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We present the results of new analyses of static properties near the superfluid transition in He
which incorporate recent accurate entropy measurements. They yield a superfluid density exponent
/=0. 6717+0.0004 at vapor pressure, where. the quoted error is 1 standard deviation. This yields a
specific-heat exponent a= —0.015 via scaling. We assumed these exponents to be universal (i.e., in-

dependent of pressure} in the remainder of the analysis. Their systematic errors are difficult to esti-
mate; therefore we analyzed data at higher pressures with the three values /=0. 669, 0.672, and
0.675, corresponding to a= —0.007, —0.016, and —0.025, respectively, which surely bracket the
true values. Regardless of the exponent pair used, pressure-independent results were obtained for
all experimentally accessible amplitude combinations that have been predicted to be universal.
Specifically, the problem of apparent deviations from two-scale-factor universality along the A, line
has been resolved by the use of the new entropy measurements and this analysis.

I. INTRODUCTION

The renormalization-group theory (RGT) of critical
phenomena' predicts that certain exponents and dimen-
sionless combinations of amplitudes which describe the
singularities of various properties near a critical point are
universal in the sense that they depend only upon such
general properties of a system as its spatial dimensionality
and the number of degrees of freedom of its order param-
eter. The theory also predicts exact relationships, called
scaling laws, between the exponents, and gives good nu-
merical estimates of the values of the universal quanti-
ties. A number of extensive and high-precision measure-
ments of static properties of liquid He near the super-
fluid transition have provided several opportunities in re-
cent years to test these predictions at a quantitative lev-
el 5 —15

While the original analysis of most of these experiments
supported the predictions of scaling' and universality'
and agreed well with the ROT, ' some experimental results
have initially appeared to contradict the theoretical pre-
dictions. Part of the difficulty is attributable to the
fact that until very recently the theory has primarily made
asymptotic predictions, whereas experiments necessarily
are performed a finite distance from the phase transition.
This problem was resolved in part when it was realized
over a decade ago that it is necessary to include confluent
singular terms in the analysis of both static"' and trans-
port' properties in order to fit the data and to obtain
universal leading exponents, and by the derivation for
static properties of these confluent singularities from the
RGT. ' It will be eased even further when the theory of
static properties is developed to the point where it not
only predicts the asymptotic properties in the form of
power-law expansions, but also gives the complete
behavior of the system well away from the critical point.
Much progress towards this goal has indeed been made
for both the statics' and the dynamics, but nonethe-

less, for the present analysis of static properties we are
still limited primarily to comparisons based on power-law
fits, albeit with the inclusion of a confluent singular term.

The remaining difficulties have to some extent been
eliminated by obtaining more suitable experimental data.
A notable example here is the determination of the arnpli-
tude ratio A/A' of the heat capacity at constant pressure
Cz from measurements of the isobaric thermal-expansion
coefficient' P~ rather than more indirectly from the heat
capacity at constant Uolume C„.'

There remained one major apparent discrepancy be-
tween the predicted universality of the phase transition
along the A, line and experimental data for static proper-
ties. This discrepancy involves the free energy of an
amount of fluid contained in a volume equal to the cube
of the correlation length for fluctuations of the order pa-
rameter. The universality of the associated parameter R ~
is a consequence of the existence of orily two independent,
system-specific scales that determine the actual magni-
tudes of all static properties of a given system and is often
referred to as two-scale-factor universality. Previous
analyses of measurements near Ti (P) have yielded values
of Rg which appeared to have a significant pressure
dependence.

The analysis and comparison of experiment near Ti (P)
rest heavily upon the determination of the superfluid frac-
tion p, /p from the second-sound velocity u2, " and upon
the calculation of Cz from Pz. ' Both of these require a
knowledge of the entropy S of the system. For that
reason we recently remeasured S (P, t) near Ti (P) with
substanti. ally improved accuracy. In the present paper
we reexamine a large amount of available data on the stat-
ic properties of He near Ti(P) using our new entropy
data. We reevaluate a number of universal parameters,
but were particularly motivated in both the entropy mea-
surements and the reanalysis in the present paper by the
need for a reexamination of the two-scale-factor—
universality problem. We now find that 8 ~ varies by less
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than 2% over the entire pressure range of the superfluid
transition. This variation is well within the expected ex-
perimental errors, and the result is thus in excellent agree-
ment with the theoretical prediction of universality.
Therefore the largest remaining discrepancy between pre-
dictioris of the RGT and measurements of static proper-
ties near the superfluid transition is removed, and the
universal character of the transition is strongly supported
by experiment.

As we shall discuss in Sec. II A, at the present time the
comparison of experiment to. theory still requires fitting
data to functions with many adjustable parameters. It
turns out that a meaningful comparison is possible only if
some of the parameters are either fixed or constrained by
some of the theoretical predictions. Predictions as yet
unused in the data analysis can then be tested by compar-
ison with fits to the data. This approach to the experi-
mental study of critical phenomena that we have adopted
here has been discussed elsewhere. In particular, we have
assumed in this paper the validity of the relevant scaling
laws and the universality of the exponents, and have
tested the universality of various amplitude combinations.
This enabled us to determine the exponent values from the
superfluid fraction at vapor pressure" which give the
most accurate information. The amplitude combinations
are then examined as a function of pressure on the basis
of data for the superfluid fraction" p, /p, the heat capaci-
ty ' ' ' Cz, and the isobaric thermal-expansion coeffi-
cient' Pz.

In Sec. IIA we outline specifically and in detail our
procedure for analyzing the experimental data and discuss
the constraints taken from theory. The remainder of Sec.
II is devoted to the analysis of p, /p, Pz, and Cz, and to
comparisons with measurements obtained by different au-
thors. The analysis proceeds as follows: In Sec. II 8 we
obtain the exponent g from the superfluid density at vapor
pressure, " where the necessary data are the most exten-
sive and accurate. Here we give careful consideration to
the influence of a temperature-dependent leading ampli-
tude on the exponent. We then use scaling laws to ob-
tain the specific-heat exponent a, and in Sec. IIC we
reanalyze the data for the expansion coefficient' Pz using
this value for a and the other restrictions outlined in Sec.
II A. Since there is some uncertainty in the experimental
values of g and a, we repeat the analysis with two other
values of a in order to explore any effect of the particular
choice for the leading exponents upon other universal pa-
rameters. Heat-capacity measurements ' ' are rean-
alyzed in Sec. IID using the same restrictions as for Pz
from Sec. II C. The specific heat from Sec. II D and that
derived from Pz differ from each other significantly at the
higher pressures. They are each used in Sec. IIE to
rederive the superfluid density under pressure from the
second-sound velocity. The correlation-length amplitudes

go obtained from p, /p for the two cases are compared to
each other and to other independent measurements in Sec.
IIF.' The results of Sec. II will be used in Sec. III where
we reexamine the question of two-scale-factor universali-
ty. In Sec. III we also derive values of a number of other
universal parameters. In Sec. IV we summarize our re-
sults.

II. DATA ANALYSIS

A. Procedure

When analyzing critical properties near a continuous
phase transition, one generally wishes to fit the data from
experiments to functions of a form that permits as much
contact as possible with theoretical predictions. For this
purpose we will start with

and

C+(t) =(A /a)t- [1+D,t'+O(t'~)]+B (2.1a)

for the specific heat above (Cz+) and below (Cz ) T~, and
with similar functions with coefficients A p, 8p, Dp etc.
for the isobaric thermal-expansion coefficient P~ (t).
Here,

t = T/T&(P—) 1. — (2.2)

The superfluid fraction below T~ will be written in the
form

p. /p=k
I
t

I ~[1+Dt I
t I'+o(

I
t -I")] . (2.3)

The amplitudes in Eqs. (2.1) and (2.3) are regular func-
tions of the pressure P and of the absolute temperature T.
Equations (2.1) and (2.3) thus contain a large number of
adjustable parameters, and the high correlation between
them results in experimental uncertainties which are
prohibitively large unless some of the parameter values
are constrained by theoretical predictions. Our approach
will be to restrict the critical exponents a, g, and 6 in
Eqs. (2.1) and (2.3) to universal (pressure-independent)
values which satisfy relevant scaling laws. We find that
the data are consistent with these constraints in the sense
that the constraints do not cause systematic deviations
from the fitting function. The remaining free parameters
can then be used to test additional theoretical predictions
which have not yet been employed as input in the data
analysis.

Specifically, we imposed the following constraints:
(i) The leading exponents of p, /p and Cz are assumed

to obey the Josephson scaling law

g=(2,—a')/3 . (2.4)

The value of g is assumed to be universal.
(ii) The leading critical exponents a and a' above and

below T~ for Cz and Pz [see Eqs. (2.1) and (2.12)] are as-
sumed to obey the scaling law

(2.5)

(iii) The exponents of the lowest-order confluent singu-
lar terms above (b, ) below (b, ') T~ are assumed to be
equal and to have the value

A=i'=0. 5 (2.6)

for all relevant properties. The value 0.5 was chosen to
agree with an earlier analysis of experimental data. " Our
analysis is not very sensitive to the exact value of b„and

C (t)=(A'/a') It I
[1+D,' It I

+0( It
I

)]+&',
(2.1b)
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our results would remain essentially unaltered if we used,
for instance, the theoretical estimate 0.522.

(iv) The additive constants above (B or B~) and below
(B' or Bp) Ti are assumed to be equal:

B =B' and Bp ——Bp (2.7)

B. Superfluid density at vapor pressure

The superfluid fraction p, /p at vapor pressure can be
obtained from the second-sound —velocity measurements"
using the relation

2
Ps Q2

Q2= 1+0
p, u&

which is based on two-fluid hydrodynamics. The term
in large square brackets may be set equal to unity for all
temperatures and pressures of interest to us. 5 We redeter-
mined p, /p from uz using the entropy S from Ref. 24
and the specific heat Cz from Ref. 9. Following Ref. 8,
we fitted it to Eq. (2.3) with

S T
Cp

(2.8)

k =ko(1+ki
I
t

i
) . (2.9)

In addition to ko, k„D, and g, we also treated Ti as an
adjustable parameter; however, its adjusted value in this
and all subsequent fits differed from the experimental
value only by a fraction of a micro-Kelvin The data
covered the relatively wide range

~

t
~

&t,„with
t =0.05. The parameter values are given in the first
row of Table I. Because the entropy usai here differs
from that used in Ref. 8 essentially by an additive con-
stant, we obtain a slightly different value for the leading
amplitude ko in Eq. (2.9), but the other parameters have
essentially the same values as in Ref. 8. For the leading

Additive constants are absent iri the case of p, /p.
(v) We neglect all terms of O(t ) and higher. In the

analysis of Pz and Cz we also neglect all regular terms [of
O(t) and higher], but in the analysis of p, /p we investi-
gate the effect of such terms on the exponent g.

The influence of constraints (i)—(v) on the quality of
the fit of the data to the function has been investigated on
numerous occasions. As before, we again find that no
systematic deviations are induced by these restrictions.

In Sec. IIC we also show on the basis of our analysis
that the amplitude ratios for the leading and confluent

-singularities for Pz, i.e., Ap/A p and Dp/D~, respectively
[see Eq. (2.12)], are independent of pressure, as predicted
by universality. ' We then perform a second analysis
with Ap/Ap and D~/Dp set equal to their average
(universal) values at all pressures.

A final restriction is on the data itself. Except for some
analyses of measurements at vapor pressure, data are lim-
ited to the reduced temperature range —0.01& t ~0.01,
where the exclusion of higher-order confluent singular
terms [of O(t ), etc.] and of regular terms has, at most,
a small influence on the remaining parameters. At vapor
pressure, where precise data over a wide range of t exist,
the effect of neglecting these terms is investigated. In all
the fits the appropriate weights defined in the original
publications are used.

TABLE I. Parameter values obtained by fitting p, /p data
with

~

t
~
&t,„ to Eqs. (2.3) and (2.9). The numbers in

parentheses are the standard errors expressed as a variation in
the last quoted digit. When T~ was fixed at its experimental
value, nearly the same parameter values were obtained and all
standard errors were somewhat smaller.

tmax

0.05
0.03
0.011

ko

2.403(8)
2.414(10)
2.390(20)

—1.46(5)
—2.24(8)
—1.80(30)

Dp

0.33(2)
0.28(3)
0.40(8)

0.6717(4)
0.6722(S)
0.6710(10)

exponent we have

g =0.6717+0.0004 . (2.10)

There were no obvious systematic deviations from the
fit described above. Nonetheless, we explored the effect of
greater flexibility in the fitting function by introducing a
term kit in Eq. (2.9). This resulted in values of g, ko,
ki, and Dz which were within the range of their original
standard errors, but with their standard errors roughly
doubled. The standard error of k2 was larger than the
value of kz. This procedure yielded /=0. 6719+0.0007.

With regard to the other omitted terms in the truncated
expansion (2.3), we note here that the term k&

~

t
~

effec-
tively includes any contribution from terms of 0(

~

t
~

)

since 2h is essentially equal to 1. Thus these higher-order
singular terms cannot be distinguished from an analytic
dependence of k upon T and are already included in our
fit.

As a further test of the validity of the result (2.10), we
returned to Eqs. (2.3) and (2.9) and restricted more severe-

ly the range of the data. For t~,„=0.03 and 0.011 we ob-
tained the parameters given in Table I. It is apparent that
there is no significant systematic variation of the parame-
ters with t,„.

On the basis of the above analysis, we favor the result
(2.10) as our best estimate of g, but caution that the stan-
dard error quoted there does not include systematic errors
from the experiment or due to truncations of the fitting
function. These errors are extremely difficult to estimate,
but even a generous subjective guess of the total uncertain-
ty would result in a number less than +0.002. The result
is in good agreement with the theoretical estimates for the
correlation-length exponent v which are based on a d =3
field theory (g is expected to be equal to v). These esti-
mates are 0.669+0.002 (Ref. 33) and 0.672+0.002 (Ref.
34).

With Eq (2.4), our value for g yields a= —0.015. This
result is somewhat lower than that produced by the origi-
nal analysis'~ of Pz', however, that analysis did not take
analytic temperature dependences of the amplitudes into
consideration. Furthermore, the difference is only slightly
larger than the sum of the standard errors of a deter-
mined both from Pz and from Eqs. (2.10) and (2.4). Our
new estimate of a is in very good agreement with the re-
cent measurements of C& over the range
2X 10 &

~
t

~

& 10,both above and below Ti, by Lipa
and Chui, '5 which gave a= —0.013 [the standard error of
a produced by a fit of these data to Eqs. (2.1) is not
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known since the authors fixed the values of D, and D,' in
their analysis]. It also agrees well with analyses' of ear-
lier specific-heat measurements at vapor pressure and at
pressures up to about 15 bars (Ref. 10) (the specific-heat
measurements at high pressures' appear to be influenced

by systematic errors).
In order to consider possible systematic errors in the

value of g, we carried out three separate analyses of the

p, /p and P& data at each pressure with the three values
/=0. 669, 0.672, and 0.675, corresponding to a= —0.007,
—0.016, and —0.025. Surely this range includes the ex-

act exponent values. This multiple analysis establishes the
influence of the imposed leading-exponent values upon the
other universal parameters. None of our main con-
clusions are found to be sensitive to the choice of g, but
some of the experimental values for the universal parame-
ters are significantly dependent upon g.

dP BS
BT ~ dT t

(2.11)

The parameters VT and T(BS/BT), are less singular than

Cz and Pz. For
i

t
i
(0.01 they are nearly constant, and

with vanishing t they approach their finite values at T~.
Thus Cz is an asymptotically linear function of Pz, and
the two variables have the same exponents and amplitude
ratios. Specifically, we write

P~+=(Ap/a)t (1+Dpt )+Bp

for t)0, and

P~ =(Ap/a)it
~

(1+Dpit
~

)+Bp

(2.12a)

(2.12b)

for t (0. Equation (2.11) then implies on thermodynamic
grounds that

Ap/Ap=A/A',

and that

DI3
——D, and D& ——D,' .

(2.13)

(2.14)

Thus we will at times refer to the leading amplitude ratio
of Pz as A /A' and to the confluent singularity amplitudes

TABLE II. Thermodynamic A,-line parameters used to con-
vert P~ to C~.

C. Thermal-expansion coefficient P,

The heat capacity Cz along isobars near T~ is related to
P~

—= V '(8 V/BT)z by the thermodynamic relation

TABLE III. Parameters for fits of thermal-expansion
—coefficient data (Ref. 14) to Eq. (2.12) using the constraints u
=a'= —0.016, b, =d'=0. 5, and

i
t

i
(0.01.

P
(bars) Ap/3 p Dp/Dp

—10 Ap
(K-') I—Dp

—Bp

5.05
10.09
15.24
20.10
20.18
25.24
25.28
28.76
30.05

1.066
1.065
1.066
1.067
1.069
1.073
1.070
1.072
1.067

0.69
0.91
0.77
0.89
1.32
2.61
1.07
1.21
0.95

1.143
1.375
1.541
1.842
1.811
2.195
2.213
2.602
2.973

0.053
0.069
0.109
0.123
0.077
0.054
0.132
0.136
0.261

0.707
0.853
0.957
1.142
1.126
1.363
1.369
1.608
1.817

as D, and D,'.
We also note that Bp Bp if 8——=8', as already implied

in Eq. (2.7). We used the parameters in Table II (Refs. 24
and 36) for conversions of P~ to C~ via Eq. (2.11).

The data of each pressure were fitted to Eqs. (2.12) with
fixed at 0.5 and for each of the three values

a = —0.025, —0.016, and —0.007. The adjustable param-
eters were Ap, Ap, Dp, Dp, and Bp ——Bp. We give ex-
plicitly in Table III the results for the case a = —0.016 in
order to demonstrate the pressure independence of A/A'
and D, /D, ' (for D, /D, ' at small P, one should consider
the small size of D, and D,' which leads to relatively large
errors in their ratio). The results were similar for the oth-
er values of a, and no obvious significant trends with
pressure existed for A/A' and D, /D,'. Weighted aver-
ages of A /A' and D, /D, ' are given in Table IV. In order
to obtain better values of the parameters A p, D„and Bp,
the data were reanalyzed with the additional constraint of
equating A/A' and D, /D, ' with the values in Table IV.
This yielded the parameters in Table V for the case
a= —0.016. The results for D,' are plotted for each value
of a in Fig. 1 as a function of pressure. At a given pres-
sure, D,' depends significantly upon a. The dependence
upon a of D,' is a consequence of using Eq. (2.1), from
which it follows that D,' must be proportional to a for
small a if the contribution to C& from the confluent
singularity is to remain finite as a vanishes. The values of
A~ and Bp are relatively insensitive to a. In order to fa-
cilitate the calculation of quantities involving P~, the pa-
rameters A', D', and 8 were fitted, separately for each a
over the range of pressure 5 to 30 bars, to the polynomials

A'=ao+a&P+a2P +a3P +a4P (2.15a)

P
(bars)

TA,

(K) (cm /mol)

—Tg(BP/BT)g Tg(BS/BT)g
(bars) (I/mol K)

TABLE IV. Experimental estimates of universal or
pressure-independent parameters.

5.05
10.09
15.24
20.10
20.18
25.24
25.28
28.76
30.05

2.1211
2.0625
1.9962
1.9268
1.9265
1.8486
1.8479
1.7876
1.7642

25.84
24.78
23.94
23.28
23.28
22.70
22.70
22.32
22.19

191.01
166.24
146.80
130.25
130.23
114.42
114.39
102.97
98.44

13.09
9.66
7.92
6.90
6.88
6.12
6.12
5.68
5.54

a
3/2'

Rg
Q

D, /D, '

D,
'

/Dp
D, /D„

0.669
—0.007

1.029
4.14
0.86
0.0342
0.78

—0.028
0.032

0.672
—0.016

1.068
4.25
0.85
0.0343
1.03

—0.068
0.080

0.675
—0.025

1.111
4.42
0.84
0.0341
1.37

—0.10
0.138
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TABLE V. Parameters for fits of the thermal-expan-
sion —coefficient data of Ref. 14 to Eq. (2.12) using the con-
straints a =a = —0.016, 6=5' =0.5, A p/A p

——1.068,
Dp/Dp =1.03, and

~

t
~
(0.01.

TABLE VI. Values of the coefficients of Eq. (2.15) for the
choice a= —0.016. The unit of the pressure is bars and P~ is
measured in K '. The table entries are to be multiplied by the
power of ten in the first row.

P
(bars)

—10 Ap
(K-') I—Dp

0
(10 )

1

(10 )

2
(10 )

3
(10 ') (10 )

5.05
10.09
15.24
20.10
20.18
25.24
25.28
28.76
30.05

1.118
1.326
1.523
1.829
1.817
2.205
2.252
2.707
2.948

0.025
0.042
0.077
0.103
0.099
0.132
0.145
0.177
0.235

0.693
0.827
0.948
1.135
1.128
1.363
1.391
1.664
1.804

a„—1.0491 0.852 72b„1.4029 —34.814d„—2.10 —5.094

—5.8428
38.814

—20.21

2.992 —0.6126
—18.389 3.4004

0 0

D. Heat capacity at constant pressure, C~

The results for this quantity, obtained with u= —0.016,
are shown as the solid circles in Fig. 2.

and

D'=do+0 &P+dzP (2.15b)

0—

-O.I—

8 A'/a=—bc+biP +b2P +b3P +b4P

The coefficients a„, b„, and d„are given in Table VI for
a = —O.OI6.

It follows from Eqs. (2.11) and (2.12) that the ampli-
tudes per unit volume A'/V of the leadings singularity of
Cz below Ti, and the amplitude Att of pz at a given pres-
sure are related by

A'/V =Ti A p

' BP
BT

(2.16)

The heat-capacity of Refs. 9 and 10 were fitted to Eq.
(2.1) using the same constraints as for p~, including the
fixed values of A/A' and D/D' derived from Pz (Table
III). This analysis was done for all three values of a. The
parameters A', D', and B for a= —0.016 are given in
Table VII. The amplitude of the leading singularity per
unit volume A'/V is shown as the open circles in Fig. 2.
Also shown in Fig. 2 is A'/V obtained from the
reanalysis, using our procedure and constraints, of the
heat-capacity data of other authors. ' The agreement
between A'/V from all sources is excellent for all pres-
sures up to about 20 bars and still within the error esti-
mates of the various authors even at the higher pressures.
The general trend with P of A'/V, and the agreement be-
tween different data sets, does not depend upon a.

Note that the agreement between the amplitude A'/V
of the leading singularity for the heat capacity as deter-
mined from direct measurements and that derived from

pz via Eq. (2.16) does not mean that Cz itself derived
from Pz [see Eq. (2.11)] agrees with Cz derived from mea-
surements of C, . In fact, the percent difference between
smoothed values of Cz from Ref. 11 for T & Ti and that
calculated from Eq. (2.11) varies from near zero at pres-
sures P (15 bars to several pe1;cent at the highest pres-
sures.

3.0

-0.3—
~ -O.OI6 FROM p/P5

I

IO

P (bars)

I

20
0
I

30

FIG. 1. Amplitude D,' of the first confluent singularity of
C~ ( T & T~). Open symbols were derived from measurements
of the thermal-expansion coefficient using three different values
of the leading specific-heat exponent a. Solid circles were ob-
tained from the confluent singularity amplitude D~ of the super-
fluid fraction p, /p by multiplying by the universal value
D,' /D~ = —0.068 given in Table IV; they correspond to
/=0. 672 {a=—0.016). To the extent that the solid circles
agree with the open circles, the universality of D,'/D~ is estab-
lished. The line corresponds to Eq. (2.15b) with the parameters
in Table VI.

I

E

~ 2.5-
0

, O

~ MAP
o AHLERS

QKAJI 8 WATANABE

+ && TAKADA 8 WATANABE

0

o 8
0

2.0i
0

I

IO
P(bors)

20 30

FIG. 2. Amplitude per unit volume A'/V obtained by
analyzing data for P~ from Ref. &4 (solid circles) and for C~
from Refs. 9 and 10 (open circles); from Ref. 25 (open diamond
and pluses) and from Ref. 26 (solid diamonds).
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P
(bars)

0.05
1.65
7.33

15.03
18.18
22.53
25.86

5.594
5.532
5.477
5.386
5.363
5.355
5.586

—0.047
—0.003

0.017
0.068
0.097
0.147
0.150

8
(J mol 'K ')

364.1

359.1
352.2
343.2
340.2
337.7
350.2

TABLE VII. Parameters determined by fitting the C~ data
of Refs. 9 and 10 to Eq. (2.1) using the constraints
a=a'= —0.016, A=A'=0. 5, A/A'=1. 068, D, /D, =1.03,
and

~

t
~

&0.01.

entropy measurements. We note that the entropy enters
into this problem not only in Eq. (2.8), where it appears
explicitly, but also in Eq. (2.11) where its derivative with
respect to Tx is needed. The values of (BS/BT)q based on
Ref. 24 differ as much as 15% from the older estimates
and this change has a significant influence on kp. We
use the fits of subsection C for the analysis based on pz,
but, since the original pz data (see Fig. 6 of Ref. 14) for
T & T~ do not extend all the way to

~

t
~

=0.01, we re-
strict the fit to

~

t
~

&0.003 and set k~ ——0. The results
for all three values of g and a are given in Table IX.
'Those for /=0. 672 can be compared to the results in
Table VIII which are based on C&. As anticipated, there
is a significant difference only at the higher pressures.

F. Correlation and healing-length amplitudes

E. Superfluid fraction p, /p under pressure

In subsection 8 we obtained p, /p at vapor pressure
from Eq. (2.8) using the direct measurements of Cz at va-

por pressure from Eq. (4.41) of Ref. 10 and the entropy S
from Ref. 24. We then fitted p, /p to Eqs. (2.3) and (2.9),
with the results shown in Table I. In this section we ex-
tend this analysis for the case a= —0.016 and v=0. 672
to higher pressures, but hIDit the data to reduced tempera-
tures

~
t

~

&0.01, where experimental results for S T/Cz
exist.

For these fits we used p, /p data obtained from u2 with

Cz from Eq. (4.41) of Ref. 10 and with S from Ref. 24.
The results are listed in Table VIII. The values of k

&
and

Dz do not differ significantly from those given in Ref. 8,
but kp is slightly altered (no more than 3%) because we

used the improved entropy values. We repeated the above

analysis using the more restricted range
~

t
~

&0.003,
where terms of O(t) should be negligible. Over this

range, we set k&
——0 in Eq. (2.9). The results based on

v=0.672 and a= —0.016 are also given in Table VUI.
We see that kp and D& are not very sensitive to the range
of the data.

The Cz data used in the preceding analysis for pres-

sures up to 15 bars are reliable and thermodynamically
consistent with the pz results and Eq. (2.11). At higher

pressures there is a significant inconsistency. %e there-
fore wish to reanalyze p, /p based on uq, p&, and the new

The universal ratio Rg to be discussed in Sec. IIIB is
proportional to the correlation-length amplitude gp. We
can obtain gp from p, /p using the relation27

gp=m 4k& T~/A pkp, (2.17)

where m4 is the mass of the He atom. With kp from
Table VIII, based on p, derived from u2 using C~, we ob-

tain the values for gp shown in Fig. 3(a). As noted be-

fore, this analysis of the data results in values of gp that
vary no more than 2% with pressure. Alternately, we can
use the values of kp from Table IX which were obtained
from the analysis of p, /p derived from u2 using p».
These results are shown in Fig. 3(b) as solid circles. In
this case, gp decreases by about 10% with increasing pres-
sure.

We can compare gp with measurements by Ihas and Po-
bell' of a superfluid healing-length amplitude g. Ihas
and Pobell measured the reduced temperature to at which

the second-sound amplitude vanished in resonators

equipped with superleak transducers with several different
channel diameters d. The correlation length g for t =tp is

presumed to be equal to a given fraction of the pore diam-

eter d. One can define gq =d/t p as a healing-length am-

plitude which is expected to be related to gp by a
pressure-independent multiplicative constant of order uni-

ty. We show g multiplied by normalization factors of
0.86S and 0.717 as pluses (d =0.4 pm) and crosses
(d =0.6 pm), respectively, in Fig. 3(b). The agreement

TABLE VIII. Parameters values obtained by fitting p, /p data to Eqs. (2.3) and (2.9). The data were

derived from (Ref. 11) using the fits to Cz described in Sec. IID and the entropy values from Ref, 24.

The values /=0. 672 and b, =0.5 were used.

P
(bars)

0.05
7.27

12.13
18.06
24.10
24.17
29.09

ko

2.408
2.150
1.979
1.851
1.701
1.722
1.585

t,„=0.01

—1.6
—1.7
—3.5
—3.2
—3.5
—5.0
—3.2

0.32
0.77
1.34
1.76
2.61
2.70
3.57

ko

2.412
2.156
1.985
1.857
1.709
1.732
1.592

t,„=0.003

0.22
0.62
1.12
1.53
2.32
2.31
3.32
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TABLE IX. Parameter values obtained by fitting p, /p data to Eqs. (2.3) and (2.9), with k& set equal
to 0 and for t & 0.003. The data were derived from the second-sound velocity u2 (Ref. 11) using the P~
measurements (Ref. 14) analyzed in Sec. II C. Entropies from Ref. 24 and the value 5=0.5 were used.

P
( ars)

7.27
12.13
18.06
24.10
24.17
29.09

0.669

2.096
1.961
1.852
1.733
1.757
1.688

0.672
ko

2.136
1.990
1.901
1.796
1.822
1.729

0.675

2.190
2.048
1.956
1.848
1.874
1.796

0.669

0.77
1.24
1.60
2.28
2.25
3.38

0.672
Dp

0.71
1.06
1.39
2.02
2.00
2.7

0.675

0.74
1.03
1.24
1.72
1.70
2.23

with go is quite good and well within the experimental un-
certainties. The dashed line in Fig. 3(b) is used as a guide
in determining go at various pressures for use in Sec. III8.

E

O

3.5

. (a)

III. UNIVERSALITY

A. Specific-heat amplitudes

The analysis of Sec. IIC showed that the thermal-
expansion —coefficient measurements' lead, within exper-
imental error, to pressure-independent values of A/A'
and D/D'. This is apparent from the data in Table III,
which is for a= —0.016. The other values of a yield
similar results. The universal values of the amplitude ra-
tios depend somewhat upon the value of a used in the
analysis, as seen in the third and seventh rows of Table
IV. A parameter which is relatively insensitive to the
value of a is the ratio

H =(1—A/A')/a, (3.1)

which was introduced by Barmatz, Hohenberg, and Korn-
blit and has been examined for various experimental sys-
terns. , We find 4.1 (H &4.4 as shown in the fourth
row of Table IV.

Ratios of amplitudes of confluent singularities such as
D/D' have been calculated from the RGT, ' but not
with high accuracy. For D!D' these calculations yield
values close to 1, roughly consistent with the results in
Table IV. The best theoretical value ' is 1.17, but its un-
certainty is difficult to estimate.

B. Two-scale-factor universality

Another experimentally accessible parameter that is ex-
pected to be universal is the singular contribution to the
free energy, normalized by k&Tq, of an amount of fluid
contained in a volume equal to the cube of the correlation
length g for spatial fluctuations of the order parameter. 23

Since the singular part of the free energy is determined by
the specific heat, one can define this universal parameter
as

3.3
0

3.5
x

+

I

IO

P (bars)
20

(b)

(Rg )
—=a't (C"" /k )g

where

Cp'"s (A'/a—'—V)
i
t

i

Using the scaling law 3v=2 —a, one obtains

(3.2)

E
3-3

t2

3.I—
l

IO

x
o

X
+ g

I I

30
P (bars)

FIG. 3. Correlation-length amplitude go from Eq. (2.17) de-
rived using (a) C~ data from Ref. 10 (open circles) and (b) P~
from Ref. 14 (solid circles) in the analysis of p, /p. Also shown
in (b) as crosses and pluses is g derived from data of Ref. 13
and defined in the text.

(Rg ) =(A'/Vks)go (3.3)

independent of t. The specific-heat amplitude A'/V is
shown in Fig. 2 for several experimental measurements of
Cz (Refs. 9, 10, 25, and 26) and for the pz (Ref. 14) mea-
surements. In the case of pz, A'/V is obtained using Eq.
(2.11) with parameters from Table II. The correlation-
length amplitude gc derived from p, /p is shown in Fig. 3
for the two different analyses involving Cz and pz
described in Sec. IIE. In Fig. 4(a) we plot (R~ ) with gp
taken from Fig. 3(a) and A'/V from Fig. 2. We see that
(R~ ) is larger by almost 50% at 30 bars than its low-
pressure value. This pressure dependence is, of course,
essentially the same as that of A'/V in Fig. 2, since go
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shown as solid circles. They are consistent with the
values of D,' derived from Pq if one considers the low ac-
curacy of the result for D,' (reasonable guesses at the un-
certainty of D,' would yield about +0.02).

It is interesting to note that D,' /Dq is quite small and
not of 0(1). This is a consequence of using Eq. {2.1),
which for small a implies that D,' is proportional to a
(see Sec. II C). We find that D,'/Dq-4a regardless of the
value used for a in the analysis.

The best theoretical value for D,'/Dq is —,. Although

roughly of the right magnitude, it is positive, whereas the
experimental value is negative. The source of this
discrepancy is not known at present.

0.6-0 g

0

0.65 !

I ~
0

1

IO

P (bors)

~ g

I

20

o ~
0

0
0

I

30

~ ~

D. Ratio RD

Cq+{t)=g08 C,h(r)+C„s, (3.4)

Recently, Bagnuls and Bervillier ' derived an expression
for the heat capacity above T, for systems of spin dimen-

sionality n =2 from high-order perturbation theory in
dimension d =3 which has the form"

0.55
0 IO

P(bors)
20

FIG. 4. Parameter (R~ ) derived from Eq. (3.3) using A'/V
from Fig. 2, and (a) go from Fig. 3(a) and (b) go from Fig. 3(b).

taken from Fig. 3(a) is nearly independent of pressure. If
we instead use go from Fig. 3(b) in Eq. (3.3) together with
A'/V from Fig. 2, we obtain the results shown in Fig.
4(b). We see that (R& ) is constant to within about 5.%
over the entire range of pressures from 0 to 30 bars, in ex-
cellent agreement with the predictions of two-scale-factor
universality. The value calculated for Rg using the
ROT (Ref. 46) is equal to 0.96 and is accurate to perhaps
20%. This is to be coinpared to the average experimental
value determined here of 0.85. Thus the experimental R

g
is consistent with the theoretical prediction both in its
pressure independence and its numerical value. Analyses
with a= —0.007 and —0.025 give similar results. As can
be seen in the fifth row of Table IV, the value of Rg is
not very sensitive to the choice for a.

RD =——A( D, ) /(a—B„).

It follows ' that

(3.6)

RD = —Xi( —X2Xg —X4X5) /X6 .

The theoretical estimates ' of X, give

(3.7)

where C,i, (r) is obtained from a fit of numerical theoreti-
cal results to the empirical function

C,h(r)=Xi& (I+X27 ) '(1+X4r ) '~X6 . (3.5)

Here ~=8t, go and 8 are two nonuniversal scale factors,
and the X; are pure numbers quoted in Ref. 21. There is
an analytical background contribution C„g to the heat
capacity of the physical system which, in addition to 0,
go, and T~, must be determined from the experimental
data. Defining B„=B—C«s and comparing Eqs. (3.4)
and (3.5) to Eq. (2.1), Bagnuls and Bervillier note that the
combination A ( D, )

~ /(aB„) d—oes not depend on the
system-specific parameters go, 8, or C«s, and therefore
suggest that it should be pressure independent for 4He.

Specifically, we define

C. Amplitude ratio D,' /D& -1.076&R& & 1.035 . (3.8)

Another parameter that is predicted to be universal is
the amplitude ratio D,' /Dq, where D,' is the amplitude of
the confluent singular term for either Pq or Cq, and Dq is
the amplitude of the confluent singularity for p, /p I'see

Eqs. (2.1) and (2.3)]. We use interpolated values of Dq ob-
tained from graphs of the results in Table IX and the
value of D,' from Table V (or their equivalent for other
values of a). The average values of D,'/Dq are given in
Table IV for the three values of a. The result is strongly
dependent upon the choice for a, because D,' depends
strongly upon a (see Fig. 1), whereas Dq does not. Re-
gardless of the choice for a, the ratio D,' /Dq is indepen-
dent of pressure within the experimental resolution. This
is illustrated in Fig. 1 for u= —0.016 where the results
for Dq, multiplied by the value of D,'/Dq in Table IV, are

Experimental estimates of RD based on Eq. (3.6) are given
in Fig. 5 as a function of pressure for our three values of
a. Except for the solid triangles, the data are based on the
thermal-expansion parameters &om Table V and its
equivalent for the other values of u and on Table II. The
solid triangles (for a= —0.016 only) are from the heat-
capacity parameters in Table VII, except that D was based
on Eq. (2.15b) with the coefficients in Table VI. The re-
sults are not very sensitive to the exact value of the back-
ground term C„g, and we simply used the value of C„at
its minimum above Ti, The theoretical result (3.8) is
shown as the vertical bar near the lower left-hand corner
of Fig. 5.

The difference between the data in Fig. 5 and the pre-
diction seems to be only a few percent, and thus the agree-
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I.3

I.2—
k ~

RD

o o

ative and thus consistent with this aspect of Eq. (3.6).
However, the results for D,' in Table VII, based on the
analysis of Cz, change sign for P near 2 bars. The posi-
tive values at the low pressures are not permitted by the
high-pressure data and Eq. (3.6) since D,'/D, must be
universal. The problem is associated with the specific
choice for A/A' and D, /D,'. The values of D, are quite
sensitive to these parameters, and a slight adjustment
could result in negative values for D, at all pressures.

P (bars)

I

20
I

30

FIG. 5. Experimental values of the amplitude combination
RD given by Eq. (3.6). To obtain A, D, and B from P~, we used
Tables II and V (or their equivalent for other values of a) with
Eq. (2.11). &e set B„=B C g with C g equal to the
minimum in C~ for T ~ Tq. Open diamonds are based on P~
and a= —0.025. Solid circles are based on P~ and a = —0.016.
Open circles are based on P~ and a= —0.007. Solid triangles
are based on C~ (Table VII) and a= —0.016. Vertical bar near
the left-hand ordinate indicates the theoretical prediction Eq.
(3.8).

E. Effective coupling of the Landau-Ginzburg-Wilson
Hamiltonian

R,(t) —1 a, (t)
G(u (t))—1 Q(u (t))

Here,

(3.11)

(3.12)

The behavior away from the fixed point of the renor-
malized coupling constant u (t) of the Landau-Ginzburg-
Wilson Hamiltonian plays a role in the comparison of the
second-sound damping D2 with the predictions of the
dynamic renormalization-group theory. ' ' ' Its depen-
dence upon t influences the size of confluent singular con-
tributions to D2. A relation between the specific heat and
u (t) was recently derived by Dohm and has the form

ment might be considered quite good. However, this is il-
lusory and due to the high correlation between o. and B„.
This can be seen by writing Eq. (3.6) in terms of the pa-
rameters of the function

dc~+(t)
a, (t) =— [t/C~+(t)]— (3.13)

Cq+=(A/a)(t 1)+(A/a)D, t —+B„+C„s, (3.9)

which in the limit of a passing through zero has smoothly
varying nondivergent coefficients (note that B„diverges
as a~0 ). We obtain

Rg) [1 (B„/A )—a—] —( D,)— (3.10)

We observe that ( D, )
~ will b—e very close to unity for

almost any nonvanishing
~
D,

~

because a is so small.
Furthermore, although B„is negative, it is of the same
magnitude as A, so that —B„/A is a number of order
1. Thus it follows that RD will differ from unity only by
an amount comparable to the size of a no matter what pa-
rameters (within reason) are use to compute it. We should
therefore demand "good" agreement for, say, RD —1,
rather than for RD itself. At that level the comparison
between experiment and theory in Fig. 5 is not gratifying.
We note that, as expected from Eq. (3.10), the results for
RD —1 vary roughly in proportion to a. The discrepancy
between theory and experiment reflects the difference in
the estimates for a. Whereas the theory yields '
—0.009 & a (—0.004, the experiment favors more nega-
tive values. We note that the experimental data in Fig. 5
suggest a slight pressure dependence, although it is diffi-
cult to rule out systematic errors in the analysis as the
cause.

An interesting qualitative feature of Eq. (3.6) is that a
pressure-independent RD requires D, to have the same
sign at all pressures. Indeed, the data in Fig. 1 are all neg-

The functions G(u) and Q(u) have been obtained from
renormalized perturbation theory, albeit so far only to
one-loop order. They are

G(u(t) )= — +—+O(u (t) )
1 4

2nu (t) n
(3.14)

Q(u(t)) =2—5v(t)+O(u (t)), (3.15)

where n is the spin dimensionality.
For t =0, the function v(t) is equal to the correlation-

length exponent v. For
~

t
~

&0, Dohm ' writes
v= [2—g„(t)] ' with g„approximated by

l

g„(t)=(n +2) I4u (t) —40[u (t)]'I

+ t2 —v ' (n +2)[4u*—40(u*) ]—I [u(t)/u*]

(3.16)

Here, u' is the value of u for t =0. We shall use this ex-
pression with v equal to the experimental value of g given
by the p, /p analysis.

With Eqs. (3.14) and (3.15), Eq. (3.11) yields

u(t)= I8 2n —2n[2 ——5v(t)][Re(t) —1]/a, (t)I ' (3.17)

for the relationship between u(t) and Cz (t). Although-
Eq. (3.17), together with Eqs. (3.12) and (3.13), can be
evaluated numerically on the basis of experimental data
for Cz+-or P~, it is instructive to evaluate Ro and a,
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analytically from their definitions [Eqs. (3.12) and (3.13)]
using Eq. (2.1). Substituting into Eq. (3.17) for u (t), one
obtains

I.O

0.9

u (t) =
I 8 —2n 2n —(1/a)(2 —5v)

x [2 A'/A —1+fi(t)]/[&+f2(t)] I

with
(3.18)

0.7

and

f, (t)=D, (2 A'D,' /AD, —1)t (3.19a) 0.6

IOg(p (t)

f,(t) =D, (1 6/a)t~—.

We note that, as t vanishes Eq. (3.18) yields

u*=[8—2n —2n(2 —5v)(1/a)(2 A'/A —1)]

(3.19b)

(3.20)

with

u (t) = u*[1+D„t~+0(t'~)], (3.21)

D„=— (2 —5v)
2n 2A'

A

5v—1—
n 2 —5vD,

Thus, in the one loop a-pproximation of the renormaliza-
tion scheme used by Dohm, u* is given entirely in terms
of the spin dimensionality and the associated universal

quantities a, v, and A /A. This explains why the experi-
mental data for the expansion coefficient Pz near the A,

line in liquid helium, when fitted to functions with a
pressure-independent a and A /A ', will also yield a
pressure-independent u as observed by Dohm. For
n =1, 2, and 3 one obtains for u' the values given in

Table X from the representative experimental values of a
and A/A' given there. The values of u* corresponding to
our analyses are given in Table IV.

Equations (3.17) or (3.18), in conjunction with typical
experimental values of the specific heat, yields a signifi-

cant dependence of u upon t, especially at the higher pres-

sures. Therefore, it is instructive to expand Eq. (3.18) to
lowest order in t . This yields

FIG. 6. Temperature dependence of the Landau-Ginzburg-
Wilson effective coupling constant based on a one-loop calcula-
tion (Ref. 22) and the thermal-expansion measurements (Ref.
14). Solid lines, Eq. (3.18) to Eq. (3.19); dashed lines, Eqs. (3,21)
to (3.23). We used a= —0.016, A/A'=1. 068, D, /D,

' =1.03,
and D,

'
as given by Eq. (2.15b) and Table VI. The three pairs of

lines, from top to bottom, are for 0, 15, and 30 bars, respective-
ly.

dent of a. The results for D, /D„ in Table IV and X are
numerically close to —5a.

In Fig. 6 we show as solid lines u/u' calculated from
Eqs. (3.16), (3.18) and (3.19) as a function of t for He at
0, 15, and 30 bars. We used e= —0.016 and the corre-
sponding values of v, A/A', and D/D' from Table IV.
For D' we used Eq. (2.15b) with the parameters in Table
VI. The dashed lines are the corresponding result based
on Eqs. (3.21)—(3.23), which neglect terms of O(t ).

The results for u given in Table IV are in excellent
agreement with the value u =0.0363 derived from a
high-order e expansion for d =3. The agreement is re-
markable because the results (3.14) and (3.15), on which
the determination of u" is based, are valid only to one-

loop order. Presumably it is attributable to the use of ex-
perimental values for the universal quantities on the
right-hand side of Eq. (3.20). It would be interesting to
know if the dependence upon t of u (t) [Eqs. (3.18)—(3.19)
or (3.21)—(3.23)] is given with similar accuracy.

a D'2 -'
+ —1 uae~ (3.22)

where we wrote v =v( 1+D t). The univ-ersal ratio

D-„/D, can be obtained in terms of D„/D, from Eq.
(3.16), which yields

We have used recent accurate entropy measurements
in a reanalysis of a number of static properties near the

D„=[3v(2—v ')+8vu*(n +2)(5u* —1)]D„. (3.23)

Equations (3.22) and (3.23) yield D, /D„. It follows that,
to thi's order of perturbation theory, the confluent singu-

larity amplitude ratio D, /D„depends only on universal

quantities, namely v, a, 6, A /3 ', and D/D', for a- given
n. Values for n =1, 2, and 3 are given in Table X.
Values of D, /D„corresponding to our analyses of the
He data are given in Table IV. Our He results for

D, /D„are quite small because D, is small. The small-

ness of D, already manifested itself in the smallness of
the ratio D,'/D&. Typical values of D, for the A, line are
near —0. 1 and are sensitive to the exact value of a,
whereas typically D„=—1 and D&-1, roughly indepen-

0.11
—0.016
—0.14

0.630
0.672
0.713

A /A'

0.538
1.067
1.588

0.0370
0.0347
0.0325

D, /D„

—0.55
0.080
0.70

TABLE X. Reasonable estimates for a, v, and A/A' for
various spin dimensionalities and the corresponding values of
u given by Eq. (3.20) and D, /D„given by Eq. (3.22). The scal-

ing law 3v=2 —a and the relation H=—(1—A/A')/a=4. 2
were assumed in order to obtain v and A/A' from a. The
values for a and H =4.2 are typical experimental results. For
D, /D,' we used 1.0.
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superfluid transition line T~(P) in He. The entropy data
were needed to obtain the superfluid fraction p, /p from
measurements of the second-sound velocity u2 and to
derive the heat capacity at constant pressure Cz from the
isobaric thermal-expansion coefficient Pz. The heat capa-
city is needed not only for its own sake but also in obtain-
ing p, /p from u2.

A fit of the data to appropriate functions, which is
necessary for comparison with theory, requires the adjust-
ment of many parameters and would lead to very large
uncertainties if carried out independent of theory. Our
approach has been to impose constraints derived from
theory upon the critical exponents and to compare the
values of the remaining free parameters with additional
theoretical predictions, pertaining primarily to the ampli-
tudes, that have not yet been used in the analysis. Specifi-
cally, we used the following theoretical predictions as con-
straints:

(1) We assumed the validity of the Josephson scaling
law (2.4) and derived the specific-heat exponent from the
superfluid density exponent g.

(2) We assumed the validity of the scaling law a =u'.
(3) We assumed all static properties to have the same

exponent 6 for the leading confluent singularity and took
the value of 6 from earlier analyses of data and from
theoretical predictions to be equal to 0.5.

(4) We assumed all exponent values to be universal (i.e.,
independent of pressure).

Our strategy in utilizing the above constraints has been
as follows. The superfluid-density exponent g was deter-
mined from the data at vapor pressure where the precision
and accuracy is largest. Next, we carried out complete
analyses for three values of g (and the corresponding
values of a) which cover a range considerably wider than
any possible systematic errors in g would suggest. We feel
that the true values of the leading exponents are surely be-
tween the largest and smallest values used here. From an
analysis of Pz at several pressures, we established the con-
sistency of the data with the universality of the specific-
heat —amplitude ratios A/A' and D, /D,', regardless of
the values of a used in the analysis. Thereafter all data
were analyzed once more assuming A/A' and D, /D, ' to
be universal. This additional constraint increased the pre-
cision of the amplitudes themselves and produced results

of fair precision even for D,' which is otherwise hard to
determine. The p, /p data were also analyzed at several
pressures.

We used measurements of specific heat, ' ' ' thermal
expansion' and second-sound velocity, " typically over
the range —0.01 & t (0.01, in the above analysis. Our re-
sults, contingent upon the validity of constraints (1)—(4)
above, are in good agreement with most theoretical pre-
dictions. Our best estimates of the leading exponents are

(=0.6717, a= —0.015 .

Statistical errors are very small, but systematic errors may
be larger and are difficult to estimate. Nonetheless, it is
unlikely that the true values of g differ from the above
result by more than +0.001. This corresponds to an un-
certainty in a of +0.003. The result agrees well with the
high-order perturbation calculation based on a d =3 field
theory which yields v=0.669+0.002 and a= —0.007
+0.006 or v=0.672+0.002 and a = —0.016+0.006, de-
pending on the detail of the series resummation tech-
niques. It does not agree within the estimated uncertain-
ties with the result v=0.665+0.001 and n =0.005+0.003
which was obtained recently from an expansion to fifth
order in m=4 —d. Our experimental exponent values
agree well with recent new specific-heat measurements by
Lipa and Chui' which yielded a = —0.013.

A11 experimentally accessible amplitude combinations
that are expected on the basis of theory to be universal or
pressure independent were indeed found to be independent
of P within experimental resolution. Values of the ampli-
tude combinations are summarized in Table IV. Some of
them are sensitive to the choice for the leading exponents,
while others are not. Most values are consistent with
theoretical predictions, but most of them are not yet
known with high accuracy from theory.

ACKNOWLEDGMENTS

We are grateful to P. C. Hohenberg for several helpful
conversations regarding the comparison of our results to
theoretical predictions. This research was supported by
the National Science Foundation under Grant No. DMR-
79-23289.

'Present address: Physikalisches Institut, Universita't Bayreuth,
D-8580 Bayreuth, West Germany.

K. G. Wilson, Phys. Rev. B 4, 3174 (1971);4, 3184 (1971). For
a review of the application to critical phenomena, see K. G.
Wilson and J. Kogut, Phys. Rep. 12C, 76 (1974), or M. E.
Fisher, Rev. Mod. Phys. 46, 597 {1974).

Early statements of the hypothesis of universality may be
found in M. E. Fisher, Phys. Rev. 16, 11 (1966); P. G. Wat-
son, J. Phys. C 2, 1883 (1969); 2, 2158 (1969); D. Jasnow and
M. Wortis, Phys. Rev. 176, 739 (1968). More recent refer-
ences are L. P. Kadanoff, in Critical Phenomena, Proceedings
of the International School "Enrico Fermi, " edited by M. S.

Green (Academic, New York, 1971); R. B. Griffiths, Phys.
Rev. Lett. 24, 1479 (1970); D. D. Betts, A. J. Guttmann, and
G. S. Joyce, J. Phys. C 4, 1994 (1971);D. Stauffer, M. Ferer,
and M. Wortis, Phys. Rev. Lett. 29, 345 (1972). The validity
of the principle of universality has been proved by the
renormalized-group theory (Ref. 1).

The scaling theory was developed primarily by J. W. Essam
and M. E. Fisher, J. Chem. Phys. 39, 842 (1963); B. Widom,
ibid. 43, 3898 (1965); C. Domb and D. L. Hunter, Proc. Phys.
Soc. London 86, 1147 (1965); L. P. Kadanoff, Physics (N.Y.)
2 263 (1966); A. Z. Patashinskii and V. L. Pokrovskii, Zh.
Eksp. Teor. Fiz. 50, 439 (1966) [Sov. Phys. —JETP 23, 292



5114 ALAN SINGSAAS AND GUENTER AHLERS 30

(1966)]; R. B. Griffiths, Phys. Rev. 158, 176 (1967). The va-

lidity of scaling has been proved by the renormalization-group
theory (Ref. 1).

4See, for instance, K. G. Wilson and M. E. Fisher, Phys. Rev.
Lett. 28, 240 (1972); K. G. Wilson, ibid. 28, 548 (1972); E.
Brezin, D. J. Wallace, and K. G. Wilson, ibid. 29, 591 (1972);
Phys. Rev. B 7, 232 (1973), for early calculations based upon
the RGT. More recently developed theoretical techniques
have given more accurate exponent values from RGT. These
results are given by G. R. Golner and E. K. Riedel, Phys.
Lett. 58A, 11 (1976); G. A. Baker, B. G. Nickel, M. S. Green,
and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); J. C.
LeGuillou and J. Zinn-Justin, ibid. 39, 95 (1977);A. A. Vladi-
mirov, D. I. Kazakov, and O. V. Tarazov, Zh. Eksp. Teor.
Fiz. 77, 1035 (1979) [Sov. Phys. —JETP 50, 521 (1979)];J. C.
LeGuillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980);
D. Z. Albert, ibid. 25, 4810 (1982); S. G. Gorishny, S. A. La-
rin, and F. V. Tkachov, Phys. Lett. 101A, 120 (1984).

5For a review of properties of He near the superAuid transition,
see G. Ahlers, in The Physics of Liquid ond Solid Helium,
edited by K.H. Bennemann and J. B. Ketterson (Wiley, New
York, 1976), Vol. 1, Chap. 2.

sG. Ahlers, in Quantum Liquids, edited by J. Ruvalds and T.
Regge (North-Holland, Amsterdam, 1978), p. 1.

7G. Ahlers, Rev. Mod. Phys. 52, 49 (1980).
G. Ahlers, in Phase Transitions, edited by M. Levy, J. C.

. LeGuiHou, and J. Zinn-Justin (Plenum, New York, 1981), p.
1.

G. Ahlers, Phys. Rev. A 3, 696 (1971). The measurements by
F. M. Gasparini and M. R. Moldover, Phys. Rev. B 12, 93
(1975) [see also F. M. Gasparini and A. A. Gaeta, Phys. Rev.
B 17, 1466 (1978)], agree well with the data quoted in this
reference and therefore are not reanalyzed by us at this time.
G. Ahlers, Phys. Rev. A 8, 530 (1973).
D. S. Greywall and G. Ahlers, Phys. Rev. Lett. 28, 1251
(1972); Phys. Rev. A 7, 2145 (1973).
G. Terui and A. Ikushima, Phys. Lett. 39A, 161 (1972); A.
Ikushima and G. Terui, J. Low Temp. Phys. 10, 397 (1973).
G. G. Ihas and F. Pobell, Phys. Rev. A 9, 1278 (1974).
K. H. Mueller, G. Ahlers, and F. Pobell, Phys. Rev. B 14,
2096 (1976).

~5J. A. Lipa and C. P. Chui, Phys. Rev. Lett. 51, 2291 (1983).
D. Balzarini and K. Ohrn, Phys. Rev. Lett. 29, 840 (1972).

~7G. Ahlers, in Proceedings of the Twelfth International Confer
ence on Low Temperature Physics, edited by E. Kanda
(Academic, Japan, 1971),p. 21.
F. W. Wegner, Phys. Rev. B 5, 4529 (1972); 6, 1891 (1972).
C. DeDominicis and L. Peliti, Phys. Rev. Lett. 38, 505 (1977);
Phys. Rev. B 18, 353 (1978); G. Ahlers, P. C. Hohenberg, and
A. Kornblit, Phys. Rev. Lett. 36, 493 (1981);Phys. Rev. B 25,
3136 (1982); V. Dohm and R. Folk, Z. Phys. B 40, 79 (1980);
Phys. Rev Lett. 46, 349 (1981);Z. Phys. B 41, 251 (1981);45,
129 (1981).

C. Bagnuls and C. Bervillier, J. Phys. (Paris) Lett. 45, L95-
(1984); 45, L127 (1984).

2'C. Bagnuls and C. Bervillier {unpublished).
V. Dohm (unpublished).
D. Stauffer, M. Ferer, and M. Wortis, Phys. Rev. Lett. 29,
345 (1972); M. Ferer and M. Wortis, Phys. Rev. B 6, 3426
{1972);M. Ferer, Phys. Rev. Lett. 33, 21 (1974); A. Aharony,
Phys. Rev. B 9, 2107 (1974); A. Aharony and P. C. Hohen-
berg, ibid. 13 3081 (1976); P. C. Hohenberg, A. Aharony, B.
I. Halperin, and E. D. Siggia, ibid. 13 2986 (1976).

24A. Singsaas and G. Ahlers, Phys. Rev. B 29, 4951 (1984).

T. Takada and T. Watanabe, J. Low Temp. Phys. 41, 221
(1980);49, 435 (1983).

2 M. Okaji and T. Watanabe, J. Low Temp. Phys. 32, 555
(1978).

See, for instance, Ref. 30 of P. C. Hohenberg, and B. I. Halpe-
rin, Rev. Mod. Phys. 49, 435 (1977).

8B. D. Josephson, Phys. Lett. 21, 608 (1966).
29The most accurate theoretical estimates of 5 are those by J. C.

LeGuillou and J. Zinn-Justin, in Ref. 4, and by D. Z. Albert,
in Ref. 4.
E. Brezin (private communication). For a discussion of this
equality, also see G. Ahlers and A. Kornblit, Phys. Rev. B 12,
1938 (1975).

The merit of examining the universality of amplitude ratios in
addition to that of the exponents has been stressed by M. Bar-
matz, P. C. Hohenberg, and A. Kornblit, Phys. Rev. B 12,
1947 (1975).

s2I. M. Khalatnikov, Introduction to the Theory of Superfluidity
(Benjamin, New York, 1965).
J. C. LeGuillou and J. Zinn-Justin, in Ref. 4.

3~D. Z. Albert, in Ref. 4.
5The presentation of the data in Ref. 15, and especially in Fig.

3 of Ref. 15, has led to the impression (Refs. 21 and 22) that
the range of these data is about 2)&10 (

~

t
~

(10 3. This,
however, is illusory. The experiment was done on a sample of
height h =0.3 cm. Thus, if the temperature increases quasi-
statically, an interface between HeI and HeII forms at some
T~b at the bottom of the sample (in the earth's gravitational
field) and leaves the top of the sample at Tq, & Tqb [G.
Ahlers, Phys. Rev. 171, 275 (1968)]. For h =0.3 cm,
(T~,—T~b)/Tp=1. 8/10 . Thus, even if, say, the bottom
(top) is nearly at its local Tq, the top (bottom) is a distance

~

r
~

=2X 10 away from it. Therefore, the measurements of
Ref. 15 should not be interpreted to extend closer to T~ than
a reduced temperature of about 10

H. A. Kierstead, Phys. Rev. 162, 153 (1967).
s7C~ calculated from P~ here differs by as much as 2% from

that calculated in Ref. 14. The explanation is as follows: The
second term on the right-hand side in Eq. (2.11),which is pro-
portional to (BS/BT)q, can contribute as much as 40—50%%uo

of Cz at low pressures and large values of
~

t ~. At high pres-
sures, this term contributes about 15% of C~ at large

~

t ~.
The (dS/dT)q from Ref. 24 used here differs from that used
in Ref. 14 by as much as 15%%uo at the highest pressures (see
Table IV of Ref. 24), which results in the differences in C~ of
about 2% at pressures above 15 bars.

ssWe ignored a confluent singular contribution to g* of O(t )

because we do not know its amplitude. If we assume this am-
plitude to be,equal to D~, we find for d =0.4 and 0.6 pm that
gp is overestimated by only about 1% at the highest pressures
where D~ is largest. For the smaller pores, confluent singular
terms are larger because to is larger. Therefore, we have not
used the results for d =0.1 and 0.2 pm, although they lead to
values of g&& close to those for the larger pores.
M. Barmatz, P. C. Hohenberg, and A. Kornblit, Phys. Rev. B
12, 1947 (1975).

~See, for instance, G. Ahlers and A. Kornblit, Phys. Rev. B 12,
1938 (1975), and Ref, 10.

4~M. C. Chang and A. Houghton, Phys. Rev. B 21, 1881 (1980).
A. Aharony and G. Ahlers, Phys. Rev. Lett. 44, 782 (1980).
M. C. Chang and A. Houghton, Phys. Rev. Lett. 44, 785
(1980).

~M. C. Chang and A. Houghton, Phys. Rev. B 23, 1473 (1981).
45A. Aharony and M. E. Fisher, Phys. Rev. B 27, 4394 (1983).



30 UNIVERSALITY OF STATIC PROPERTIES NEAR THE. . . 5115

46C. Bervillier, Phys. Rev. B 14, 4964 (1976); also see P. C.
Hohenberg, Physica 1098c1108, 1436 (1981).

4~Bagnuls and Bervillier (Ref. 21) used the symbol ~ for the re-

duced temperature T/T~ —1 and had t =8~. In spite of the
confusion that may result, we feel compelled to adhere to the
conventional notation and use the definition (2.2) for t.

480. V. Lounasmaa and E. Kojo, Ann. Acad. Sci. Fenn. Ser. A
6, 3 (1959).
The approximate value of B„ is already apparent from the
work of M. J. Buckingham, W. M. Fairbank, and C. F. Kell-
ers, as reported, for instance, by M. J. Buckingham and W.
M. Fairbank, in Progress in Lou Temperature Physics, edited

by C. J. Gorter (North-Holland, Amsterdam, 1961), Vol. 3,
Chap. 3.

ORaui Mehrotra and G. Ahlers, Phys. Rev. Lett. 51, 2116
(1983);Phys. Rev. B 30, 5116 (1984).
See especially V. Dohm and R. Folk, Z. Phys. B 41, 251
(1981).

s2V. Dohm, in Proceedings of the Seventeenth International
Conference on Lotv Temperature Physics, edited by U. Eckern,
A. Schmid, W. Weber, and H. Wiihl (North-Holland, Amster-
dam, 1984), p. 953.
A. A. Vladimirov, D. I. Kazakov, and O. V. Tarazov, in
Ref. 4.


