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The electronic band structure and structural properties of paramagnetic metallic hydrogen in the
simple cubic (sc), fcc, bcc, and hcp phases have been determined theoretically using our bulk full-
potential total-energy linearized augmented-plane-wave method. In the density range corresponding
to 1 ~r, &2 we find a phase transition from sc to hcp at high pressure which indicates the impor-
tance of the hcp structure in phase transformations of molecular hydrogen under pressure. Super-
conducting transition temperatures up to 250 K are predicted within the framework of the rigid-ion
approximation. An analysis of the Stoner factor shows the expected magnetic instability in the
low-density region.

I. INTRODUCTION

Wigner and Huntington' proposed that molecular solid
hydrogen —the stable phase under normal conditions-
may become unstable at high pressures and transform into
a metallic phase. Since this proposal, many investigators
have examined the possibility of the existence of this me-
tallic phase. An interesting aspect of these studies is the
exciting speculation about high-temperature superconduc-
tivity in metallic hydrogen. Ashcroft has predicted that
this phase would become a high-temperature supercon-
ductor, because in simple metals there is a tendency for
the electron-phonon coupling constant to increase as the
density of a system increases. If a stable metallic hydro-
gen phase exists, its density is likely to be among the
highest of the simple metals (r, & 2, where r, is the atom-
ic sphere radius in a.u.},which immediately raises the pos-
sibility of high-temperature superconductivity. Results of
a number of different model calculations for this materi-
al indicate values of T, varying between 0.08 and 250 K.

Experimental evidence supporting the presence of a
metal-insulator phase transition became available when
Vereshchagin et al. measured the dependence of the
resistance of solid hydrogen as a function of pressure and
reported a sharp drop in the resistivity by 6 orders of
magnitude at a pressure of approximately 1 Mbar at
T=4.2 K. They explained this change in resistivity as a
consequence of the phase transition in solid hydrogen to a
metallic phase.

From a theoretical point of view, there have been
several efforts to clarify the nature of this phase transition
using a total-energy approach. ' However, in order to re-
liably predict the transition between these two phases, it is
necessary to apply the same method to both systems. Due
to the very low symmetry of molecular hydrogen (ortho-
hydrogen has a Pa 3 space group), any approach is of
necessity, less straightforward for the molecular solid than
for metallic hydrogen. The common theoretical approach

for molecular hydrogen is to calculate the energetics as in
an ordinary molecular solid using standard pair potentials,
while for metallic hydrogen one employs a band-structure
calculation or one considers perturbation theory applied to
a uniform electron gas. As an example of a consistent ap-
proach to this problem one may cite the recent work by
Chakravarty et al. For metallic hydrogen they per-
formed self-consistent band-structure calculations using
the spherical Wigner-Seitz cell method. For molecular
hydrogen they considered first the average potential in a
Wigner-Seitz spherical cell and then used perturbation
theory to include the intracellular molecular symmetry.

It is now commonly accepted that in the high-density
region, metallic hydrogen is a paramagnetic metal, while
at low densities it is a magnetic insulator probably with an
antiferrornagnetic structure. Recently, Rose et al. dis-
cussed the metal-insulator transition of a hydrogen system
in relation to the Mott transition using spin-density-
functional theory. They did not consider any structural
differences since they used the Wigner-Seitz cellular
method with a spherical unit cell in their calculations and
assumed the magnetic phase to have ferromagnetic sym-
metry. They found that there would be two separate
phase transitions: a magnetic transition at r, =2.74 and a
metal-insulator transition at r, =2.84.

Our approach is to perform electronic structure calcula-
tions with our self-consistent full-potential linearized
augmented-plane-wave (FLAPW} method, which has been
applied very successfully to molecules, thin films, ' and
bulk materials. " Since the FLAPW method allows one t '

accurately consider both the metallic phase and the com-
plicated Pa 3 structure (with four molecules per unit cell
which gives rise to large anisotropic molecular interac-
tions), a direct, consistent compari'son of the total energy
for both phases will be possible for the first time using a
method which does not resort to severe numerical approx-
imations.

In this study, we report on the electronic structure of
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metallic hydrogen and its resulting structure-dependent
cohesive-energy properties. Usually one considers the fcc
phase to be most stable in the region where the phase
transition takes place. In order to assess this proposition
we performed total-energy calculations for three cubic
structures —fcc, bcc, and simple cubic (sc)—and for the
hcp structure. The relative stability as a function of pres-
sure is derived from total-energy calculations as a func-
tion of volume. We investigated the superconducting
properties in the framework of the rigid-ion approxima-
tion, which although basically a very simplified model, is
known to predict values for T, fairly well even for the
transition metals. ' Since the rigid-ion approximation is
known to underestimate T, for non-transition-metals, the
theoretical T, values of -250 K may be considered as a
lower limit. The problem of magnetic phase transitions
was investigated by monitoring the Stoner factor, which is
easily obtained from the converged charge density and po-
tential. The results of band-structure and total-energy
calculations are presented in Sec. II. Superconductivity
and magnetic properties are discussed in Sec. III. In Sec.
IV we give a discussion and a summary.

II. BAND-STRUCTURE, TOTAL-ENERGY,
AND STRUCTURAL PROPERTIES

We have obtained band structures and total energies of
metallic hydrogen using the FLAPW method" within the
local-density-functional theory. In this method we make
no shape approximations in either the potential or the
charge density and we carefully examine the convergence
of the results with respect to all numerical parameters.
Obviously, our calculations still depend on the local-
density approximation and the choice of exchange and
correlation potential, for which we employ the form of
von Barth and Hedin' with the parameters of Hedin and
Lundqvist' and random-phase approximation (RPA)
scaling for the ferromagnetic results. However, these ap-
proximations relate to the physics of the problem and are
totally different in nature from severe numerical approxi-
mations such as the use of the spherical Wigner-Seitz cel-
lular method or other approaches.

First we consider the electronic structure of the fcc
phase in the range 1.0 & r, & 3.0, where the charge density
for each value of r, is obtained self-consistently using 20
and 80 k points in the « th irreducible Brillouin zone
(IBZ) and 65 LAPW basis functions at the I point. The
potential and the charge density are expanded in lattice
harmonics up to I =8 inside the muffin-tin sphere and in
537 plane waves in the interstitial region. In this manner
we established a sufficiently converged accuracy with
respect to the basis size and the number of nonspherical
terms. We find that the values of the total energy (see
Fig. 1), the curvature, and even the equilibrium position
of the curve are very sensitive to the number of k points,
because the Fermi surface of hydrogen has only electron
parts and no cancellation of errors occurs. " Therefore, in
order to obtain converged values for the total energy, it is
essential to calculate the band structure with a large num-
ber of k points. We performed our calculations with in-
creasing numbers of k points up to 160, 165, and 204 in
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FIG. 1. Total-energy curve of fcc metallic hydrogen, calcu-

lated with 20 and 80 k points in an irreducible Brillouin zone
(solid and dashed lines, respectively). The results of a jellium
model calculation are also shown for comparison (dotted line).

TABLE I. Equilibrium Wigner-Seitz radius r, , total energy
E, and bulk modulus B at r, , as derived from a parabolic fit
to values of the total energy near the equilibrium position.

fcc
bcc
sc

r, {a.u.)

1.683
1.677
1.707

Eo (Ry)

—1.0763
—1.077'
—1.0878

B (Mba r)

1.2S1
1.071
1.123

t'he IBZ for the fcc, sc, and bcc structures, respectively.
. This allows us to extrapolate the total energy to its value

for an infinite number of k points" with an accuracy
better than 1 mRy for each value of r, . The Fermi sur-
face of hcp metalhc hydrogen is considerably more com-
plicated. It consists of two pieces originating from de-
formed free-electron spheres which now intersect along
the I'-A directions and both of which give rise to elec-
tronlike orbits. In the hcp case the effect on the total en-

ergy of errors in the description of the Fermi surface on
the total energy due to a finite k mesh is even larger than
in the case of the cubic structures. This leads to an error
in the extrapolated value of the total energy of 2 mRy, as
based on calculations using up to 150 k points. In this
respect hydrogen is not a simple material since in transi-
tion metals the errors are usually much smaller. "

The energy band structures of the cubic structures are
very similar to free-electron bands; in fact, the Fermi sur-
faces of the fcc and bcc structures are almost the same as
the Fermi sphere found in a free-electron-gas treatment.
In the sc structure the Fermi surface crosses the boundary
of the first Brillouin zone, giving rise to nix:ks along the X
axis.

The final value of the equilibrium atomic radius r, , the
ground-state energy E, and the bulk modulus are given
in Table I. Figures 2 and 3 show that in the Iow-density
region the sc structure is most stable, as was found before,
but as the density increases, the hcp structure becomes
stable. The fcc structure has the highest energy in the
density range considered; this result is clearly different
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from earlier predictions. '
In order to obtain the pressure and Gibbs free energy,

we fit the values of the, total energy to an interpolating
form derived from the Nozieres-Pines' formula for the
uniform electron gas:

E= '2 +—+8+Clnr, .2.21 A

~g ~s

We have fixed the kinetic energy (first) term and have
determined the parameters A, B,C by a least-squares fit
with a root-mean-square error less than 1 miy. The re-
sulting parameters for the three cubic structures are given
in Table II. (Note that the values for B and C as used by
Nozieres and Pines are —0.115 and 0.031, respectively. )

From this relation, we obtain the pressure and Gibbs free
energy, which are given in Tables III and IV and in Fig. 4.
The transition pressure between the sc and bcc phases is
7.16 Mbar and the free energy at that point is —0.6155
Ry. We did not parametrize the hcp results by the formu-
la given in Eq. (1), because the large increase in comput-
ing time required for this structure made possible only a

-I.OSS—

2.00

TABLE II. Parameters A, 8, and C used in the interpolating
formula [Eq. (1)] for the total energy.

FIG. 2. (a) Total energy of metallic hydrogen vs r, . (b) En-
larged plot of the total energy near the equilibrium values of r, .

fcc
bcc
sc

—2.796 21
—2.839 82
—2.80604

—0.147 64
—0.11142
—'0.13993

—0.090 76
—0.11325
—0.11679
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TABLE III. Energy and pressure as a function of the electronic density (1 a.u. of pressure is 147.08
Mbar).

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

fcc

—0.7339
—0.8719
—0.9596
—1.0147
—1.0479
—1.0664
—1.0746
—1.0759
—1.0723

Energy (Ry)
bcc

—0.7412
—0.8774
—0.9639
—1.0179
—1.0504
—1.0683
—1.0763
—1.0773
—1.0736

sc

—0.7360
—0.87S6
—0.9649
—1.0214
-1.0560
—1.0758
—1.0853
—1.0878
—1.08S4

fcc

0.1364
0.0718
0.0382
0.0201
0.0101
0.0045
0.0014

—0.0004
—0.0013

Pressure (a.u. )

bcc

0.1348
0.0708
0.0376
0.0197
0.0099
0.0044
0.0013

—0.0005
—0.0014

sc

0.1373
0.0726
0.0388
0.0206
0.0105
0.0048
0.0016

—0.0002
—0.0011

2.21
ET

rg

0.916 —0.115+0.031 lnr, —~M
(2)

rs

Originally, the Wigner lattice corresponds to the very-
low-density electron gas. But we assume here only a situ-

smaller number of data points. However, from Fig. 3 we
immediately deduce that the phase transition between sc
and hcp occurs just before the transition to bcc metallic
hydrogen would take place.

It has been usually expected that the fcc phase would be
more stable than the bcc phase in the density region near
r, =1.0. Instead, we find the bcc phase to be more stable
than the fcc phase. This can be understood as a result of
the inclusion of nonspherical anisotropic effects in the
density and potential. In fact, similar calculations per-
formed with the linearized muffin-tin orbital (LMTO)
method' where a spherical potential is assumed, yield re-
sult which indicate that the fcc phase is more stable than
bcc in the density region considered although energy
differences are less than 1 mRy. Since the bcc and the sc
structure are more open than the fcc close-packed struc-
ture, it is not surprising that the nonspherical terms are
more important in these structures and that the total ener-

gy is lowered by a larger amount in bcc and sc metallic
hydrogen when these nonspherical terms are included in
the calculation.

We can understand the structural transformation be-
tween the sc, bcc, and hcp structures as follows. If we as-
sume that the system is a point proton lattice embedded in
a uniform electron gas (i.e., an inverse Wigner lattice),
then the total energy is given by

ation similar to that of a Wigner lattice and use the
Nozieres and Pines interpolation formula for the correla-
tion energy. Therefore the first four terms are uniform
electron-gas results and the final term comes from the en-
ergy of point lattice charges in a uniform negative
background —a kind of Madelung energy EM. Only this
Madelung energy depends on the structure: A~'s are-
1.76012, 1.79175, 1.79186, and 1.79168 for the sc, fcc,
bcc, and hcp structure, respectively. ' Hence, the differ-
ence of our total-energy formula [Eq. (1)] from the above
inverse Wigner lattice expression, Eb, can be considered as
a band-structure effect (nonuniform electron distribution,
etc.). If band effects are negligible, the dominant structur-
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TABLE IV. Gibbs free energy as a function of pressure.

P (a.u. )

0
S 0&10-4
1X10-'
5&& 10-'
1g10-'
2g10 '
3�X1-'
05�X-'
1&&10-'

fcc

—1.0763
—1.0667
—1.0576
—0.9957
—0.9330
—0.8306
—0.7453
—0.6024
—0.3257

6 {Ry)
bcc

—1.0775
—1.0681
—1.0S91
—0.9978
—0.9355
—0.8338
—0.7491
—0.6071
—0.3322

sc

—1.0876
—1.0780
—1.0686
—1.0050
—0.9411
—0.8374
—0.7511
—0.6069
—0.3286

6 4
P {lO o.u. )

FIG. 4. Gibbs free-energy differences relative to the sc struc-
ture for fcc and bcc metalhc hydrogen as a function of pressure.
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TABLE V. Band-structure effect energy Eb, and the difference in Eb and the Madelung energy E~
between the bcc and sc structure. All energies are in Ry a.u.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

fcc

—0.1208
—0.1244
—0.1283
—0.1324
—0.1366
—0.1408
—0.1450
—0.1491
—0.1532

Eb
bcc

—0.1281
—0.1299
—0.1324.
—0.1355
—0.1390
—0.1427
—0.1465
—0.1504
—0.1544

—0.1546
—0.1569
—0.1599
—0.1634
—0.1673
—0.1713
—0.1754
—0.1796
—0.1838

E~(bcc-sc)

0.0265
0.0270
0.0275
0.0279
0.0283
0.0286
0.0289
0.0292
0.0294

E~(bcc-sc)

—0.0317
—0.0285
—0.0265
—0.0244
—0.0227
—0.0212
—0.0198
—0.0187
—0.0176

al difference in energy comes from the Madelung term
favoring the bcc structure as the most stable one. This
implies the existence of a hcp-bcc phase transition at some
density with r, & 1.

Table V lists the band-structure effects and for compar-
ison also the Madelung energy differences. These results
show that in the density range considered, variations in
the differences in band effect energy between sc and bcc
are small compared with those in the Madelung energy
differences. Therefore, in the low-density region, the band
effect Eb is more important than the Madelung energy

E~, while in the high density, the situation is reversed.

III. SUPERCONDUCTING
AND MAGNETIC PROPERTIES

In order to study the superconducting properties, we

apply the rigid muffin-tin approximation' (RMTA) to

our results for metallic hydrogen. In the RMTA, the
change in potential is assumed to be given by rigidly dis-
placed muffin-tin potentials. With this approximation
and McMillan's strong-coupling theory, ' the electron-
phonon coupling constant A, is simply given by

N(E, )(1'&
z =g/M(co ),

M (ro')

2' g(~+ I )»n'(&t ~/+1)~i&/+1
m' N(Eb)

(4)

with N(EF) representing the density of states per spin,
(I ) the electron-phonon matrix element, M the ionic
mass, and (co ) the average phonon frequency squared.
Here, vi=Nt(Eb)/NI (EF), where Ni(E~) and N~ (E~) are
partial densities of states per spin (obtained from
angular-momentum projections inside the muffin tins) of
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FIG. 5. Parameters entering into the description of the superconductivity of metallic solid hydrogen in the range 1.0 & r, & 2.0: (a)

density of states per spin N(E~); (b) average electron-phonon matrix element N(EF)(I ); (c) electron-phonon coupling constant A, ;
and (d) superconducting transition temperature T, .



30 STRUCTURAL PROPERTIES, SUPERCONDUCTIVITY, AND. . . 5081

rs Tc

TABLE VI. Electron-phonon coupling constant A, and super-
conducting transition temperature T, for the fcc phase.

TABLE VIII. Parameters 3, B, and C in the interpolation
formula Jo/+=1/S [Eq. (8)j and magnetic instability point
r, (P /+~0). The electron-gas values in the high-density limit
are also shown for comparison.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

0.965
1.168
1.390
1.631
1.889
2.164
2.400
2.800
2.953

243.3
267.2
276.9
276.9
270.9
261.7
248.1

242.0
225.7

fcc
bcc
sc
electron gas

—0.2398
—0.4821
—0.1687
—0.1659

0.1060
0.3556
0.0434
0.0290

—0.1284
—0.3212
—0.0696
—0.0138

2.95
2.67
3.31
6.6

a solid and of a single scatterer, respectively, and 5~ is the
phase shift for the lth partial-wave scattering from the
spherical muffin-tin potential. In strong-coupling theory,
the superconducting transition temperature T, is given by

OD 1.04(1+A, )
+c exp

1 45 A, —(1+0.62K, )p,
' (5)

with OD the Debye temperature and p* the Coulomb
pseudopotential parameter. We use JM*=0.1, which is a
usual assumption for simple metals. Changing this value
to p =0.0255 (as derived from the formula of Benneman
and Garland ) increased the value of T, by only 12%.
For the Pebye temperature eD, we use the results of
Caron's self-consistent harmonic phonon approximation: '

0.0453 0.023
D 3/2 1/2

rs r,

The calculated T, values are shown in Table VI and the
relevant parameters in Fig. 5. These data pertain to the
fcc phase; values for the bcc, sc, and hcp structures are
very similar. The values of T, and the other parameters
are not sensitive to the values of 8& chosen. This means
that the contribution from electronic effects is dominant
and that possible errors from the use of Caron's formula
are not very significant. Figure 5 shows that T, increases
above 200 K in the density range considered.

We have calculated the Stoner factor in order to investi-
gate the magnetic properties of metallic hydrogen. With
our 'paramagnetic results we can determine the intra-
atomic exchange-correlation integral I„, easily. The
method of Jarlborg and Freeman is used, with the local-
spin-density-functional form of Gunnarsson and

Lundqvist. 2s The Stoner factor S can be written in terms
of the exchange-correlation integral I„,as

S=[1 I„,N—(EF)J

The values obtained for S for a number ofr, values a, re
given in Table VII. To trace the magnetic instability, we
fit these values with the RPA formula for X /g in the
high-density limit:

7 /X= 1+Br,+Br, +Cr, lnr, .

The resulting values of the parameters A, B, and C are
listed in Table VIII together with, for comparison, results
for the uniform electron gas in the high-density limit.
The behavior of 1/S is shown in Fig. 6. As expected, we
find an instability, occurring near r, =2.95, 3.31, and 2.67
for fcc, sc, and bcc, respectively. These results are in
good agreement with self-consistent calculations of Rose
et al. and are also confirmed by the preliminary results
obtained in ferromagnetic calculations which are in pro-
gress.

IV. DISCUSSION

We have studied the cohesive properties of metallic hy-

drogen using the FLAPW method within local-density-
functional theory. Even though the system is extremely
simple, with one electron per atom, the total-energy calcu-
lations had to be performed with great care. It is essential

to use a large number of k points in the self-consistency
process in order to obtain good results. Fortunately, con-
vergence to self-consistency does not require many itera-

tions. As the number of k points increases, the time con-
sumed for each iteration becomes correspondingly large.

I.O 0

TABLE VII. Stoner factors for some values of r, .
's

1.0
1.3
1.6
1.65
1.7
1.75
1.8
3.0

fcc

1.154
1.235
1.363
1.392
1.426
1.461
1.499

—1.487

bcc

1.141
1.213
1.326
1.352
1.380
1.465
1.487

sc

1.143
1.215
1.319
1.343
1.366
1.390
1.399

XO

x O. SO—

1.20 1.8O 2.00 2.40 2.80 5.2 0 5.40

FIG. 6. Inverse Stoner parameter for metallic hydrogen de-
rived from formula (8) in the text.
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For this reason, we have used an extrapolation scheme
based on the analytic error behavior of the linear tetrahed-
ron method —an approach which proved to be satisfacto-
ry 11

This study was limited to the relative stability of the
hcp, fcc, bcc, and sc phases because these structures are
the most likely candidates for the ground state of metallic
hydrogen. Confirming earlier predictions, we find the sc
phase to be most stable with a minimum in the total ener-

gy near r, = 1.7. A similar ordering of the cubic phases is
also found in diamond under pressure. Of course, we do
not predict that at this density solid hydrogen will be sim-

ple cubic, because the molecular I'a 3 structure still has a
lower energy. This indicates that the simple-cubic phase
is likely to be unstable with respect to distortions along
(111)axes which transform it to the Pa 3 structure.

Our calculations show that at high pressures, corre-
sponding to r, =1.0, metallic hydrogen occurs in the hcp
modification, which is consistent with experimental data
on Li and Na. At even higher pressures, metallic hydro-
gen will have to transform to a bcc structure due to the
dominating effects of the Madelung term for values of r,
close to zero. Whether the hcp phase will be experimen-
tally observable depends on the position of the total-
energy curve for molecular hydrogen with respect to the
hcp and bcc structures. In contrast to earlier calculations,
we find that the fcc phase does not play an important role
at high densities. This is due to the correct treatment in
our calculations of nonspherical terms in the density and
the potential, the effects of such terms being smallest in
the fcc case.

In resolving the question whether (if at all) molecular
hydrogen at high pressure will transform into a bcc or hcp
phase one also has to consider the contributions to the to-
tal energy due to changes in the phonon spectra. The
two important quantities in this respect are the plasma
frequency and the wave-vector-dependent dielectric func-
tion. The plasma frequency is density dependent and it
determines the overall energy scale of the proton motion;
for the very light hydrogen atoms it results in changes of

the binding energy on the order of 10 mRy. Structure-
dependent effects on the phonon energy are isolated in the
dielectric function. Because of the strong similarity in
band structure between the three cubic phases the relative
ordering of these phases will hardly be affected. Howev-
er, the band structure near the Fermi surface for hcp me-
tallic hydrogen is different and might cause a sufficiently
large change in total energy to reverse the ordering of bcc
and hcp metallic hydrogen. Since the difference in total
energy between the hcp and bcc phase of r, =1 is only 2

mRy; a 20%%uo change in phonon energy would be sufficient
to establish such a reversal. As already stated by
Chakrvarty et a/. , phonon effects in molecular hydrogen
will be even stronger, necessitating a full calculation of
the k-dependent dielectric function in order to accurately
predict the pressure at which molecular hydrogen will

. transform to a metallic phase.
From an analysis of the Stoner factor we expect a mag-

netic transition to occur at lower densities. %'e are
currently investigating the nature of the magnetic transi-
tion by a series of ferromagnetic and antiferromagnetic
calculations based on local-spin-density-functional theory.
Using the results of our paramagnetic calculations, we are
able to predict values for the superconducting transition
temperature well exceeding 200 K. Hence, assuming that
one is experimentally able to transform molecular hydro-
gen to a simple metallic phase at a sufficiently high pres-
sure, we predict that high-temperature superconductivity
is possible.
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