
PHYSICAL REVIEW B VOLUME 30, NUMBER 9

Theoretical studies of elementary excitations in liquid 4He

1 NOVEMBER 1984

E. Manousakis and V. R. Pandharipande
Department ofPhysics and llfaterials Research Laboratory, University of Illinois at Urbana C—hampaign,

11108'est Green Street, Urbana, Illinois 61801
(Received 7 May 1984)

Elementary excitations of liquid "He have been studied in the past with either perturbation theory
in the basis of Feynman phonon states, or with variational theory using Feynman-Cohen (FC) wave
functions. We develop perturbation theory in the basis of FC phonon states. Such a theory appears
to have much better convergence. The second-order corrections to the FC spectrum are calculated,
and these improve the agreement with experiment very significantly. We also calculate the strength
Z(k) of the collective mode. The second-order corrections to the Z(k) of FC phonons also improve
the agreement with experiment. Calculations are carried out at pressures of 0, 10, and 24 atm using
the variational, Green s-function Monte Carlo and experimental pair distribution functions. Correc-
tions to the Kirkwood superposition approximation for the three- and four-particle distribution
functions are calculated with the variational ground-state wave functions containing pair and triplet
correlations.

I. INTRODUCTION

pp(k)= g e (1.2)

Here
I

%o& is the exact ground state. This wave function
gives an upper bound,

ke(k)(ep(k)=
2m S k

(1.3)

to the excitation spectrum e(k). The S(k) denotes the
static structure function.

In their pioneering work Feynman and Cohen' (FC) im-
proved the calculation of e (k) significantly by incorporat-
ing the backflow in the wave function:

I 4„&=p (k)
I
4 &,

pg(k)= g e
N

1+i gg(r J. )k r;J.
j+i

The function g(r) represents the backflow velocity poten-
tial, and it is to be determined variationally; FC took
g(r) = A /r 3. The excitation energy e~(k) is given by

w» (~oil:~;p,'(k)/ l~;p. (k)jl+o&
eg(k) =

m i =' &0'o
I
p&(k)pa(k)

I
+o&

(1.6)

During the last three decades many theoretical attempts
have been made to understand the elementary excitations
of liquid He. The first ideas were given by Landau,
working on the superfluid properties of liquid He, and by
Bogoliubov, who studied the dilute Bose gas. The first
ansatz for the wave function of the collective excitation of
momentum k was the Bijl-Feynman form:

I% „&=p„(k)I%o&,

and we need to know the two-, three-, and four-particle
distribution functions to calculate it exactly. Only the
two-body g (r) is experimentally known.

Padmore and Chester (PC) used the Monte Carlo
method to calculate the two expectation values in (1.6),
using the Jastrow approximation

I +o& =
1&i &j&N

for the ground state. Their results are -20% above the
experimental values. Later Schmidt and Pandharipande
(SP) included three-body correlations in the

I

0 o& and cal-
culated ez(k) using hypernetted-chain summation
methods. They found a small improvement in the roton
region, but the calculated maxon energies were too high.

Pursuing another approach, Feenberg and collabora-
tors studied the e(k) using perturbation theory in corre-
lated basis functions (CBF). The nonorthogonal CBF are
defined as

I
n(k ),n(k2) n(k ) & g [pp(k')j

I +o&;

they include one- and many-phonon states. The unper-
turbed (zeroth-order) spectrum is the Bijl-Feynman eF(k).
There are no first-order contributions in CBF theory.
Jackson and Feenberg studied the Brilloui. n-Wigner
second-order contribution from two-phonon intermediate
states, and later Lee and Lee included the second-order
effects of three-phonon states. In these calculations the
Jastrow approximation was used for the ground state.
CBF calculations using

I
0'o& containing two- and three-

body correlations were performed by Chang and Camp-
bell. When Bijl-Feynman phonons are used to construct
the CBF, the zeroth-order eF(k) is -2e(k), and the per-
turbative corrections are large. It is difficult to push the
CBF perturbation theory beyond the leading- (second-) or-
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der corrections.
In this paper we consider the next obvious step of using

CBF generated with the FC ps ( k ) operators. The
zeroth-order spectrum is much closer to the e (k) in this
basis, and we find that the leading perturbative correc-
tions are not too hard to calculate when a short-ranged
q(r) is used. The perturbative corrections are smaller in
this basis, and the expansion is expected to have a much
better convergence.

In Sec. II A we report variational calculations of eil(k)
with the Jastrow approximation for the ground state. The
PC calculation is repeated using hypernetted-chain sum-
mation methods, and a possible sign error is pointed out.
The spectrum is studied with both long- and short-ranged
rj(r), and it is not too sensitive to the Iong-range tail of
rj(r). The calculations are much simpler with the short
range rj(r). The effect of three-body correlations in the
ground state are studied in Sec. II 8. It is shown that the
Feynman-Cohen roton energies may be —10% higher
than those obtained by PC or SP.

The second-order CBF correction is calculated in Sec.
III, and in Sec. IV we discuss the calculation of the
strength Zk of the collective mode:

Zk=
I ('4l jr(k) I'P-„& I', (1.9)

ki
l. l

k

l.l2

in the dynamic form factor S(k,co). The phonon wave
functions used in the calculation of Zk include the
second-order CBF corrections.

The results are presented in Sec. V. The experimental

g (r) is used, and the microscopic theory is used to calcu-
late only the corrections to the Kirkwood superposition
approximation for the three- and four-body distribution
functions. We find that the small perturbative corrections
significantly reduce the gap between the variational FC
theory and experiment. The spectra calculated with the
experimental g(r) are in good agreement with the data,
but those obtained with either the variational or the
Green's-function Monte Carlo g(r) overestimate the e(k)
in some region of k by —15%.

II. VARIATIONAL CALCULATIONS

In the first part of this section we discuss calculations
with the Jastrow ground state. McMillan and optimum
Jastrow correlations are used, with the long-ranged

rid, (r)= AI /r of FC, and the short-ranged gs(r):

rjs(r)=AsexPI —[(r —ro)/ii~0] I, (2.1)

used in the variational theory of liquid He, to study the
spectrum. The parameters AL, ,A~, ro, uo of qL, and q~ are
determined variationally. In Sec. IIB we use the gs(r)
and the ground state with optimum Jastrow and triplet
correlations to calculate the es(k). The main results and
conclusions of the variational calculations are summa-
rized in Sec. II C.

A. Calculations with Jastrow ground state

I.l3 l.l4
FIG. 1. Diagrams depicting all the terms in the operator

p~{k )p~( k ). The wiggly and directed lines denote, respectively,
backflow correlations and exchanges.

g3, ljk gijgjkgkl ( +~tJk ) (2.2)

where A;jk denotes the contribution of Abe diagrams.
Terms such as g;jgjk can be extracted from g3 'jk by re-
placing gk; with 1+(gk; —1). Such terms give factoriz-
able diagrams as discussed below. Since g-1 except at
small r, the factorizable diagrams have importance. The
four-particie distribution function is approximated by

pli(k)ps(k). The wiggly lines represent backflow correla-

tions ik re(r), and the exchange lines represent e' " '.
ik ~ r; +

The term e ' in ps(k) is represented by starting the
exchange line from point i, while the end of the line in the

—ik ~ r . .
point j represents e ' in pll(k). In "direct" diagrams
[Fig. 1(1.1) for example] i =j. An angle mark at the
beginning of an exchange line [Fig. 1(1.4)] indicates that
the marked backflow correlation is from pll(k). An angle
mark at the end of the exchange line [Fig. 1(1.5)] is
used to denote backflow correlations from ps(k).

The expectation value ('Pc
~
pal(k)pal(k)

~
+0) is ob-

tained by multiplying the diagrams of Fig. 1 with ap-
propriate distribution functions, powers of density, and
integrating them. The two-body distribution function is
denoted by g,j or g (r,z ), and its calculation is discussed in
Refs. 8 and 10. The three-body distribution function can
be written as

We begin by evaluating the denominator of es(k) [Eq.
(1.6)]. It is convenient to use the diagrammatic notation
of Fig. 1 to depict various terms of the operator

g4 ijkl =gij gjkgklgligikgjl( 1 +~ijk +~jkl ++kli+ Al
&

) .

(2.3)
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2. l

I~tk) = 2

x
I t j i

2.2

k

~j (I+AIjk)

S(k) ~+ — +".
/

2.3
FIG. 2. Some of the diagrams contributing to the denomina-

tor e~(k).

x(~+A) +

We neglect four-body analogs of Abe diagrams. It is un-

likely that these are important.
The contribution of Fig. 1(1.1) is taken as unit; i.e., all

the'diagrams are divided by the number of particles ¹

Only the g —1 term contributes to Fig. 1(1.2). The
nonzero part of Fig. 1(1.2) is shown in Fig. 2(2.1), where a
dashed line denotes g —1. The sum of Fig. 1(1.1) and
1(1.2) gives the familiar structure function

S(k)=1+p f [g(r)—1]e'"''d r .

Figure 1(1.3) and a similar diagram having the back-
flow correlation from pii(k), give zero contribution. Fig-

+ s(', +

3,2
FICx. 3. Factorizable parts of Figs. 1(1.8) and 1(1.9) are

shown in Fig. 3(3.1) and the unfactorizable in Fig. 3(3.2).

ures 1(1.4) and 1(1.5) occur as factors in the factorizable
terms of three-body Figs. 1(1.6) and 1(1.7). The factoriza-
tion is illustrated in Fig. 2(2.2). The sum of Figs. 1(1.4) to
1(1.7) is given by S(k)I9(k). I9 is shown diagrammatical-
ly in Fig. 2(2.3) and is given by

I9(k)=2pi d r e' 'ri(r)k'rg(r)+2p i d rzd r ke "k r;kq;kg k[(g J
—1)(gjk —l)(1+A&k)+(giJ+gji, —2)A&k] .3 ik r ik r;-

(2.5)

The first term of I9(k) has contributions from the r —+ co tail of the gL (r) These ar.e treated as discussed by FC.
The sum of terms quadratic in ri(r) is written as

Iip(k) =S(k)[I9(k)] /4+Iip(k) . (2.6)

The first term of the above expression sums the factorizable contributions of Figs. 1(1.8) and 1(1.9) as illustrated in Fig.
3(3.1). Iip(k) contains contributions of Figs. 1(1.10) to 1(1.14) (these have no factorizable parts), and the unfactorizable

parts of Figs. 1(1.8) and 1,(1.9), as illustrated diagrammatically in Fig. 3(3.2). The last two diagrams of Fig. 3(3.2) have

four-body elementary structures. Their contribution is very negligible ((1%). The Abe corrections to the four-body di-

agrams of Iip(k) are also expected to be small, and are neglected in this work.
Following FC, the I&0 is divided into three parts:

Iip(k) =[I3+I3*(k)+Iii(k)]k
I3k2 is the sum of Figs. 1(1.10) and 1(1.11),

I3 —(4irp/3 ) f dr r i) (r)g(r)+ ( p /3 ) f d r 1 d rk r 1 r'k i)~ ri kg Jgz (gjk —1 +gjk&Jk )

(2.7)

(2.8)

I3"(k)k is the sum of Figs. 1(1.12)—1(1.14),

I3"(k)=—p f d r i) (r)(r k) g(r)e'"'' —2p d r jd rkg pkg Jgkr J k r k ke "(gjk —l. pgkAJk) .
/

The I»(k)kz is the sum of all diagrams of Fig. 3(3.2),

(2.9)
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i k ~ r,"
Ill�(k)

p d rij d rik gikrjjkgikgjk rik rjk k e (gij 1+gij ~ijk }

+p d r'jd r'kd r Ill'k')jig kg'jl kk'jl k e [(gij }(gkl 1}glg'jk+(g I 1}(gjk 1)(gj +gkl 1)] .

(2.10)

FC approximate the entire IIO(k) [Eq. (2.6)] by k I3.
Collecting all terms together we find

(4O
~
pII(k)pII(k)

~
40)/X=[I+I9(k)/2] S(k)+IIO(k) . (2.11)

When the short-range rjz(r) is used, the contribution of all the four-body irreducible terms of Fig. 3(3.2} to the above ex-
pectation value is & 1%. When the long-range gl (r) is used, the first two four-body diagrams have large contributions
that partly cancel those of the first three-body diagram of Fig. 3(3.2), and one of the diagrams (1.13) and (1.14) of Fig. 1.
These four-body chain diagrams get most of their contribution from the long-range tails of gr (r) T.his contribution is
not affected by the Abe terms. The rest of the four-body diagrams have & 1% contribution even for rjL (r). Thus it ap-
pears that the Abe corrections to the four-body distribution function can be safely neglected.

FG divide the numerator of eII (k) into eight terms:

(+O
~
[V;pII(k)].[V;p&(&)]

~

bio) =k'(1+II+I2+k'I3+I4+I5+kI6+I7) (2.12)

These are shown in Fig. 4 with the following diagrammatic notation. An arrow on a wiggly line denotes V; operating on

the iq(r) k r. The V; can operate on the e' " ' ' exchange lines, but this is not explicitly shown in the diagrams. All dia-
grams contributing to the expectation value (2.12) must have two gradients, thus diagrams with 0, 1, or 2 gradients of the
irj(r}k r must have 2, 1, and 0 derivatives of exchange lines, respectively. Only the direct diagrams contribute to terms

in which both gradients operate on the e' " '. These diagrams are not shown in Fig. 4. They look exactly like the dia-
grams (1.1), (1.10), and (1.11) of Fig. 1, and their contribution is k (1+k I3).

Il, I2, and I6 contain terms with one Vlrj(r) k r. We obtain

II ——2p f d r g(r)k V[q(r)k Z],

I2 ———2p J d r g(r)e'"''k V[q(r)k. r],
I6 ———p I d rg(r}rj(r)k rk V[q(r)k r]i(e'"'' —e "'')

(2.13)

(2.14)

—p d rjd r lgijg lrjlk r;Ik VI(rjljk r,j)i(e "—e '
)(gjI —1+gjIAII) . (2.15)

The tail of rjL (r) contributes to II and I2 as discussed by FC.
The I4, I5, and I7 contain terms in which both gradients operate on the backfiow correlations. The three-body dia-

grams of these terms (Fig. 4) have a factorizable part. We find

I4+I5+I7 ——,'(I, +I2) +p —Id r[[V[rj(r)k r]I g(r)(2 —e'"'' —e '"'')
.~ —+

2 i k. r.
~

ik. r; —ik r;.
+p d rgd &IIVI(rjijk r I)'V (rjilk'rII)gijgII(1+e ' —e "—e ")(gjl —1+gjl~ijI) (2.16)

The scaling approximation,
T

A,jk
—— 1+—p I d r (g; —1)(gj —1)(gk —1),

2

(2.17)
is used for AIjk. The scaling parameter s is taken from
Refs. 8 and 10. The calculated spectra are shown in Fig.
5, where ez(k)-0 is the Bijl-Feynman spectrum obtained
with the optimized Jastrow ground state; eII(k)-LO and
ee(k)-SO are with the gl and gz using the optimized Jas-
trow ground state; and eII(k)-LM is with the gL and the
McMillan- Jastrow ground state.

The eII(k)-LM has been calculated by PC with the
Monte Carlo method. Their results differ from ours; for
example PC values for the roton minimum are k=1.7S A
and 6=11.2+O. S K against our k=1.75 A and 5=13.2

I

K. However, this difference is not due to our use of the
scaling approximation to calculate distribution functions.
In fact we could reproduce all their integrals other than
the I6 Our calculat. ion gives I6(k) of similar magnitude
but opposite in sign to their (PC, Fig. 1). If we change the
sign of our I6, we reproduce PC results accurately (5 be-
comes 11.3 K). We note that at small k the leading two-
body integral of I6(k} [Eq. (2.15)] becomes

——„mp I dr r gl (r)g (r), (2.18)

and it is definitely negative, while the PC I6(k) is positive
at small k. Secondly, it may be verified that the sign of
I6 in the FC paper (see equation for I«, Ref. 1, page
1199) is also wrong. However, FC neglect I6 so their re-
sults are not affected.

The optimum values of the parameters of rjs(r) are
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ous that, from a variational point of view, gL is superior
to gs. However, the gs contains much of the backflow
effects; it is much simpler to work with it, and it is less
sensitive to k. We can hope that the CBF states generated
with the gz are much closer to the real states than the
Bijl-Feynman phonon states. Hence in the following parts
of this paper we restrict to gs.

B. Three-body correlations

In this section we use the optimized Jastrow and triplet
(OT) ground-state wave function:

+o gfJ iJ g f3,Jk' (2.20)

FIG. 4. Diagrams depicting all the terms in the operator

[Vps{k) Vpg{k)].

~s =0.&5

ro ——0.8o,
~,=0.44~ .

(2.19)

I I 1

The spectrum obtained with these values is very close to
that obtained by minimizing equi(k)-SO at each value of k
by varying the Aq, ro and wo. The parameter AL of qL
has significant k dependence as noted by FC. It is obvi-

determined in Ref. 10. The expressions for the expecta-
tion values remain the same as given in the preceding sec-
tion. The only change is to add the effects of triplet
correlations to the A;~k

..

~ijk =f3,ijk(~ijk+ ~ijk )+f3,ijk

where Ask is the Abe contribution from g —1 bonds and
2

A;jk is that from f3;Jk —1 bonds.
The f3;jk has an effect on the two-body g (r), and this

is taken into account by calculating the g(r) with the
methods described in Ref. 10. Thus the effect of f3;jk on
the large two-body integrals is fully considered. However,
the effect on the less important three-body irreducible dia-
grams is calculated approximately with

2 g tl 2
~ijk =f3,ijk~ijk+ ~ijk+f 3,ijk (2.22)

where 3'k are four-body Abe diagrams with one f3 —1

bond. The A,"jk has very small effect on the ez(k) The.
four-body irreducible diagrams of Fig. 3(3.2) have & 1%
contribution when gz is used. Nevertheless we calculate
the effect of one f3

—1 link on the first five "chain-type"
four-body diagrams, and neglect it for the last two.

I I, I (
i

I I ( {

20

20

l0

l0

l.0 2.0

FIG. 5. Spectra calculated with Jastrow ground state. Sub-
scripts 8 and F denote FC and Feynman phonons; I. and S
stand for long- and short-range g(r); and M and 0 for the
McMiHan and optimized wave functions. The experimental
data is from Ref. l.4.

l.o 2.0

FIG. 6. Spectra calculat, ed with ground states having optim-
ized Jastrow (0) and optimized Jastrow plus triplet (OT) corre-
lations.
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TABLE I. FC phonon energies (in K) obtained with the
short-ranged q(r) and Jastrow plus triplet ground state, using
the full calculation, two-body, and extended two-body approxi-
mations.

egg(k)

k (A ') Full TB ETB

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4-

44
9.8

13.20
14.91
15.86
15.98
15.47
14.63
13.87
14.17
17.00
23.04

44
9.6

11.75
12.05
12.40
13.00
13.58
13.81
13.74
14.55
18.15
25.57

4.4
9.8

12.65
14.53
15.30
15.49
15.28
14.70
14.12
14.57
17.52
23.64

C. Results of the variational calculations

The ez(k) and ez(k) calculated with. the optimized and
OT ground states are shown in Fig. 6. The OT energies
are a little better than the optimized energies, but the
difference is not as large as indicated by earlier calcula-
tions. The main conclusion of this variational study is

t

P 3)( ij) z d krij rik9'kgik(gjk 1+~ijk)
~ij

W(~*r J)=p f d'rkV (k r kilk. )gk'(g.jk I+~jk—) .

FIG. 7. Diagrammatic representation of functions 5g;J and

W;J in the extended two-body approximation.

that the ee(k) is significantly above the experimental e(k)
in the maxon-roton region. Particularly for the rotons the
disagreement is much worse than was believed to be. '

Secondly, it appears that when a short-range rjs is used,
the two-body integrals give the dominant contributions to
the I 's. Thus the simplest approximation to calculate the
expectation values in this case is to keep only the two-
body integrals in the I's. The spectrum obtained in this
two-body (TB) approximation is within -20%%uo of the re-
sult of the full calculation, as may be seen in Table I. Sig-
nificantly improved results, with accuracy of better than
5%, are obtained by including the elements illustrated in
Fig. 7 in the two-body integrals. We define

(2.23)

(2.24)

In the extended two-body (ETB) approximation the I 's are given by

I9(k)=2pi f d r e'" 'Ii)(r)g(r)'+5'(r)[g(r) —1]I,

f d r r g(r)g(r)[il(r)+5'(r)],
3

I3"(k)=—p f d r[g(r)+5g(r)] (r.k)ig(r)e'"'",

I6(k)= —p f d rg(r)[g(r)+5'(r)](k. r)k V[k rg(r)]i(e'"'' —e '"''),
I4 +I5 +I7 —

g (Ii +I/ ) +p f d r g (r) V [%
.rp(r)]. V [k r il(r)]

(2.25)

(2.26)

(2.27)

(2.28)

+p f d r V[k. rg(r)] [ V[k.ri)(r)]+W(k, r)I(l —e' " ' —e'"''), (2.29)

Iii ——0, and Ii and I2 [Eqs. (2.13) and (2.14)] remain unchanged. The spectrum calculated with ETB approximation is
given in Table I. It is much'simpler to calculate the CBF correction in this approximation.

We conclude this section with a discussion of the spectrum in the limit k —+0. In this limit, as noted by FC, the back-
flow correlations are irrelevant. When we use gs(r) the I9 aild Iip are, respectively, linear and quadratic in k, and the
leading term of the denominator is S(k). The leading term of the numerator is R k /2m, and ee(k —+0) is simply
A k l2mS(k) With ql. (r), th. e integrals I&, I2, and I9 become, respectively, 8mpAL, /3, 8npAI /3, and 16mpAL in the
k —+0 limit. In this case also we obtain

[1+—,
' (li +In)]

e~(k —+0)=
2m S(k) (1+—,'I )2

k
2m S(k) (2.30)

It may be noted that II and I2 do not cancel in the k —+0 limit as assumed by FC.
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III. CBF PERTURBATION CALCULATIONS

In this section we generalize the CBF perturbation theory to include backflow correlations and calculate the
second-order corrections to e' '(k) from two-phonon states

I V~~ ):

I+m & =pa(1)pa(m) I
'4&

1+i g 1 r 1 gjj' e " 1+i g rn r„„ri„„ I%'o),
j,n (j&n) J (+j) n' (&n)

(3.1)

I

where the overdots denote the (j&n) restriction in two-
phonon states. This state is orthogonalized to the one-

phonon state having momentum k= 1+m and normal-
ized as follows:

I
k & =pa(k) I

+o&]'&'po
I pa(k)pa(k) I

'po&'

I%'g ) —
I
k)(k

I %1 )

(3.2)

(3.3)

The matrix element in Eq. (3.4) is conveniently written as

(1,m
I
(H —Eo) I

k) = ' ' ' )i2, (3.5)
+k,k(+k, k+I, l

where

g2
H( k= g (Vo I

vq[pg(1)pg(m)]. v p~(k) I
4 ),

2m

(3.6)

~i//, k = ( po I pg(i)pB( m) gp(k) I 4) (3.7)

The second-order Brillouin-signer correction to the pho-
non energy is given by

I ( l,m
I
(H —Eo) I

k ) I

e~(k)+e' '(k) eg(1) —e~(m)—
1 (&0, k)

(3.4)

I

The new matrix elements to be calculated are Xl k and
HI k. We first discuss the calculation of X~ k. The
operator,

p ~(m)p g( 1 )pe(k )

contains eight terms as shown in Fig. 8. The k line end-

ing in i denotes a factor exp(ik r;.)w, hile the i and m
lines starting from j and n, respectively, denote

exp( i 1—rJ) and exp( —im r„). Each of the eight terms
of Fig. 8 are shown as disconnected pieces. Diagrams
contributing to Xl k are obtained by connecting these
pieces directly or via g —l or Abe correlation bonds. The
points of connection will be called common points.

For example, the first term of Fig. 8 gives all the con-

nected diagrams of Fig. 9(9.1). Since k= 1+m, we can
represent the diagrams of Fig. 9(9.1) by those of Fig.
9(9.2). In the TB approximation we sum the first six dia-
grams of Fig. 9(9.2). The contributions of these can be
written as products of two-body integrals. The contribu-
tions of the last diagrams and the Abe diagrams cannot be
factored into a product of two-body integrals. These
three-body irreducible diagrams are expected to have

small contributions and we neglect them. This approxi-

mation is equivalent to the convolution approximation

used by Feenberg to calculate CBF matrix elements with

Bijl-Feynman phonon states. Diagrams whose contribu-

+1m, lm +l, 1+m, m (3.8)
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IO. I I l.2

k

+

IO.2

k
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IO.5

FIG. 10. NI, k diagrams of class I.

&(k

&k

FIG. 11. NI k diagrams of class II.

tion can be expressed as a product of two-body integrals
will be called TBF diagrams.

The TBF diagrams are divided into four classes. The
first contains all the diagrams in which none of the points
with an angle marking is a common point. The most
complicated of these is shown in Fig. 10(10.1). Others of
this class are obtained by shortening the branches meeting
at the common point. The possible branches are shown in
Fig. 10(10.2). The diagrams illustrated in Fig. 10(10.3)
are not allowed due to our j&n restriction in the two-
phonon wave function [Eq. (3.1)], and so the l and m
branches cannot be simultaneously eliminated. We define
SB(k) as the sum of the four diagrams of Fig. 10(10.2):

diagrams have k r;; rj(r;; ), and their sum is given by

1 k m
Xz; ———

2 I9 2(m)+ I9 2(l) SB(m)SB(l) .
7tl

(3.11)

Figures 11(11.3) and 11(11.4) belong to Xzj. We can
shorten the branches starting from j and j' to obtain other
diagrams, however, the m branch of Fig. 11(11.4) cannot
be eliminated completely since Fig. 11(11.5) is not al-
lowed. We obtain

SB(k)=S(k)['1+—,
' I9 2(k)], (3.9) 1 l.m-

X2j 2 2 I92(m)SB(k}SB(

where I9 z(k) is simply the TB part of I9(k) [Eq. (2.5)].
The sum of the 60 diagrams belonging to this class is ob-
tained as

1 k. 1—+—
2 I9 2(k)SB(k)[SB(m)—1] . (3.12)

X& ——SB(k)[SB(l)SB(m)—1] . (3.10)

In the ETB approximation we replace I92 with the I9
given by Eq. (2.25).

In the second class we have diagrams in which one of
the points having an angle marking is a common point.
Since this point can be either i, j, or n, we have three
subclasses denoted by X2;, Xqj., and X2„. The most com-
plicated diagrams of subclass Xz; are shown in Figs.
11(11.1) and 11(11.2). Others can be obtained by shorten-
ing the branches starting from points i and i'. A11 these

I

The X2„ is obtained by interchanging m and 1 in X2J, and
expressions in the ETB approximation are obtained by re-
placing I9 2 with I9.

The third class has diagrams in which two points with
angle markings are common points. Again there are three
subclasses: X3,&, X3J„,and X3„;. Diagrams contributing to
X3j are illustrated in Figs. 12( 12.1} and 12( 12.2) ~ They
give

X3j„~pSB(k)J d3rg(r}gz(r)(m. r)( l.r)(e' '+e' ' ') .
(3.13)

Examples of X3,j diagrams are shown in Figs. 12(12.3) to
12(12.6). We obtain

X3ij ~pSB(m) J d r g(r)g (r)(k r)( 1 'r){8™~rei7 r
)

+P[SB(m) 1]J d rg(r—)g (r)(k r)(1 r) —P[SB(m)—I]I d3rg(r)q (r)k. r I .reik ~ (3.14)
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FIG. 14. H~~ k diagrams of class I.

and that in the second term of Eq. (3.14) with (r)+5g)g.
The fourth class contains just the two diagrams in Figs.

12(12.9) and 12(12.10). These contain integrals of
g (r)g (r), and are expected to be small. We neglect them.
The XI~ k is apprOximated by

+1m, k ~1+~2k +~2j +~2n +~3ij +~3jn +~3ni (3.15)

l2.7 I2.8 The matrix element H~ k is the ground-state expecta-
tion value of the operator:

)gl I
'~'ll

I2.9

)'4 )' ll

)4
k

12.IO

FIG. 12. NI k diagrams of classes III and IV.

The —1 in [+II(m) —I) removes the contribution of dia-

grams of type 12(12.7) and 12(12.8) are not allowed.

The X3;„ is obtained by exchanging I and m in X3;~. In
the ETB approximation we replace the q in Eq. (3.13)
and in the first and third terms of Eq. (3.14) by (rl+6q),

2m
Vp[p)I( 1 )ps(rn)]. rL)'~ p~(k) .

This operator has iwo terms,

p)t (m) V~ p~( 1 ).7» p~(k),
2m

and the other obtained by interchanging m and I. The
contribution of the second is trivially obtained from that
of the first. The first term itself consists of the 32 terms
shown in Fig. 13. In the terms of Fig. 13(13.1), having
two wiggly lines, the possibility of both wiggly lines end-

ing in the same particle has to be considered explicitly.
Connected diagrams, formed by linking a piece with the

)il
lt
)IL k k k'4 k

k

Qtk) = I k ~ k.

I
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FIG. 13. Diagrams depicting all the terms in the operator

pg(m)[rll'p~( 1)] [Vpz(k)] are obtained by linking one of the
two diagrams {13.2) to any of the sixteen diagrams in Fig.
13(13.1).

)L )L , I „m
I + + I

k)s k) IL

FIG. 15. Diagrammatic representation of the functions giv-

ing the contribution of HI k diagrams of class II.
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m line [Fig. 13(13.2)] to the main pieces of Fig. 13(13.1),
contribute to the expectation value.

The TBF diagrams are divided into three classes. The
first class contains diagrams obtained by connecting n or
n' with the origin of the 1 line. Some of these are shown
in Fig. 14. Their sum is

Ti ——k 1 Hk k — k.inI$ 2 [Sir(m) —1], (3.16)
2m

where I3 2 is the two-body integral in I3 [Eq. (2.8)], and
in the ETB approximation we replace it with the I3 of

I

Q(k) =1+—,
' [Ii+I2(k)],

+ U3(k, l, m)]Sri(m) . (3.17)

The Q(k), Ui(k, l, m), U2(k, l, m), and U3(k, l, m) are
shown in Fig. 15. In the ETB approximation we obtain

(3.18)

Eq. (2.25).
The second class contains diagrams formed by letting n

or n' be any particle of the main piece, other than the ori-
gin of the 1 line; or by connecting n or n' to any particle
with a g —1 bond. The sum of these diagrams is given by

T~ =[Q(l)Ui(k, l, m)+Q(k) U2(k, l, m)

Ui(k, l, m)= k lp f d rik rI71(r)g(r)+5q(r)[g(r) —1]je'2'
+ p f d r[V[k re(r)]. 1g(r)(e™~r e' ' ''—)+W(k, r). 1[g(r)—1]e™~j2'

U2(k, l, m)= k lp f d r( i 1 —r)Iri(r)g(r)+5g(r)[g(r) —1]je'
2m

+ p f d rj V[1.rg(r)] kg(r)(e' '' —e'' ')+W(l, r) k[g(r) —1]e™~j,
2m
2

U3(k, l,m)= k 1 p f d r k r 1 rg(r)[g(r)+5'(r)] e'
2m

2

p f d rg(r)I i l.r [r—i(r)+5g(r)]D(k, r) 1+ik r[g(r)+5g(r)]D( l, r) k
2%i

(3.19)

(3.20)

+D(k, r).D( l, r)+ V[k.re(r)]. V[ l.re(r)] je' ~''

2

2P21
p f d rg(r)Ii 1 r [rl(r)+5'(r)]V[k re(r)] 1+ik r [rl(r)+5'(r)]V[1 rrl(r)] k

where

D(k, r)=V[k. rrl(r)]+W(k, r) .

+V[k re(r)].D( l, r)+D(k, r) V[1 rg(r)]je' .' '', (3.21)

(3.22)

The expressions for the TB approxiination are trivially obtained from these, by setting W and 5g equal to zero.
The last class contains diagrams in which both n and n are common points. Of these we neglect those having

ri (r)g (r), and the sum of the rest is obtained as

T3 ——Q(k) Wi(k, l, m)+Q(l) W2(k, l, m)+ W3(k, l, m) . (3.23)

Diagrams contributing to 8'~, 8'2, and 8'3 are shown in Fig. 16. We obtain

W2(k, l, m) =—

2 2

Wi(k, 1 m)= k lp f d rg(r)1 r'm. r [rl(r)+5g(r)] e' ''+
p f d rg(r)m. r [rl(r)+5'(r)]D( l, r).(ik)e'2' 2'

2

p f d rg(r)m r [g(r)+5'(r)]V[ l.re(r)] (ik)e' ' '',
2P?l

2
k Ip f d rg(r)k. r m. r [rl(r)+5'(r)] e™'

27tl
2

p f d rg(r)m r [rl(r)+5'(r)]D(k r) ( i 1 )e'—
2Pl

2

p f d rg(r)rn r [rl(r)+5'(r)]V[k. re(r)].( i 1 )e' ' ''—
,2m (3.25)
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2

W3(k, i m)= — p J d rg(r)7[1 r.g(r)]e' ' ''[ i—f d r'g(r')m. r'[g(r')+5g(r')]V'[k r'ri(r')]e'"
2m

+ k f d r'g(r')m r 'k r 'ri(r')[g(r')+5g(r')]J . (3.26)

The full matrix element H~~ k is given by adding to T&+ T2+ T3 the terms obtained by interchanging 1 and m.

IV. CALCULATION OF THE Z(k)

The dynamic form factor S(k,u) at zero temperature is given by"

S(k,co) =Z(k)5(co —e(k))+S (k,a)), (4.1)

where the Z(k) term gives the contribution of one-phonon statea, nd S (k,co) is that of two or more phonon states. The
Z(k) is given by

Z(k)=
I &+o Ip~(k) I

+(")&I'
where

I
4(k) ) is the normalized wave function of the one-phonon state.

The strength Z~(k) is calculated using the FC wave function for the phonon:

(4.2)

Zg(k) = I (%p I
pr(k)pz(k) I

%'p& I

(+o
I
ps(k)pa(k) I

+o&

(4.3)

~ ~

The calculation of the expectation value of pr(k)p~(k) differs little from that of (+p I pe(k)pa(k) I po) discussed '»ec.
II. All that we have to do is to omit the terms with wiggly lines from pe(k). This gives

(4p
I
pF(k)p~(k) I 4p) =S(k)[1+—,I9(k)] .

The Z~(k) is the first-order result of CBF theory. In second order we use the wave function

1/2

(4.4)

(4.5)

1 (~0, k) 1 (~0, k)

where
I k) and

I
l,m) are the CBF states defined in Eqs. (3.2), (3.3), and

( l,m
I
(H —Eo) I

k)
ez(k)+e' '(k) —e~(l) —e~(rn)

(4.6)

I I l I
I

l l 1 I
I

l l

gA Ir &

4) {k,l,m) = I + I + I

k
20

l]i (m ifA fpii, &4)

%~{k,),m) = + +
k&~

IO

Np{k, I, m) =

+ ~~QAji
&&k

FIG. 16. Diagrammatic representation of the functions giv-

ing the contribution of H~ k diagrams of class III.

0 I.O 2.0
k(A )

FIG. 17. Spectrum at zero pressure calculated with the varia-

tional ( V) and GFMC g(,r).



30 THEORETICAL STUDIES OF ELEMENTARY EXCITATIONS IN LIQUID "He 5073

I I I I
I

I I I

eF
/

/
/

/

I
I

I
I

/

l5—

l.o—

l0

0.5—

0 I 2
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FIG. 18. Spectrum at zero pressure calculated with the ex-

perimental S(k) and g(r). RS maxon and roton energies are
shown by plus signs.

The Z(k) obtained with this wave function is

I I j I I i I i I I

0 l.0
k(A )

2.0

FIG. 19. Calculated Z(k) for Feynman [S(k)], FC [Za(k)],
and second-order CBF [Zap(k)] phonons are compared with the
experimental data (Ref. 14).

T

Z(k)= I+ —,
'

1 (~0, k)
k lm

& 4o I
pt( k)pa(k)

I
%o&

& +o
I pa(k)pa(k) I +o&

1(~O, k)
~k, I [&+o I p (k)pa( 1 )pa(m)

I
+o&

X„, &eoIp'(k)p (k)
I e,&i+„„]/X,"', (4.7)

and the only new matrix element required to calculate it is the expectation value of pa(m)pa(l)p(k). Its calculation is
+

similar to that of pa(m)pa(1)pa(k) expectation value; one simply discards the terms with the wiggly line from pa(k).
The diagrams are classified as in the calculation of N~~ ~. We denote the contributions of diagrams of first, second,

and third class by M~, Mz, and M3, respectively; there are no class four diagrams in this case. Thus, in the ETB ap-
proximation,

&+o
I pa(m)pa( 1 )p(k) I

'4& =M&+M2+M3

M|——S(k)[Sa(l)Sa (m )—1],
M2 ——Mp J-+M2 „,

1 1m- k. 1-
M' J———,S(k) — I9(m)Sa(m)+ I9(k)[Sa(m) —1]

(4.8)

(4.9)

(4.10)

M3 ——S(k)p f d r g(r)rI (r)(rn r)(1 r)(e'~''+e' ' ') . (4.11)

TABLE II. Maxon and roton energies (in K) calculated with the experimental S(k) compared with
experiment at three densities corresponding to 0-, 10-, .and 24-atm pressure.

B%'

Maxon
eBF

BW

Roton
eexpt

0.365
0.4017
0.4276

17.30
19.59
20.63

14.06
15.65
16.48

13.45
14.68
15.62

13.8

—15

11.75
11.60
11.07

9.25
8.76
8.08

8.96
8.45
7.75

8.7
7.9
7.1
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l2 — IO 24
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l.7
I

I.8
I I I

I.9 2.0 2. I

k(F )

I

2.2

FIG. 20. Calculated e~p(k) for rotons (sohd hnes) at 0-, 10-,
and 24-atm pressure is compared with the experimental data
(Ref. 15) shown by dashed lines.

V. RESULTS

The formalism developed by FC and in this work as-
sumes that the

~
%0) is the correct ground state of the

liquid. Hence we must use the exact distribution func-
tions to calculate the spectrum. In this section we use two
approximation for the pair distribution function g (r); that
obtained with variational calculations' and the one from
presumably exact Green's function Monte Carlo (GFMC)
calculations 12 Both these microscopic approaches use a
model Hamiltonian with the Aziz interatomic potential,
which is believed to be quite realistic. They neglect
three-body or higher-body forces. The variational calcula-
tions assume the form given by Eq. (2.20) for the wave
function, but the functions f1 and f3Ijk are not deter-

mined in a truly exact fashion. Due to finite-size effects,
the "exact" GFMC calculations do not give the correct
S(k) in the k~0 limit. We correct the GFMC S(k &0.4
A ') by hand. The S(k) and g(r) have been experimen-
tally measured, ' and the best choice is of course to use
them. Most of the presented results are with this choice.

Secondly, tables of g3,jk obtained in GFMC calcula-
tions are not available, and the g3 is not known from ex-
periments. Hence the Abe correction [Eqs. (2.2) and
(2.22)] must be obtained from the variational calculations.
More specifically we use the scaling constant in Eq. (2.17)
and the f3 Jk fro'm Ref. 10 to calculate the spectra with
the experimental and the GFMC g(r) The. Abe correc-
tion has a small effect on the spectrum, and obtaining it
from the variational calculations may not be a serious ap-
proximation.

The results reported here are obtained with the "full"
calculations of e~(k) as described in Sec. II. However the
second-order CBF corrections are calculated with the ex-
tended two-body approximation. The calculated spectra
at equilibrium density are shown in Figs. 17 and 18,
where eBP and eFp denote the results obtained with
second-order Brillouin-Wigner (BW) perturbation theory
using FC and Feynman phonon basis states, respectively.
The ezp is, as one might have expected, much closer to
experiment. Differences between Rayleigh-Schrodinger
(RS) and BW results give an indication of the convergence
of the perturbation expansion. The RS and BW energies
are given in Table II for the eBp. The difference between
them is 0.3 and 0.6 K for the roton and maxon at the
equilibrium density. These differences are about four
times greater (1.0 and 3.0 K) for the eFP.

The spectrum obtained with the GFMC and the varia-
tional g (r) have about 15% errors due to the inaccuracies
in these calculations. The perturbative correction e' '(k)
obtained in calculations using variation, GFMC, and the
experimental g(r) is quite similar; the main differences
appear in the ez(k). The main problems with the theoret-
ical S(k) appear to be in the region of the peak and

TABLE III. Calculated e(k) and Z(k).

k (A ')
I'=0 atm

egp(k) ZBP

8=10 atm
egp(k) ZBP

I'=24 atm
esp(k) ZBP

0.225
0.425
0.625
0.825
1.025
1.125
1 225
1.425
1.625
1.825
1.925
1.975
2.025
2.125
2.325

4.48
7.32

10.54
12.81
13.90
14.06
13.79
12.72
11.27
9.70
9.24
9.34
9.62

10.73
13.89

0.084
0.114
0.135
0.152
0.184
0.208
0.246
0.362
0.573
0.950
1.155
1.211
1.228
1.144
0.725

5.28
8.82

11.71
13.92
15.46
15.66
15.48
13.92
12.18
10.14
9.01
8.77
8.76
9.51

12.74

0.062
0.089
0.109
0.122
0.136
0.154
0.180
0.289
0.471
0.829
1.115
1.232
1.305
1.287
0.838

6.42
9.30

12.51
15.09
16.39
16.46
16.10

'

14.60
12.72
10.38
8.99
8.44
8.10
8.45

11.58

0.057
0.080
0.091
0.096
0.111
0.127
0.155
0.248
0.410
0.746
1.044
1.211
1.342
1.411
0.919
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0

around k-1 A
The Zk obtained in various approxixnations is com-

pared with the data' in Fig. 19. It is given by S(k) for
the Feynman phonon. The results obtained for the FC
phonon state shown by the curve labeled Zz(k), while the
second-order BW calculation gives the curve labeled
Zzz(k). Unfortunately Zzp(k) appears to be only half
way between the S(k) and the experiment. Thus the wave
functions of our phonons are not very accurate.

The calculated spectra and Z at three densities, at
which experimental data for S(k) is available, '3 are given
in Table III. The pressure dependence of the theoretical

roton spectrum is compared with experiment' in Fig. 20.
As the pressure is increased from 0 to 24 atm, the roton
energy drops by I.6 K. This decrease is underestimated
by 25%%uo, the theoretical roton energy drops by only 1.2 K.
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