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Chaotic behavior in coupled superconducting weak links
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Computer simulations have been carried out for a system consisting of a pair of coupled supercon-
ducting weak links described by a noncapacitive, resistively shunted equivalent circuit. Both dc and
ac bias currents are assumed for each link. It is found that for certain ranges of ac amplitude,
chaotic behavior occurs. Coupling is crucial to this result —without it no chaos will appear.

I. INTRODUCTION

The possibility of chaotic behavior in rf-driven Joseph-
son junctions was first suggested by Huberman et al. ' in
1980. In the ensuing years a large body of work has ap-
peared on this and related topics. Some representative ex-

amples are papers by Kautz, ' Yeh and Kao, Ben-Jacob
et al., and Pedersen and Davidson. In these publications
the Josephson element was described by the Stewart-
McCumber resistively shunted junction (RSJ) model,
with a finite junction capacitance. The resulting second-
order nonlinear differential equations were usually solved

by numerical methods, although Cirillo and Pedersen
employed a phase-locked loop circuit as a simulation.
Marcus et al. investigated the transition to chaos in a
voltage-driven resonant junction which included a series
inductance. Chaos in rf superconducting quantum in-

terference devices (SQUID's) has been studied by Ritala
and Salomaa, ' and by Kesser et al."Single- and double-
junction interferometers were examined by Kornev and
Semenov' using analog simulators. Again a finite junc-
tion capacitance was assumed.

It might be mentioned that experimental evidence for
such chaotic behavior is still rather sparse. Miracky,
Clarke, and Koch' reported elevated noise temperatures,
attributed to the onset of chaos, in Josephson junctions.
Gubankov et aL' have also claimed to see manifestations
of chaos in rf-driven superconducting tunnel junctions.

It is well known that superconducting weak links are
governed by the Josephson relation $=2eV/A, although
the current phase relationship might not be exactly
sinusoidal. These devices are modeled by a resistivity
shunted model without capacitance. Consequently they
should not display chaotic behavior in the circuits men-
tioned above, even when forced by an external ac current,
since only one first-order equation, for which a two-
dimensional phase space applied, arises. ' However, when
combined as interacting pairs they do show interesting
locking phenomena as discussed by Nerenberg et al., ' Dai
and Kao, Neumann et a/. , ' Jillie et al., and many oth-
ers. Various coupling mechanisms have been suggested
including resistive, resistive-inductive, and charge imbal-
ance. An interacting pair of weak links is governed by

two coupled first-order differential equations. With an
external ac basis this system would be represented by a
three-dimensional phase space; this suggested the possibil-
ity of chaotic behavior. Such a coupled system, together
with a single ac-driven capacitive junction, represents the
mathematically simplest superconducting circuit in which
chaos may occur. The former has the additional feature
of chaotic behavior depending crucially, as mutual voltage
locking does, on the coupling between weak links. In the
absence of coupling, the system is equivalent (except for
the synchrony of the external ac currents) to two indepen
dent two-dimensional phase spaces in which chaos cannot
occur' . The conjecture that the coupled pair will display
chaotic behavior is the subject of the present work.

II. EQUATIONS AND MODEI.

The system under consideration consists of two super-
conducting weak links coupled by an external shunt resis-
tance. ' The equivalent circuit shown in Fig. 1 utilizes
the noncapacitive RSJ model for the weak links and in-

cludes individual bias currents —both dc (Ii and Iq) and
ac (ai sincot and a2 sintot).

In order to express the final equations which govern the
circuit in terms of dimensionless time, current, and volt-

age, we now define certain useful parameters. The critical
currents of the weak links are i, ~

and i,2,
' their average is

a, sin(mt I

a, sin(co t)

FIG. 1. Schematic of coupled superconducting weak links

with ac and dc bias currents.
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denoted i, . Then

i,R i (R2+Rg )
Vo=-

(Ri+R, +R, )

will serve as a unit of voltage. In what follows time will
be normalized by (2eV~/iri) and the units of current will
be i, Fu. rthermore, we define

a=(1+R, /R2)

and

(1+RE /Ri)
(1+R, /R, )

With these definitions, the circuit is described by the fol-
lowing equations in the phase variables Pi and $2.

Pi ——Ii I, i sin—(Pi) —a[I2 —I,2 sin($2)]+ bi sin(cot),

Pi —5[Ii I,2 sin(—$2)]—a[Ii I, i sin(—Pi)]+bi sin(cot) .

(2)

Here we have assuined the series-aiding case referred to in
Ref. 16. . Dots indicate derivatives with respect to normal-
ized time. In Eqs. (1) and (2), bi ——(ai aalu)/—i, and
bz ——(5a2 —aa i )/i, .

III. SIMULATION AND TESTS FOR CHAOS

Before proceeding with a discussion of observed
behavior, a few preliminary remarks are in order concern-
ing the numerical solution of the coupled pair of differen-
tial equations (1) and (2).

A suitable time step ht is selected. The computer pro-
gram will print or otherwise output results at these inter-
vals. At the beginning of each new increment in time, t,
Pi, $2, Pi, and Pz are all available from the previous itera-
tion. The computation from t to t+b, t is done by sequen-
tially stepping along a subdivision of the interval
(t, t+ht) with the aid of an Adams-Moulton predictor-
corrector algorithm. This procedure is not self-starting
and so the first of the iterations is performed by means of
a fourth-order Runge-Kutta formula. Because of the an-
ticipated chaotic regimes, it was apparent that particular
care had to be taken with convergence criteria. At various
points in the computer runs, cross checks were made to
verify consistency with respect to altered computational
grids using double precision arithmetic. That such is not
a minor concern can be appreciated from the work of
Yamaguti and Ushiki, in which it was demonstrated
that the Euler and central difference schemes can produce
"ghost solutions" which eventually become chaotic, and
that the numerical precision of the calculations can be
very important in this regard. However, no indications of
this type of behavior were noted in the present work.
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FICi. 2. Upper: dc link voltages as a function of ac drive amplitude. Parameter values are given in the text. Notice that the links
remain locked until b &0.37. Lower: larger Liapunov number (A, ~} versus ac drive amplitude (b). Negative values, shown as trian-
gles, indicate a periodic attractor; positive values, shown as solid circles, correspond to chaotic solutions. For the remaining points
(open circles) A, ~

——0 within computational precision and the behavior is multiply periodic.
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Next we consider the interpretation of the simulation
output, namely pi(t) and pz(t). These are just normalized
versions of the time-dependent link voltages. It is not al-

ways an altogether simple matter to judge from the ap-
pearance of these two voltages whether or not the system
is in a chaotic state. We therefore chose to perform
several independent tests, as follows.

The power spectrum, which involves discrete Fourier
analysis, could be evaluated provided a sufficiently long
temporal record had been accumulated and provided that
aliasing of the spectrum was handled properly. Chaos is
expected to manifest itself as a broadband noise base in
the spectrum.

A second test for chaos utilized the Liapunov ex-
ponents. These can be calculated as the computation
proceeds —in contrast to Fourier analysis which requires a
finished run. These exponents measure the contraction or
expansion of a volume element in phase space. Chaotic
solutions are characterized by having a larger exponent
(A, i) greater than zero, and smaller exponent (A,2) less than
zero. The former is a measure of the exponential diver-
gence of neighboring trajectories which define the
"strange" attractor or chaotic solution. Since in dissipa-
tive systems there is an overall shrinking of the volume
element with increasing ™,A,2 must be negative.
Periodic and multiply periodic solutions have A. ~ &0 and
A,2&0. A negative larger exponent would indicate that the
periodic solution is an attractor towards which neighbor-
ing solutions converge with time. That is, such a solution
behaves in the opposite way to the strange attractor, in be-
ing insensitive to initial conditions.

The procedure for evaluating A, i and A,z was as follows.
Let us say we have arrived at time t Using t.he (now)
available values of Pi(t) and Pz(t), one may proceed, as
described earlier, to a new time t+~. Any system which
is potentially chaotic will display an extreme sen.sitivity to
initial conditions, and so small changes forced on P'(t)
and $2{t) would lead to wildly different results at t+w
In other words, one can test the sensitivity of the system

by examining the mapping from the neighborhood around

(P,(t)P,(t)) to the destination at (P,(t+~), P,(t+~)).
Ott has shown how to extract the two Liapunov coeffi-
cients A, ' and A,2 by means of such a sensitivity test.
Specifically, the results at t+w must be computed for
three possible, initial conditions at t, namely (P&, Pz),
(pi+6, f2), and (Pi, $2+5). The three answers at t+'
are then used in a procedure which yields (A, i, A,2). We
also used another method due to Benettin et ah. which
independently yielded the larger of (A, &, A,2). The two
techniques gave values in good agreement with each other.

IV. COMPUTATIONAL RESULTS

Because of the number of variables in Eqs. (1) and (2), it
was not practical to attempt to completely map the
dynamical states of the system under consideration. In-
stead, we elected to fix all but two of the parameters in
such a way that the coupled pair are locked in the absence
of external excitation. Such behavior was already known
to us from a previous study {16). Hence we chose
I, j ——1.2, I,2 ——0.8, I& ——2.0, I2 ——2.2, o', =0.2, and 5= 3.

This results in voltage locking with both weak links un-
dergoing periodic phase slip at a frequency cop= 1.04. Tile
choice was made for convenience to conform with the ex-
ample represented in Fig. 2 of Ref. 16. As chaos may re-
sult only after a sequence of bifurcations to increasingly
complex behavior, we selected the locked situation as
representing the simplest point of departure. Also for
convenience in the calculations, we set b =b& ——b2 ~ This
choice is valid provided the original ac source amplitudes
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FIG. 3. (a) Power spectrum of link 1 in the absence of an ac
bias. Notice that the only frequencies which appear are at
Q=uo-1. 04 and its harmonics. (b) Portion of the P, versus t
data corresponding to the situation represented in (a). Periodic
behavior is clearly evident. (c) Power spectrum of link 1 with ac
bias current (b=0.2). Note that the spectrum now contains
peaks at frequencies A=coo, co, and their sums and differences.
(d) Same as (a) and (c), but with b =0.84. Chaotic behavior is
apparent. (e) Same as (b) but with b=0.84. (f) Power spectrum
for b =0.86. Notice the abrupt change compared to the spec-
trum in (d) for which b=0.84. Referring to Fig. 2 it can be
seen that the behavior is periodic with A,

&
&0. (g) Portion of Pt

versus t when b =0.86, as in (f).
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are in the ratio (5+a)/(1+a). The impressed "rf" field
was then assigned a frequency co=0.4 and the amplitude
b was progressively increased in a series of computer runs.
Care was taken to wait for transient effects to dissipate
(approximately 2000 rf cycles) before storing and analyz-
ing the computational data. The principal features ob-
served may be summarized as follows (refer to Fig. 2).

(a) 0&b &0.37. Immediately on allowing the external
ac to be nonzero, the system goes from periodic behavior
to multiply periodic behavior containing the mutual lock-
ing frequency roc which drifts slowly up in value with in-
creasing b, the external frequency co, and their sums and
differences [see also Fig. 3(c)]. These are not chaotic
motions —as indicated by the larger Liapunov number be-
ing zero throughout.

(b) 0.37 & b &0.42. Here is a small region in which the
self-locking of the two weak links is finally broken, but
the behavior is still multiply periodic, although it is more
complex than in region (a).

(c) 0.42 & b &0.84. In this range of applied voltage the
dynamics change, with the larger Liapunov coefficient
abruptly going to values greater than zero, indicating
chaotic behavior. This is confirmed by the presence of
broadband noise in the Fourier spectrum [see also Fig.
3(d)]. Note, however, that this regime is interspersed with
narrow intervals where the larger Liapunov coefficient
drops to zero or goes negative.

(d) 0.84 & b & 1.06. At an applied rf current of b =0.84
the chaotic behavior terminates quite abruptly. The larger
Liapunov coefficient goes negative indicating a strong
periodic attractor. The periodic motion of the links is
determined by the external drive frequency. In fact it is
observed that throughout this range the two links main-
tain constant time-averaged voltages which are simply re-
lated to the drive frequency. Refer also to Fig. 3(f).

(e) b & 1.06. At larger applied currents the system first
reenters the chaotic domain, then leaves it. This alternat-
ing amongst chaos, periodicity, and multiple periodicity
might be expected to continue as the external excitation
grows stronger.

A further illustration of chaotic behavior is provided by
the Poincare plot shown in Fig. 4. Periodic motion would
manifest itself as one or a few fixed points, In contrast
this figure is typical of a strange attractor.

V. DISCUSSION

The above description of the system is admittedly in-
complete. It is possible that more structure is present be-
tween data points in Fig. 2. However, certain essential
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PIG. 4. Poincare section for b =0.84. The figure results
from plotting sin/2 (vertical) versus sing~ (horizontal) at succes-
sive intervals in time separated by 2m/co, ' 6366 rf cycles have
been evaluated.

features stand out. In the first place it is demonstrated
that a pair of coupled, noncapacitive superconducting
weak links will undergo a transition to chaotic behavior
from an initially locked state under the influence of a suf-
ficiently strong ac excitation. Secondly, it has been shown
that chaos disappears and reappears as the excitation is
progressively made more intense. Finally, we have ob-
served that the route to chaos for this system is not of the
period doubling type, but rather more abrupt, sometimes
involving complex spectra (e.g., period 11, 22, . . . ) ap-
pearing at the edges of the chaotic domains.
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