
Cryocal model CR500 germanium thermometer and a
reference resistor immersed in the bath and connected to
an ac bridge. " The bridge was balanced at the working
temperature. The error signal from the bridge was fed
back through a Linear Research model LR-130 tempera-
ture controller to a 300-Q resistive heater in the bath.
The short-term temperature stability of this regulating
system was a fraction of a micro-Kelvin. Over longer
periods of time, the bath temperature drifted. Drift rates
of up to 1 pK/min were observed. The major cause of
the drift was the relaxation of the germanium thermome-
ter after it was subjected to a change in the magnetic field.
This drift was insignificant during the time interval in
which a set of data was collected.

The pressure in the cells was measured by an MKS
pressure gauge with a model 310 BH-10000 pressure head
for pressures less than 13 bars. For higher pressures, the
second-sound velocity ' and the vapor pressure in the bath
were used to determine the pressure inside the cells. The
pressure inside the cells was not regulated. An accurate
knowledge of the pressure is not required. The reduced
temperature, t, is well known froin measurements of u2.

F. Electronics and procedure

A block diagram of the electronics is shown in Fig. 2.
A burst of several cycles of a sine wave produced by a

E. Experimental setup CELL BIAS PREAMPL I F IER

The overall experimental setup was rather simple. It
consisted of three experimental cells of different lengths
immersed in a liquid-helium bath. The sealed cells were
filled with helium through a fill line of 0.25 mm i.d. to
the required pressure and then isolated from the heliuin
supply line and the pressure-measurement system at room
temperature by closing a valve located at the top of the
cryostat. The bath was pumped to the appropriate tem-

GC

COUPLING

PREAMPL I F IER

QC

COUPL ING

RECTIF IER

FIG. 2. Block diagram of the electronics.
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Wavetek model 178 programmable waveform synthesizer
at a frequency f/2 was applied to the heater in the cell.
This produced second sound at frequency f. The bolome-
ter was biased by a simple homemade constant-current
circuit which used a battery as the source. Currents from
1—100 IMA were used in the experiments. The output of
the bolometer was ac coupled to a Princeton Applied
Research model 113 preamplifier. The amplified output
was fed to a Nicolet model 1170 signal averager through a
Krohn-Hite model 3202 bandpass filter which was cen-
tered around the frequency of interest, f. The bandwidth
used was approximately 0.2f. The filter had 12 db/octave
rolloff.

The signal averager was triggered by the waveform syn-
thesizer at the time the tone burst was created. The
trigger could also be delayed by a known time if desired.
The averager recorded the signal received at the bolometer
as a function of time in digital form in 4096 channels.
The total time interval on the signal averager was adjusted
according to the number of echoes to be recorded and the
time resolution desired. Afer the second sound in the cav-
ity decayed to the background-noise level, another burst of
second sound was created at the heater and the process
was repeated until a satisfactory signal-to-noise ratio was
obtained at the signal averager. The data were then
transferred from the signal averager to a Hewlett-Packard
model 9845B computer for processing. The computer
also controlled the waveform synthesizer.

When working close to the A, transition where the tem-
perature noise became significant, another amplifier and a
half-wave rectifier were inserted between the filter and the
signal averager (see below).

At a given pressure and temperature, the echo pattern
was recorded at each of several frequencies of second
sound. The damping coefficient Dz was deduced from
the frequency dependence of the attenuation. The tem-
perature was then varied to measure D2 as a function of
temperature for a fixed pressure. This process was repeat-
ed for various pressures.

G. Determination of echo intensities

I

4
TIME (m sec)

FIG. 3. Typical echo pattern obtained at vapor pressure far
below T~ in the medium-length cell without the bandpass filter.

, 64 sweeps were averaged. The lower and upper frequency roll-
off points for the preamplifier were 1Hz and 300 kHz, respec-
tively. For this run, u ~

——1399 cm/sec, corresponding to
t=0.05. The frequency was 20 kHz.

noise at frequency f has no fixed phase relationship with
the signal at frequency f. Hence, the intensities of the
signal and the noise, rather than the amplitudes, are addi-
tive. Thus the noise intensity at f was subtracted from
the intensity of each echo. This correction was usually
negligible.

No harmonics of the second-sound frequency were
present in the spectra of echoes (Fig. 6). A spectrum of
echoes from an echo pattern recorded without the use of a
filter (see Fig. 3, for example) also showed no harmonics.
Thus, the filter was important only to limit the bandwidth
and thereby to reduce noise. The absence of harmonics
was important when a rectifier circuit was used for mea-
surements close to the A, point. This is discussed in the
next section.

Figure 3 shows a typical echo pattern obtained when no
bandpass filter is used. An equivalent echo pattern is
shown in Fig. 4 with the bandpass filter in place. The en-
velope frequency corresponding to the time interval of
each eclio has been filtered out. The first echo of Fig. 4 is
shown in detail in Fig. 5.

To determine the intensity of each echo from such an
echo pattern (not too close to the A, transition where the
temperature noise was negligible), a fast Fourier
transform (FFT) was performed and a power spectrum
calculated for each echo. The spectrum was integrated
over a small frequency range bf around the frequency of
interest f to obtain the intensity of an echo. At 1east 256
points in each echo consisting of several cycles at frequen-
cy f were used for the FFT. At least one cycle at the be-
ginning and the end of each echo was discarded to elim-
inate the effect of transients. A typical spectrum is shown
in Fig. 6. A spectrum was also calculated for the back-
ground noise (region between two echoes in Fig. 4). The

0—

C9
M

I

2
I

TIME (m sec)

FIG. 4. Same echo pattern as in Fig. 3 with the bandpass fil-
ter centered at 20 kHz and the bandwidth at 10 kHz.
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n1 An 1 g cos (7)

0
Z',

M

Here, A„i is the amplitude of the fundamental frequency
component of the nth echo in the absence of noise. The
function g(P) is the normalized-phase noise distribution
and is related to the temperature noise distribution by Eq.
(5). In obtaining Eq. (7) we have assumed g(P.) to be sym-
metric about /=0. As an example, consider the Gauss-
ian distribution

0.8
l

I.O

I I Ij I I

)

l.2 I.4
TIME (~ sec)

I.6 I.8

For that case,

An(=An]e p

FIG. 5. Expanded plot of the first echo shown in Fig. 4.

H. Use of the rectifier circuit

Near Ti, where the temperature noise is significant,
there may be a phase difference between the signals at fre-
quency f received in two different sweeps. The phase
difference 5$ is given by

5/=2m f5r,
where

According to Eq. (5), P ' is proportional to 2n —1.
Hence, the later echoes, i.e., echoes with larger n, are af-
fected more by the temperature noise.

In principle, the function g(P) can be measured and the
echo amplitudes corrected, but in practice g(P) is a func-
tion of the bath temperature and the amount of helium in
the bath. Hence, a measurement of g(P) is impractical.

An easier way to remedy the situation is by averaging
over the squares of the signals from many samples rather
than the amplitude. In that case, the average of intensity
of an echo I=S is given by

r= (2n —1)I /u 2 (4) I=ID+Ii cos(2cot ), (10a)

is the arrival time of the nth echo, and I is the length of
the cell. The second-sound velocity depends on the tem-
perature T and thus introduces temperature noise into the
phase. The above equations ignore the high-frequency
temperature fluctuations occurring within the arrival
period of a particular echo. Combining Eqs. (3) and (4),
one has

2n(2n —1)lf d(ln" 2) 5T.
dT

For a sufficiently large number of averaged samples, the
signal from the fundamental frequency contained in the
nth echo is well approximated by

S„=A„ icos(cot ),
with

l75

with

Ip ———,
'
A„)

and

(10b)

Ii ———,
'

A„i J g(P)cos(2$)dg . (10c)

Thus the amplitude A„~ is contained in th'e zero-
frequency component of the spectrum of I, and therefore
is given also by

where (I) is the mean of I. Thus, the determination of
A„i by this method is not sensitive to phase (or tempera-
ture) noise.

Experimentally, the above procedure would require a
squaring amplifier inserted before the signal averager. Al-
ternately, the amplitudes A„j can be determined by using
an absolute-value circuit and averaging over the absolute
value of the signal. In this case,

I 40-
V)I-

I 05—
fL

70

C)
CL

35—

0
0

I

IO 20 30
FREQUENCY (kHz)

I

40 50

FIG. 6. Power spectrum of the first echo shown in Fig. 4.

(12)

where ( l
S ~,„) is the mean of

l
S l,„, the average of the

absolute value of the signal.
The signal averager used in the experiments did not

have a highly stable dc offset. Hence the use of a squar-
ing amplifier or an absolute-value circuit would give in-
tensities of echoes offset by an unknown amount. To el-
iminate this problem, a precision homemade half-wave
rectifier was used. A typical echo pattern is shown in Fig.
7(a). The signal arriving before the first echo is'the pick-
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FIG. 7. (a) Typical echo pattern obtained at vapor pressure and near Tq in the medium-length cell with the half-wave rectifier in
place. 100 sweeps were averaged. For this run u2 ——170 cm/sec, corresponding to t =2&(10 . The frequency was 3 kHz. (b) Ex-
ploded view of the contents of the first echo in (a). (c) Exploded view of the contents of the fifth echo in (a).

up at frequency f/2 which is small in amplitude because
of the bandpass filter in the circuit. An exploded view of
part of the first and the fifth echoes is shown in Figs. 7(b)
and 7(c), respectively. Since the effect of noise on the first
echo is small, the averaged signal during the first echo,
when the rectifier was nonconducting, fixed the zero level.

Once the zero level was fixed as described above, a
number of points (256, for convenience) was selected
within each echo. Again, at least one cycle in the begin-
ning and the end of each echo was discarded. The mean
of these points gave A„i'.. The same procedure was
used to determine the background by selecting points be-
tween two echoes. The background intensity was sub-
tracted from the echo intensities.

To determine the attenuation for a single frequency f, it
was important that no harmonics of the second-sound fre-
quency were present in the signal because no frequencies
were discriminated against in averaging over IS I. As

seen from the Fourier spectra of echoes, no such harmon-
ics were present. In case they were present, the filter
would have filtered them out.

I. Wedging effects and determination
of attenuation coefficient

Gnce the echo intensities are obtained as described
above, it should be a straightforward procedure to fit the
intensities to an exponential decay curve to determine the
attenuation coefficient. However, in the measurement
technique used, "wedging effects" cause a nonexponential
decay which must be taken into account.

The signal obtained from a bolometer is the integrated
response to temperature variations over its area. For this
reason, 'if there are phase variations across the area of the
bolometer, interference takes place. In the measurement
technique used, different parts of the second-sound
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F(8)=2Jt(y) ly,
with

(13a)

r
y =—Oco~ .

I
(13b)

Here, J~ is the Bessel function of order 1, r is the cavity
radius, and ~ is the time measured from the instant when
the heater is activated. The function I' is plotted in Fig.
8.

plane-wave front travel different distances if the heater
and the bolometer deviate from parallelism by an angle 8.
This leads to phase variations of the temperature wave
reaching the bolometer. The interference causes a modu-
lation of the echo amplitudes by a function I"(8), which,
in the absence of walls around the cavity, is given by

MI-

Q3
CC

0
~ ~ ~ ~

8 ~
~ F 0

~ pe

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~
~ ~

~ ~
~ ~

~ ~

In the presence of walls the modulation will not deviate
appreciably from Eqs. (13) until a time when a significant
portion of the wavefront is refiected from the walls.
Hence, for small values of 8 the intensity of a large num-
ber of echoes can be fitted by the function

2Ji yn
(14)I„=Ioexp( —2ax„)

3'n

x„=(2n —1}l

is the total distance traveled by the pulse, and where

y„=(2n —1)r8k .

Here a and k are the attenuation coefficient and the wave
vector of second sound, respectively.

An experimental echo pattern with a very large number
of echoes is shown in Fig. 9. The solid curve is a calculat-
ed curve given by Eq. (14) with Io, a, and 8 determined
by fitting the intensities of . the first seven echoes
(r &0.013 sec) to Eq. (14). The dotted curve corresponds
to 8=0.

For each cell the echo patterns were measured at several
frequencies, and the angle 8 was determined by fitting the
echo intensities to Eq. (14}. These measurements were
made far away from the A, point where the wedge effects
dominated the damping of second sound. Results for 8 of
the medium-length cell are shown in Fig. 10 as a function

I

40
I

80 I 20
TIME (msec)

i

I60

FIG. 9. Pattern obtained from 90 echoes in the medium-
length cell at a pressure of about 1 bar and well below Tq. For
this run, u2 ——1228 cm/sec and f=40 kHz. The figure shows
about 1200 points taken at intervals of 150 psec. These points
more or less randomly sample some of the cycles in the echoes,
and their envelope coincides to a good approximation with the
envelope of the echoes. In a separate experiment, the wedge an-

gle 0 and the attenuation a were determined from the first seven
echoes, corresponding to the initial 0.015 sec in this figure, sam-
pled at 3.3-@sec intervals. The dashed line in the figure is the
envelope which corresponds to 0=0 (attenuation only). The
solid line corresponds to Eq. (14), which includes attenuation
and wedge effects.

3.5

3.3—

of frequency for two different temperatures. They are
well represented by a constant average value

8=(2.91+0.13)X 10 rad .

For the short and the long cells, the measurements gave

1.25 3.1—
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0
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FICi. 8. Modulation function for the echo amplitudes in a
wedged sample.

FIG. 10. Plot of the angle between the heater and the bolom-
eter versus second-sound frequency at two different tempera-
tures. The values of 6 were obtained by fitting measure echo in-
tensities to Eq. (14). The error bars show the standard error ob-
tained from the fits. Open circles, u2 ——597 cm/sec; solid cir-
cles, u2 ——1051 cm/sec.
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FIG. 11. Typical plot of echo intensities versus echo number.
The pressure was P=14.7 bars. The solid curve is a fit to Eq.
(15), and the dashed curve shows the attenuation in the absence
of wedge effects. For this run u2 ——473 cm/sec, corresponding
to t=4.7X10 and f=25 kHz.

vanish at T~ as p,
' . They are quite small in the entire

critical region.

2. Thermal losses

When second sound is excited in a cavity, thermal gra-
dients are established between the boundaries of the cavity
and the liquid helium. The thermal conduction due to the
temperature gradients across the boundaries causes an at-
tenuation of second sound. At the walls of a cylindrical
cavity, the attenuation is given approximately by

2 v
rCu2 R vf +IC

where

E =(1TC A, )
'

+(STCAM, )

and

9=(2.03+0.38) && 10 rad

8=(1.90+0.26) && 10 rad,

Here, C and C are the heat capacities per unit volume of
liquid helium and the wall material, respectively, A, and
A,„are the thermal conductivities, and R~ is the Kapitza
resistance between liquid helium and the walls.

The attenuation due to the ends of the cavity is given
approximately by

A typical fit obtained for the medium-length cell is
shown in Fig. 11. In this case, both the effects of second-
sound damping and the wedge were comparable. The
least-squares fit also gave the standard error for the at-
tenuation u.

J. Various sources of attenuation

Aside from the bulk damping, which is of interest to
us, there are several other contributions to the attenuation
o.. We consider them now.

Viscous losses

When a plane second-sound wave propagates in a cavi-
ty, the fluid movement is parallel to the walls of the cavi-
ty. Owing to the viscous interaction between the normal
fluid and the walls, the second sound is attenuated. The
viscous interaction penetrates a characteristic distance
A, =(g/p„co)' into the liquid from the walls. Here, g
and p„are the shear viscosity and mass density of the nor-
mal fluid, respectively. The attenuation coefficient a„ is
given by

1 Ps

Tu2 p

'/CO

2pn

where p, , p„, and p are the superfluid, normal-fluid, and
total mass densities, respectively. Thus, viscous losses

respectively.
Once 8 was determined for each cell, it was treated as a

fixed parameter. Then, the attenuation coefficient for an
echo pattern could be determined by fitting the echo in-
tensities to Eq. (14) with only two adjustable parameters,
Io and a, In practice, the function used for fitting was

2Ji(y„)
ln(I„)= ln(IO ) —2ax„+ln . (15)

3'n

where

v
lCu2 R,v f +K,

(18)

The Kapitza resistance R was determined by measur-
ing the temperature change inside the cavity when the
cavity was heated by increasing the power dissipation in
the bolometer. The change in temperature was monitored
by measuring u2. The measurements were made close to
the A, point where u2 is very sensitive to small changes in
temperature. The Kapitza resistance is given by

R~ =A b T/I',
where A is the area of the walls of the cavity, 4T is the
change in temperature, and P is the power dissipation in-
side the cavity. The measurements gave R„=2.2
cm K/W.

Using copper cells instead of stainless-steel ones was an
advantage for two reasons. First, since copper has a much
higher thermal conductivity than stainless steel, the power
dissipation in the bolometer due to the dc bias did not

E, =(aC, A,, )
' +(pCA, )

Here, C, and A,, are the heat capacity per unit volume and
the thermal conductivity of the end material of the cavity,
respectively, and R, is the Kapitza resistance.

In the experiments reported here, the wall material was
copper and the end material glass. The bolometer films
were very thin compared to the thermal diffusion length.
For glass, K, is so large that a, is negligible for all fre-
quencies used in the experiments.

For high frequencies, IC„can be neglected and the wall
losses become constant at a given temperature. The at-
tenuation is then

2
N
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raise the temperature of the inside of the cavity above that
of the surrounding as much as it would have for stainless
steel. Second, J is much smaller for copper than stain-
less steel, so that for the second-sound frequencies used in
the experiments, a [Eq. (19)] was approximately in-
dependent of frequency.

3. End losses

Two small grooves less than 0.1 mm in diameter and
depth, in one cavity end, connected the cavity to the inside
of one of the end caps. This facilitated pumping out the
cavity and filling it. Since liquid helium could flow
through these holes, it could lead to some attenuation of
second sound. Experimentally, an attenuation, roughly
independent of frequency, was observed in addition to a~
given by Eq. (19). This attenuation, ao was approximately
2—3 times larger than a . The method of extraction of
values of ac from the data is explained below.

The attenuation ao should be inversely proportional to
the length of the cell. The experimental results were con-
sistent with this fact. A good quantitative comparison
was, however, not possible because uo was small and had
rather large statistical errors.

4. Diffraction losses

Consider a cylindrical cell with the bolometer not per-
fectly parallel to the heater but wedged at an angle 8 (Fig.
12}. The heater produces a circular beam of second
sound. The first echo covers the entire area of the bolom-
eter and is reflected at an angle 29 with respect to the
vertical. As a result, if the beam remains collimated, the
second echo would cover the area of the bolometer as
shown schematically in Fig. 12. On the short-length- side
of the cell, the second-sound beam shifts a distant 491 into
the cell. On the long-length side of the. cell, part of the
beam is reflected back by the walls into the cell. Since the
beam is not infinite in its lateral extent, it does not remain

a plane wave. It spreads out at an angle A, /a, where A, is
the wavelength of second sound. Hence, for low frequen-
cies, when the wavelength is large, the wedge effects
would be modified by this diffraction and the modulation
of the echo pattern would deviate from the one given by
Eqs. (13}. In the range of frequencies used for the mea-
surements of second-sound damping, diffraction was a
negligible effect.

K. Finite power and sound amplitude effects

We investigated the effects on the second-sound at-
tenuation due to power dissipation in the bolometer biased
by a dc current and due to a finite second-sound ampli-
tude.

Owing to the Joule heating produced at the bolometer
by the bias current, a dc counterflow of the normal and
superfluid components of liquid helium is set up. This
counterflow can affect the attenuation of second sound.
The range of power dissipation used for the measurements
of damping was approximately 1—7 p,W/cm . For power
dissipation at least a magnitude larger than the ones used
for damping measurements, no measurable effect on the
second-sound attenuation was observed within the experi-
mental uncertainties. For high-power dissipation, the
temperature of the cavity rose above the bath temperature,
changing uz itself, and then an effect on the attenuation
could, of course, be seen. Figure 13 shows the measured
values of the attenuation as a function of bolometer-power
dissipation at one temperature.

Very significant effects of a finite second-sound ampli-
tude on the attenuation were, however, seen. An empiri-
cal study of this effect was made. The attenuation a was
measured at a given temperature and frequency as a func-
tion of initial second-sound amplitude by the FFT
method. Figure 14 shows a plot of the attenuation a as a
function of the square of the second-sound amplitude for
two reduced temperatures. The curves were fitted with
the empirical function

a=a+bA (20)
~l ~

Wf I +
Xl I

Xl

\
t

BOLOMETER

where A is the amplitude of second sound. Figure 15 is a
log-log plot of the slope b as a function of reduced tem-
perature (the slope b was also weakly dependent upon the
frequency}. For measurement of the damping, the ampli-
tude of second sound was always kept sufficiently low so
that its effect on the attenuation a was no more than
2—3%.

BOLOMETER
0.030

~WALL
0.025

HEATER

'. SECOND-SOUND BEAM

""' " BEAM REFLECTED FROM WALLS

FIG. 12. Schematic diagram to illustrate the effect of diffrac-
tion.

0.020
0 IO0 200 300 400 500

BOLOMETER POWER ( p, W)

FIG. 13. Plot of a versus the power dissipation in the bolom-
eter in the medium-length cell at vapor pressure, t=10
(aq ——318 cm/sec), and f=10 kHz.
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FIG. 14. Plot of a versus the square of the second-sound am-
plitude generated by the heater at two different temperatures for
the medium-length cell. Open circles: t=4.05&(10 and f=9
kHz (upper scale). Solid circles: t=2.13X 10 ' and f=20 kHz
(lower scale).
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FIG. 16. Typical plot of a—u„versus f obtained in the
medium-length cell at 0.3 bar. The solid circles are fitted to a
straight line whose slope determines D2 ——5.33)& 10 cm /sec.

L. Extraction of the damping coefficient D2 from data

The total attenuation a can be written as

a=+2+a&+a +n, +uo+&d, (21)

where az is the bulk attenuation which is of interest to us,
ao is the attenuation due to end losses discussed in subsec-
tion J4 above, and ad is the attenuation due to diffrac-
tion. As discussed above, a, is negligible. At high fre-
quencies, a~ can be neglected and a becomes a constant
[Eq. (19)]. The viscous attenuation av can be calculated
from Eq. (16). Hence, at high frequencies,

Cf —CK~~EX2+ C,
where C is a constant given by

2C=ao+
T Q2

(22)

(23)

The attenuation uz is related to the frequency-
independent damping coefficient Dz by

From Eqs. (22) and (24) it can be seen that a plot of
a —az versus the square of the frequency should be linear
at high frequencies. The slope determines Dz and the in-

tercept gives the constant C.
A typical plot of a —av versus the square of the fre-

quency for the medium-length cell is shown in Fig. 16.
The solid line is a least-squares fit to the high-frequency
points plotted as solid circles. The standard error for the
slope of the linear fit was also obtained from the least-
squares analysis. This determined the standard error for
Dz. A similar plot for data taken in the long cell. at the
much larger reduced temperature 0.1 already was shown
elsewhere.

The intercept in Fig. 16, and in Fig. 1 of Ref. 32, is
larger than the estimate a~ given by Eq. (19) and shows
the existence of (ze. The open circles at low frequencies,
particularly in Fig. 1 of Ref. 32, show the presence of dif-
fraction effects. Since the thermal losses vanish at zero
frequency [Eq. (17)], the experimental points would lie
below the linear fit if diffraction effects were absent.

1 N
u2 —— 3D2 .

Q2
(24) III. RESULTS

l2

7
lo

I

IO

(T„-T)fT„

I

10

FIG. 15. Double-logarithmic plot of the slope of u versus
sound intensity curves against the reduced temperature. Two
points at some reduced temperatures correspond to different
second-sound frequencies in the ratio 2:3 approximately. The
slope b is slightly smaller at lower frequencies.

Measurements of the second-sound velocity and at-
tenuation resulted in the values of Dz and uz listed in
Table I. Each of the 54 values of Dz is based typically on
attenuation measurements at 10 different frequencies.
Each attenuation measurement at a given frequency is
based typically on the analysis of 5 to 10 echoes and Eq.
(15). Corrections for viscous losses az [Eq. (16)] were ap-
plied, and azlf was obtained from a least-squares fit of
a —a to a linear function of f (see Sec. IIL). Dz was'9

2derived from azlf using Eq. (24). The analysis also
yielded the random errors of D2 listed in the table. Addi-
tional systematic errors primarily due to uncertainties in
the wedge angle 8 (see Sec. III) are perhaps 1% or 2%.
These systematic errors will influence all data taken in the
same cell in a similar way.

The measurements were made primarily in the cell of
medium length. In order to test for systematic errors as-
sociated with reflection losses, some measurements were
also performed in the short and long cells (see footnotes to
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TABLE I. Experimental measurements of the second-sound velocity u2 and the second-sound damping D2. The reduced tempera-
ture t is derived from u2 and Ref. 41. Except as noted, the measurements were made in the cell of length 1.225 cm.

103t-

164'
100'
60.3'
36.5'
21.5'
21.5
10.0'
4.98
5.00'
2.15
1.00
0.405
0.405b

0.208
0.120b

0.102
0.0685
0.0465
0.0342
0.0224

20.4
9.7
4.62

65
25.0
10.0

'Cell length 3.678 cm.
bCell length 0.404 cm.

Qg

(cm/sec)

Vapor pressure

1978
1761
1519
1287
1050
1050
781
598
598
328
317
226
226
172
141

P=0.3 bar

132
113.8
98.5
87.9
75.2

P=6.9 bars

957
706
524

P=14.7 bars

1305
939
650

10 D2
(cm2/sec)

10.7 +0.2
5.58+0.11
4.01+0.20
3.51+0.13
3.28 +0.02.
3.10+0.07
3.11+0.07
2.98+0.05
3.08+0.02
3.20+0.07
3.43+0.13
3.77+0.07
3.87+0. 12
4.35+0.19
5.08+0.16

5.33%0.05
5.53%0.09
6.26+0. 12
7.15+0.15
7.72+0.29

3.57+0. 11
3.34+0. 13
3.27+0.04

5.07+0.09
4.17+0.09
3.69+0.09

103t

4.66
2.07
1.00
0.432
0.231
0.1008
0.0647
0.0362

46.8
21.2
10.0
4.59
2.16
1.00
0.481
0.216
0.096
0.059

45.7
21.7
9.88
4.53
2.09
1.00
0.471
0.214
0.098
0.050

Qg

(cm/sec)

P=14.7 bars

473
341.4
255.7
184.3
144.5
105.3
89.0
71.5

P=22.3 bars

1080
798
582
422
310
228
170.4
124.5
90.8
75.3

P=28.0 bars

1007
742
532
384
279
206.8
152.6
111.5
82.1

63.5

10 D2
(cm2/sec)

3.54+0. 10
3.44+0.08
3.48+0.06
3.64+0.09
3.90+0.06
4.06+0.03
4.39+0.11
4.94+0. 19

5.14+0.08
4.38+0.08
4.06+0.05
3.85+0.05
3.66+0.02
3.67+0.09
3.75+0.06
3.76+0.07
4.13+0.05
4.25+0. 10

5.73+0.09
4.94+0.07
4.42+0.08
3.99+0.05
3.66+0.03
3.54+0.05
3.67+0. 10
3.54+0.07
3.88+0. 13
3.87+0.18

Table I). These results for Dz do not differ systematically
from the ones obtained in the medium-length cell.

The second-sound —velocity values listed in Table I
were derived from the time of flight of our second-sound
pulses with an accuracy of typically 0.2%. The reduced
temperatures were in most cases obtained from uz and the
measurements of Greywall and Ahlers. ' Only some
values of t rather far away from Ti are the result of new
direct temperature measurements.

The measurements at vapor pressure (VP) could be per-
formed only for t &10 4 because the bath temperature
could not be regulated well for temperatures closer to Ti.
%'e thus made some measurements at 0.3 bar. At that
pressure, the sample Ti(P) was reduced below the bath
value of Ti„by about 3 mK, and measurements closer to
Ti (P) were thus possible. At constant

t =(Tk(P) 0~A,(P»—
the value of D2 is not very sensitive to changes in P. The
increase in D2 due to a change in P from VP to 0.3 bar
for constant t (10 is only about 0.4%. Thus, the 0.3-

bar data are directly comparable with the VP data.
Results were obtained primarily at VP, 14.7, 22.3, and

28.0 bars. The first three pressures were chosen because
thermal-conductivity data exist at those pressures, ' mak-
ing a direct comparison with the theory possible without
the need for interpolation of the data. The 28-bars data
complete the measurements over the entire pressure range
of the transition. A few measurements were made also at
6.9 bars, but only at relatively large values of t, because
only there was the pressure dependence of D2 sufficiently
large to warrant the additional effort of taking more data.

The smallest value of t at which measurements were
obtained was determined by the rapid increase, approxi-
mately proportional to t ', of az as Ti is approached.
The attenuation had to be sufficiently small to permit the
observation of several echoes in order to determine az reli-
ably by our method. Since a2 ~f, the increase in a2 with
decreasing t can, in part, be compensated for by a shift of
the frequency range used in the experiment. However, the
smallest frequency must satisfy f»u2/l so that a tone
burst of several cycles will fit into the cell of length l.
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For the above reasons the range of data is limited to
t)2)&10 at VP. At the highest. pressure, measure-
ments were not possible by our technique for t & 5 X 10
Even though D2 decreases with increasing P at small con-
stant t, a2 ~ D2lu 2 increases considerably, thus restricting
the experimental range to larger values of t at higher I'.

In Fig. 17 we compare our results at VP and 0.3 bar
(solid circles) with previous measurements at VP. We will

take the opportunity in Fig. 20 below to display our VP
and 0.3-bar data by different symbols. For our data we

show error bars corresponding to random errors whenever

these extend beyond the solid circles. The results of
Crooks and Robinson are shown as open circles, and
those of Ahlers as open triangles. Only a few represen-
tative error bars are included with these data in order to
avoid crowding the figure. The agreement between our
new data and the older results for, t & 10 is much better
than could have been expected on the grounds of the error
estimates. For t & 10 our results are systematically
lower than those of Crooks and Robinson, but only by
about their estimate of their possible systematic errors. In
the region t =0.1, where a2 is quite small and thus diffi-
cult to measure, our data agree well with those of Hanson
and Pellam (HP). For t(0. 1 the difference between

our results and HP's can be attributed to considerable sys-
tematic errors in the HP data for D2 associated with
temperature-scale uncertainties. Hanson and Pellam un-

fortunately did not report values of uz, and quote only
aqlco and T. Although uq(T ) is well known, "' the un-

certainty in T leads to rather large uncertainties in u2 in
the region near T~ where uq varies rapidly, thus introduc-
ing appreciable systematic errors into D2 (which is pro-
portional to uq ). We conclude that there is complete
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consistency between all the data shown in Fig. 17 (see,
however, Ref. 31).

In Fig. 18 we show our results at VP, 14.7 bars, and
28.0 bars as a function of t on logarithmic scales. This
figure illustrates the dramatic change in the pressure
dependence of D2 as T~ is approached. The measure-
ments at all pressures cross at a very nearly unique re-
duced temperature of about 8X 10 . The data illustrate
that the critical region, in which the divergence of D2 at
T~ becomes noticeable, is very narrow at all P and be-
comes narrower as P increases. The same phenomenon
was observed in the pressure dependence of the thermal
conductivity above T~.'

FIG. 18. Experimental results for the second-sound damping
Dq at three different pressures as a function of the reduced tem-
perature t =1—T/Tq(P) on logarithmic scales. Open circles,
vapor pressure and 0.3 bar; solid circles, 14.7 bars; open trian-

gles, 28.0 bars. - The data illustrate the intricate pressure depen-
dence of D2 at constant t which changes sign near t=8 &(10
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FICy. 17. Experimental results for the second-sound damping
D2 at vapor pressure as a function of the reduced temperature
t =1—T/Tq on logarithmic scales. Open circles, Ref. 30; open
triangles, Ref. 29; crosses, Ref. 28; solid circles, this work. For
the data of Refs. 29 and 30 only a small number of representa-
tive. error bars are shown to avoid crowding the figure. For the
present work, error bars are shown whenever they extend

beyond the size of the solid circles.
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FIR. 19. Experimental results for the second-sound damping

D2 as a function of t=1—T/Tq on linear scales. Data in the
critical region, which is only very close to the left edge of the

figure, are omitted. Crosses, Ref. 28. All other data are from
the present work.
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Figure 18 already shows that D2 also increases rather
dramatically at large r, well away from Ti. This region is
displayed more appropriately on linear scales as in Fig.
19. Here, data in the critical region, which is in the im-
mediate vicinity of the left ordinate, are omitted. At all
pressures, D2 is seen to be a very strong function of T.
At VP, for instance, it increases by about 35% when the
temperature is decreased by 4% from 2.04 K (t=0.06) to
1.96 K (r =0.10).

IV. COMPARISON WITH THEORY
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As discussed in the Introduction, the analysis of the
thermal conductivity above Ti (Refs. 25 and 26) in terms
of the recursion relations' ' for model I' fixes the
nonuniversal parameters in the theory by providing initial
values for the integration of these relations. That integra-
tion then yields the dynamic parameters f and iJ which
are related to the order-parameter and entropy relaxation
rates. Having obtained f and w from the analysis aboue
T~, it is possible, in principle, to predict the second-sound
damping below Ti„without any further adjustable parame-
ters. In practice, there are a number of potential prob
lems. First, we mention the uncertainty in the experimen-
tal input above Ti„. There, the existing measurements of
the thermal conductivity depend surprisingly strongly on
the spacing d between the plates of the conductivity cell,
even for d much larger than the correlation length g."
This effect is difficult to understand theoretically, but in
any event the renormalization-group-theory predictions in
their present form pertain to the infinite-size (bulk) limit.
Measurements in a cell of reasonably large d (cell A) are
available only at vapor pressure. Since we would like to
compare the pressure dependence pr'edicted by the theory
with the D2 data, we are forced to make the comparison
on the basis of thermal-conductivity data obtained in a
somewhat narrower gap (cell D), ' which may not quite
correspond to the bulk limit. Therefore, we first examine
in Fig. 20 the difference in the predicted values of D2 at
VP based on the two cells, and look upon it as an estimate
of the uncertainty in the prediction due to uncertainties in
the nonuniversal parameters of the theory. The solid line
and the short-dashed line are based on the, model-F
analysis by Ahlers, Hohenberg, and Kornblit (AHK) of
the cell-A and -D thermal-conductivity data, respectively,
using the formula by Dohm and Folk ' which gives the
dependence of Dz upon f and iU for model Z. The cell-
A-based prediction agrees reasonably well with the data
for t (10, but fails to agree by as much as 25% for
larger t. At small t the ceO-D-based prediction is slightly
worse than the cell-A-based result.

The disagreement displayed in Fig. 20 between theory
and experiment is largest near t 10 . In a sense, this is
surprising because it is in this temperature range that the
dynamic coupling constant f is a small parameter and
that the perturbation expansion of the theory should be
valid. There are, however, a number of approximations
involved in applying the theory to this problem. First, the
recursion relations used for fitting the conductivity A,

were truncated at second order in f, with only the first-
order term based on model F and the second-order term

-3.5—

io' io' io ' io'

FIG. 20. Comparison of the second-sound damping D2 at va-
por pressure with theoretical predictions. Solid circles, data at
vapor pressure; open circles, data at 0.3 bar. The change in D2
with pressure at constant t between VP and 0.3 bar is negligible.
Solid line, prediction from Ref. 25 based on cell-3 thermal-
conductivity measurements; short-dashed line, prediction from
Ref. 25 based on ce11-D thermal-conductivity measurements;
long-dashed line, prediction from Ref. 33; dotted line, prediction
from Ref. 34 (however, see Ref. 36 for a critique of this theory).

taken from model E. The relationship A,(f,ia) that was
used was truncated after the first-order term. A recent
analysis of the cell-A data based on an as yet unpublish-
ed model-F expansion to second order in f [but retaining
the first-order expansion of A,(ic,f)] has yielded values of
D2 very similar to the cell-A-based data shown in Fig. 20,
suggesting that the approximations in the recursion rela-
tions may be unimportant in the experimental tempera-
ture range.

Searching further for possible reasons for the disagree-
ment shown in Fig. 20, we note that the theory below T~
involves static parameters which do not enter the relations
above Ti, ' They are the ratio of the longitudinal to the
transverse correlation length, g /P, and the static cou-
pling constant u. The ratio g /g is universal and can, in
principle, be calculated from the theory of the static prop-
erties. In practice, the value of g /g has not yet been ob-
tained with high numerical accuracy. The static coupling
constant u is not universal, but its value has been estimat-
ed in a number of ways. In Fig. 20 we used the second-
order e-expansion fixed-point value u* =0.04. The possi-
bly more accurate fixed-point value u~=0.0363 was ob-
tained recently from a high-order e-expansion calcula-
tion at d =3. Since u* is not universal, there seems to
be no a priori reason to assume it to be pressure indepen-
dent. However, evidence against an appreciable pressure
dependence comes from a recent prediction by Dohm"7
which relates u~ to the experimentally accessible specific
heat Cz. A one-loop calculation can be used to show
that, to this order in perturbation theory and for the renor-
malization procedure used by Dohm, u* depends only on
the universal specific-heat —amplitude ratio A/3 ', and on
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the universal exponents a and v. This calculation and ex-
perimental data yield the value u*=0.0343, independent
of pressure and in good agreement with the e-expansion
result for d=3. We conclude that, at present, we are at
liberty to make some adjustments in g"/g and possibly
minor changes in u*, but that the values used should be
the same at all pressures. It turns out that adjusting either
u or g'"/g by a multiplicative factor has nearly the same
effect on the theory of displacing the curves in Fig. 20
vertically. Therefore, the uncertainty in the static pa-
rameters permits, in practice, only a single significant ad-
justment which has little influence on the shape of the
predicted curves. We chose to change g"/P from 0.33 to
0.28 (changing u from its second-order e-expansion
fixed-point value u*=0.040 used in Fig. 20 and Ref. 25
to u=0.030 has a very similar effect). This resulted in

agreement between theory and experiment at vapor pres-
sure and t= 0.005 where the cell-A- and cell-D-based pre-
dictions are the same. The cell-D-based result is shown as
a solid line in Fig. 21(a). The dashed line is the unadjust-
ed prediction. The solid curve agrees well with the data
for small t also, but in the intermediate range near
t=10 the theory differs from the data even after the
adjustment. For the cell-A-based prediction, the disagree-
ment at t&0.005 is larger than for the cell-D result.
Thus we conclude that a multiplicative adjustment, in-
dependent of t, in the static parameters, does not yield a
quantitative fit of the theory to the data.

At elevated pressures, conductivity data exist only for

cell D. Thus, we show the cell-D-based predictions at
14.7 and 22.3 bars in Figs. 21(b) and 21(c) together with
the experimental data. As in Fig. 21(a), the dashed lines
correspond to g"/g =0.33 and the solid lines to
g /g =0.28. As we saw at VP, it is apparent also at
elevated P that the data have a t dependence which differs
somewhat from the theory, but the effect of pressure on
the damping is predicted rather well. Thus, near
t=0.005, D2 increases by about 30% in both theory and
experiment as P changes from 0 to 22.3 bars. At small r

both the experimental and theoretical D2 decrease consid-
erably with increasing P. Thus the intricate pressure
dependence of the measurements which was illustrated in
Fig. 18 is largely contained in the prediction.

Very recently, it was emphasized by Dohm that the
temperature dependence of the renormalized coupling
constant u (t) could be taken into consideration in the cal-
culation of D2. Dohm's one-loop calculation of the rela-
tion between u(t) and C», together with experimental
data for C~ derived from thermal-expansion —coefficient
measurements, yields u *=0.0343 and a significant
dependence of u upon t particularly at the higher pres-
sure. As an illustration of the effect that can be ex-

pected from including the temperature dependence of u (t)
in the theory, we retained g"/g =0.33 and used u(t)
based on an analysis with a specific-heat exponent
a= —0.016 (see Eqs. 2.15b, 3.16, 3.18, and 3.19, and
Tables 4 and 6, of Ref. 49) instead of u ~ to calculate D2.
The results are compared, in Fig. 22, with the experimen-
tal data. The solid lines are based upon u (t), whereas the
short-dashed lines correspond to u =u*=0.0343. The
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FIG. 21. Second-sound damping D2 at three different pres-

sures. The data points are the present measurements. The
dashed lines are predictions from Ref. 25 based on cell-D
thermal-conductivity measurements. The solid lines are the cor-
responding predictions obtained by changing the correlation-
length ratio g /P from 0.33 to 0.28. The data illustrate that
the pressure dependence of D2 is given quite mell by the theory.
The temperature dependence of the data differs in detail from
the theory systematically at all pressures.
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FIG. 22. Second-sound damping at three different pressures.
The solid lines are predictions based on cell-D thermal-
conductivity measurements and a temperature-dependent static
coupling constant u(t) (Refs. 47 and 49}. The short-dashed
lines correspond to u =u*=0.0346. The long-dashed line in (a)
is based on cell-2 thermal-conductivity measurements and u (t).
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temperature dependence of u (t) clearly has a significant
influence on the predicted Dz, particularly at the higher
pressures. Nonetheless, this use of u (t) directly in the ex-
isting formula for Dz does not yield perfect agreement.
In Fig. 22(a) we show the prediction based on u(t) and
cell A as a long-dashed line. It does not agree as well
with the data as the cell-D-based result.

Most importantly, it appears to us that a likely reason
for the disagreement between theory and the data
displayed in Figs. 20—22 may be the use of model E for
calculating the relation Dz(w, f). As discussed in the In-
troduction, this model does not treat properly the cou-
pling of the specific heat to the order parameter. Even if
the specific heat is taken into account ex post facto within
model E, resulting in the correct asymptotic behavior
(model Es of AHK), the dynamics at finite t differs signi-
ficantly from that of model F, and, for example, gives
values for A, considerably too large for t near 10 (Fig. 8
of Ref. 25). Although in the case of the Dz prediction the
recursion relations are based on model F and only the re-
lation Dz(w, f) is derived from model Es, we consider this
approximation in the theory the most likely source of the
disagreement with the data.

In Fig. 20 we also compare the new measurements at
vapor pressure and 0.3 bar with the theory of Ferrell and
Bhattacharjee. The long-dashed line corresponds to their
original prediction. In the range t & 10, their predic-
tion falls considerably below the data with a maximum
difference of about 20% near t=10 . More recently,
these authors claimed that they had originally omitted a
contribution to D2 and presented a correction to their pre-
diction which yields the dotted line in Fig. 20. Howev-
er, the validity of their estimate of the size of that correc-
tion has been questioned recently, and therefore the
comparison of the data with the dotted curve should be
treated with caution. To our knowledge, the theory of
Ferrell and Bhattacharjee has not yet been applied at
higher pressures.

V. COMPARISON %'ITH FIRST-SOUND DAMPING

It is interesting to compare Dz with the first-sound
damping D& by means of the hydrodynamic equations
which give the damping in terms of the thermal conduc-
tivity and the viscosities. We have

Dz ——(P, /P„P)( —', rl+gz+P g3 —2Pgi)+A, '/C» g5)

Di =p '(
3 m+4) (26)

From the measurements above T~, ' ' one may esti-
mate ' ' that the singular contribution to A, '/Cp in Eq.
(25) is quite small for t & 10 . Therefore, in the region
not too far from T~, but for t &10, the contribution
A, '/C» to Dz can be obtained roughly from an extrapola-
tion of the background conductivity A, (T ) above Tz (fit
4 of Table VIII of Ref. 25) to the range T & Tz, and from
the experimental specific heat '-below T~. In Fig. 23 we
show Dz (solid circles), and Dz —1,„/C» as an estimate
of Dz A, '/C» (open circles), at VP-.

We wish to compare Dz —A, 'IC» with (p, /p„)Di since
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FIG. 23. Comparison of various contributions to first- and
second-sound damping Dj and D2. Solid circles, D2,' open cir-
cles, D2 —A, '/C~ (A,

' is the thermal conductivity and C~ the
specific heat); solid squares, (p, /p„)D&,' solid line, 3 (p, /p„p)q,
where g is the shear viscosity.

these two quantities differ only by the term involving

p gz —2pgi. Although there have been many investiga-
tions of first-sound damping, most of them have concen-
trated on the region very near T~, and many have dis-
carded any "background" damping (which would be no-
ticeable only further away from Tz ) together with various
extraneous contributions. The only measurements we
are aware of in the temperature range of interest here, of
the full bulk attenuation at hydrodynamic frequencies, are
those by Chase. In Fig. 23 we show as solid squares the
values of (p, /p„)Di corresponding to Figs. 3 and 6 of
Ref. 53. It is apparent that the difference between these
data and Dz —A, 'IC, which corresponds toPl
(p, /p„p)(p gz —2g'i), is nearly independent of t for
10—s & t & 10 ' and about equal to 1.0X 10 cm /sec.

For comparison, we show in Fig. 23 as a solid line the
contribution —', (p, /p„p)q from the shear viscosity to
Dz. This contribution vanishes at Tz as p, /p„, since rt
remains finite. It is relatively small for t & 10

Since (p, /p„)Di is nearly constant for 10 & t & 10
it follows that Di itself has the temperature dependence
of p„/p, and thus depends strongly upon t over this
range. Therefore, the full width of the static critical re-
gion t & 10 manifests itself in Di (and thus, of course,
also in gz), whereas Dz shows a strong rise only in the
much narrower dynamic critical region t (10 . This is
illustrated in Fig. 24, where, for example, Di increases by
a factor of 9 from about 2.S&10 " to about 22)&10 "
cm /sec over the narrow range of T corresponding to
0.003 & t &0.05. Over the same range, Dz and (p, Ip„)Di
are nearly constant. It is evident from Fig. 24 that an ap-
proximate "background" value can be assigned to
(p, /p„)Di, but not to D, itself as attempted by Ferrell
and Bhattacharjee.
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For t &10 ' both D2 and (p, Ip„)Di are strongly
dependent upon' T because of quasiparticle scattering pro-
cesses whose temperature dependence is unrelated to the
phase transition. For D2 this strong dependence upon T
was mentioned already in connection with Fig. 19.

VI. DISCUSSION AND SUMMARY

(1) Superconducting bolometers with a temperature
resolution of 10 were developed.

(2) Signal-averaging techniques which enhanced the
above resolution by an order of magnitude were used.

(3) Spectral-analysis techniques which eliminated the
influence of higher harmonics on echo intensities were
employed when appropriate.

(4) A novel half-wave rectification method was
developed which virtually eliminated the detrimental ef-
fect of temperature noise on signal averaging.

(5) Quantitative corrections were applied for the effect
of nonparallelism of the cell ends.

In this paper we presented measurements of second-
sound damping which have an accuracy of 2—4%. The
accuracy achieved in this work is an improvement by
nearly an order of magnitude over the best previous
data. The results cover the pressure range from vapor
pressure to near the freezing line (=28 bars), whereas pre-
vious work was confined entirely to vapor pressure.
At each pressure, the temperature range of the data is
roughly from 50 or 100 pK below Ti (P) to 0.1 or 0.2 K
below Ti (P).

The experimental procedure used in this work is
described in detail. The measurements are based on a
tone-burst method which included the following features:

(6) Viscous wall losses were calculated from hydro-
dynamics and were subtracted.

(7) The effect of thermal wall- and end-losses was con-
sidered and eliminated in the data analysis.

(8) Diffraction losses were shown to be negligible.
(9) A careful study was made of finite bolometer-power

and sound-amplitude effects, and it was demonstrated
that all the present measurements were made essentially in
the zero-power and zero-amplitude limits.

A distinct advantage of the tone-burst method is that it
permits the use of rather high frequencies. Resonance
methods, which have been used in much of the previous
work, ' are confined to small frequencies and are
therefore influenced more strongly by extraneous damping
mechanisms (wall losses, etc.).

The overall features of our results are most evident
from Fig. 18. Looking first at the data at vapor pressure
(open circles), it is apparent that the critical region, in
which the damping manifests its divergence by rising ob-
viously above its background value, is confined to the
range t &10 . Above T~, a narrow critical region had
been observed already in the thermal-conductivity mea-
surements. " ' There it has been explained in terms of
an anomalously small, bare dynamic coupling constant for
liquid helium. Below Ti„, the dissipative coupling u from
the fourth-order term in the free energy also contributes
to the critical dynamics, and thus there is no a priori
reason for the critical region to be more narrow than it is
for static properties. However, the data show that this
effect is weak, and that, effectively, the dynamic critical
region is also anomalously narrow below T~. The data in
Fig. 18 show that the critical region becomes even nar-
rower, by more than a decade, as the pressure increases to
28 bars (open triangles). This reduction in width is also
observed above T~, ' and there it can be attributed to a
further depression of the bare dynamic coupling constant
with increasing pressure which results from the combined
effects of a decrease in Ti„, a decrease in the entropy at
T~, and an increase in the background conductivity with
increasing pressure [see the discussion in Sec. IVB1 of
AHK (Ref. 25)]. At a given pressure, the width of the
critical region below Ti„ is more narrow by about a factor
of 2 than it is above Ti .

The narrow critical region of the dynamics is in clear
contrast to the behavior of the static properties which
start to diverge already for, say, t & 10 '. Because of the
wide static critical region, the range 10 ' & t & 10
should not simply be regarded as a "background" region,
for, in a systematic treatment of the dynamics (as can be
provided by model I and the renormalization-group
theory), the static properties are coupled to the dynamic
variables and influence the detailed size of the transport
properties. Above T~, this coupling is through the specif-
ic heat, and its effect is illustrated, for instance, in Fig. 8
of AHK. Below Ti, this precritical coupling exists even
within model E (which neglects the specific heat) because
of the dissipative coupling from the coefficient u of the
fourth-order term in the free energy. Thus, it is not possi-
ble to extract quantitative estimates of the "background"
values of the various diffusivities by simply looking in
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this region, as has been done by Ferrell and Bhattachar-
jee ' ' using a model which neglige:ts the dissipative
coupling [meaningful definitions can be given for such
background values in terms of extrapolations to t='ao of
the dynamic variables f and w, as was done by AHK
(Ref. 25)]. Contrary to a recent statement by Ferrell and
Bhattacharjee, renormalization effects do take place in
the range 10 ( t & 10 ', albeit on a somewhat more sub-
tle level, due to the coupling of the dynaniic variables to
the statics.

Returning to the data in Fig. 18, we note that the
damping appears to increase also rather dramatically with
increasing t in the decade 10 (t (10 '. This effect is
shown on linear scales in Fig. 19 and has its origin in the
strong temperature dependence of quasiparticle scattering
processes below T~. It should not be considered as be-
ing associated particularly with the phase transition (i.e.,
as a function of t), but rather it should be regarded as an
exceptionally strong dependence upon the absolute tem-
perature T.

The results of our measurements have been compared
in considerable detail with the various predictions which
have been made on the basis of theory and the measured
thermal conductivity above T~. The comparison provid-
ed in Fig. 20 shows that the qualitative features of the t

dependence of the data are reproduced by the predictions,
but the detailed teinperature dependence is not given
correctly. at the level of the experimental accuracy. The
comparison with the renormalization-group-theory pre-
diction suffers considerably from the ambiguity in the
thecal-conductivity measurements above T~, and an im-
portant future project will consist of resolving this experi-
mental issue; however, the level of disagreement between
prediction and data is greater than the ambiguity due to
the experimental uncertainty above T~. Clearly, one
would like to have a more complete calculation of D2 and
A, carried out consistently to, say, two-loop order and
based entirely upon model F both above and below T~.
On the other hand, it is gratifying that the intricate pres-
sure dependence of the data (which is illustrated in Fig
18) is reproduced rather well already by the theory in its
present form. This is illustrated in Fig. 21.
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