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Sum rules and the momentum distribution in Bose-condensed systems
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The momentum distribution n~ of atoms in a Bose-condensed system is computed in the long-

wavelength limit p-+0. We use frequency-moment sum rules for the single-particle Green's func-

tion, including a generalized version of Wagner s sum rule appropriate to hard-core potentials. We
show that at finite temperatures (cp &&k~T) the correction to n~=n0in /p~p involves the.off-
diagonal self-energy X+ (p, co=0}. In calculating n~ in the limit cp &&k~T, we include first-sound
as well as second-sound contributions.

I. INTRODUCTION

Here no=
~
( I')

~

is the condensate fraction involving
the square of the macroscopic wave function (4), and ps
is the two-fluid model superfluid density. This result is
valid at arbitrary temperatures below T~. This long-
wavelength expression was first derived by Bogoliubov'
and by Hohenberg and Martin. We shall refer to it as the
"1ip sum rule. "

A stronger version of this sum rule is often used, name-
1 —6

lim 6++ ( p, co =0)= —G+ ( p, co =0)
p —+0

nam 2

+ 1 ~ ~
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One may derive (2) by a simple physical argument based
on the phase fluctuations associated with the normal
modes of oscillation (phonons) in a Bose-condensed sys-
tem. It is argued that the neglected amplitude fluctua-
tions will give rise to less divergent contributions. We are
not aware of a rigorous proof of (2). In contrast, (1) can
be derived rigorously' ' as a direct consequence of the
continuity equation in a Bose system and the next term on
the right-hand side (rhs) shown to be independent of p.

In this paper we give a more formal derivation of the
sum rule (2) and discuss the related momentum distribu-
tion n& of excited atoms in the p~O limit. We are able
to show with some rigor that for cp &&k~ T,

n~ = ktt TG++(p, co=0—)

kg TPl n0 +
PsS' 4X+ (p, co=0)

+ e ~ ~

One of the few rigorous results we have for an interact-
ing Bose-condensed system is that at zero frequency, the
difference between the diagonal and off-diagonal single-
particle Green's functions is given by

2nopl
lim [G++(p, co=0)—6+ (p, co=0)]=—

2 +
PsP

where X+ (p, co) is the off-diagonal self-energy. The
remaining nondivergent terms are independent of the
momentum p in the p~0 limit. The second term on the
rhs of (3) is of the some interest because it offers the hope
that one can obtain information about the momentum
dependence of X+ (p, co=0) by measurements of n~
General arguments have been given that X+ (0,0)=0,
but these have been criticized. ' Moreover, within the
one-loop approximation which is consistent with (1), we
show in Sec. IV that X+ (0,0) is finite.

We also point out that one can obtain the leading order
divergent contribution to n& at all temperatures outside
the critical region by using the well-known expression for
6++(p, co) given by the two-fluid model. ' This au-
tomatically includes both first and second sound, the
latter being important at finite temperatures. At T =0 K,
our expression reduces to ( c is the sound velocity)

nome
nz ——

2np
+ (4)

in agreement with the exact result of Gavoret and
Nozieres. "

As emphasized by Ferrell et al. , sum rules such as (2)
break down in the critical region when pg(T) & 1 [g(T) is
the correlation length which becomes infinite at T~]. We
shall not be concerned with this critical region in this pa-
per.

co+Ep —@+X++(p, —co)
G++(p, co) =

D( p, co)

where

(Sa)

D( p, co) = (co A)——

—(ez —. p+S —X+ )(e~ —p+S+X+ ) .

(5b)

II. EXACT FREQUENCY MOMENTS
OF G++(p, co)

We recall that the diagonal single-particle Green's func-
tion is given by'
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Here ez
——p /2m is the free-particle energy, p is the chem-

ical potential, and

A:——,
' [X++(p, co) —X++(p, —co)],

S=—,
' [X++(p,co)+X++(p, —co)] .

(5c)

In terms of the single-particle diagonal spectral density
A (p, co) =2 ImG++ (p, co i—0+), one has

G(~) I dcoA(pyco)
277 Q7 —CO

At zero frequency, we have

(~ 0) f ~ dco A(p, co )
p, 6)=

2% co

Ep —p+ X++(p, co=0)

D(p, co=0)

(6)

(7)

D( p, co=0)= —[e~ —p+X++(p, O) —X+ (p, O)]

X [~~ —p+ X++(p, o)+X+ (p, o)] .

Recently Talbot and Griffin proved that (ps =mnz)

ns
X++(p,O) —X+ (p, O)=@+ —1 a~+0(p ),

no

which generalized the T=0 K result of Gavoret and
Nozieres. " Using this in (8), we obtain after a little rear-

ranging

nom 1
lim G++ ( p, co =0)=-

nsp 4X+ (p, co=0)

(12)

All remaining terms are nondivergent in the p —+0 limit.
The condition (11) will be satisfied if X+ (p, co=0) does
not vanish faster than p .

We note that a similar analysis for the off-diagonal
(anomalous) Green's function gives

+ I ~ ~

lim G++(p, co) = — A(p, co')1 oo de
CO oo 277

+ co A p~co + '
~ 14

oo 277

Comparing this with the high-frequency limit of (5b), us-

ing D(p, co—& —oo)=co, we obtain the additional sum
rules

nom
lim G+ (p, co=0)= (13)

nsp 4X (p, o)

Combining this with (12) gives the sum rule in (1). Un-
fortunately the X+ (p, co=0) terms cancel out in (1) so
that it does not contain any information about the
momentum dependence of X+ (p, co=0), in contrast to
(12) and (13).

Summarizing the preceding analysis, we have given the
first satisfactory proof of the results in (2), a derivation
which makes clear that the inequality (11) must be satis-
fied.

Taking the high-frequency limit of (6), we obtain

G++ ( p, co =0)=—no

nsep
1— X+ (p, O)

2X+ (p~O)+ (n—s/no)eq

p, co =1

d
co'A (p, co')=ep+X++(p, co= —oo )—p .

OO

(10)

If we assume that

2X+ (p, O) » nsp

n02m

in the p~0 limit, we can expand (10) to obtain a general-
ization of the 1/p sum rule, namely,

(16)
The first frequency moment (16) was derived by

%"agner' some years ago for interatomic potentials
without a hard core. His derivation can be easily general-
ized. The only terms which contribute to the self-energy

X++(p,co) in the high-frequency limit are those given by
the t-matrix approximation to multiple scattering. Mak-
ing use of standard discussions of multiple scattering, '

one finds that the high-frequency limit simplifies to

no
X++(p co —~)= f(2 P 2 P)+ f( —,(p —k), —,'(p —k))+ f( ——'p, —'p)

+ "", ' --.' p-k. —.
' p-k

(2~)3 m
(17)

Here nk is the momentum distribution of excited atoms
and f(p, p ') is the scattering amplitude for two atoms
given by the integral equation (11.14) of Ref. 12. For
p,p'~0, one has f(p, p ')=4rca, where a is the s-wave

phase shift. For a given potential, solving for f(p, p ')

reduces to a numerical problem. If one is dealing with a
soft-core interatomic potential with a Fourier transform,
the lowest order approximation is f( p, p ')
=mV(

~ p —p'~ ). Using this in (17), we obtain the
Hartree-Fock (HF) approximation
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dk
X++(p, a)~ —ao )= no V(0)+ ng V(0)

(2lr)

+noV(p)+ I 3 nqV(k+p) .dk
(2n. )

(18)

Wagner s original derivation of (16) used this HF approxi-
mation. ' Our result in (17) is applicable to potentials
with a hard core. '

Using (17) in (16), the long-wavelength limit of the first
frequency-moment sum rule is

our exact result in (23) implies that nz will have a diver-
gent contribution which goes as 1/p in addition to the
1/p term. In contrast, if X'+ (p~O, co=0)&0, then
the only divergent contribution to nz will be the first term
on the rhs of (23). In Sec. IV we use the one-loop approx-
ilnation within the dielectric formalism for Bose systems
to calculate X+ (0,0) and show that it is finite.

Our result for nz in (23) is restricted to the high-
temperature region, where m„=o is the dominant term in
(20). A more general approach is to make use of the two-
fluid equations, which predict that'- for low frequencies
and long wavelengths (for example, p (0.1 A ' in He),

N
lim N A p, co
p~o — 2&

2no
f(0,0)

Pl

—,
' k, ——,

' k
(2~)' ll

+f( ——,
' k, ——,

' k )]—p .
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where co„=in 2m/P (n =.0, +1,+2, . . . ) are the Bose
Matsubara frequencies. Performing the usual analytic
continuation to real frequencies, this result is equivalent
to

n~= f A(p, co)N (a)), (21)

where N (co) is the Bose distribution function.
One can use the frequency sum rules derived in Sec. II

to calculate nz at finite temperatures. More specifically,
if the important contributions to (21) are from frequencies
~« k~ T, then one can use the expansion

No(co) = &a T 1 1 co

co 2 12 kgT
(22)

III. MOMENTUM DISTRIBUTION n~

The momentum distribution of excited atoms can be ex-
pressed' exactly in terms of the diagonal single-particle
Green's function (we set A'= 1)

1 co 0
n~ = ——Q G++(p, ra„)e ", p&0

no pl ps
A(p, co) =2lr c i5(co —cip )

ns

+ cz5(co —c2p ) sgnco . (24)
p

Here ci (cz) is the first- (second-) sound velocity and we
have neglected thermal expansion (Cl =Cl ) as well as
damping. Strictly speaking, all that microscopic
theory' tells us that the longitudinal part of the super-
fiuid velocity correlation is related to a particular com-
bination of single-particle correlation functions, namely,

m no
lim —,

' [G~+(p,a)) —G+ (p,a))]= i X'„„(p,co) . (2S)
p —+0 p
In writing down (24), we have made the additional as-
sumption that G++(p, co)= —G+ (p, co) in the long-
wavelength, low-frequency limit. While we know of no
general proof valid at finite temperatures, this equality
holds in most model calculations and it has been proven
at T =0 K by Gavoret and Nozieres. " In this limit, c2 is
finite but this mode has zero weight in A (p, co), and (24)
reduces to"

no~ 2 2 2 2A(p, co)=2m ci5(co —cip )sgnco .
n

Finally we note that using (24) in (6), we only find the
leading-order 1/p divergent term in (12). Two-fluid hy-
drodynamics does not include the next correction involv-

ing X+ (p, co=0).
Following the approach of Baym and others, we can

calculate nz using (24) in (21) to obtain

kg Tmno . k~ T
2 +

nsP 4X+ ( p, O)
lim n&

——

p —+Q

and the sum rules give immediately

Eo

nom ps 1ci[N (ca»+ 2]
nsp p

c2[N (czar)+ —,]+
nsp p

(27)

(23)

where Eo ls defined by the rhs of (19). Recalling our re-
sult in (12), the divergent terms in (23) are those given by
the co„=O term in (20), as one might have expected; The
next correction to (3) involves G++ ( p, col ——i 2n.k~ T),
which is well behaved (nondivergent) in the p ~0 limit.

The exact result in (23) is of interest because it has been
suggested that X+ (0,0)=0. More specifically, if at fi-
nite temperatures one has9 X+ (p~O, co=0)=Bp, then

nom 2A(p, co) =2m ci5(co —c i p )sgnco
ns

(28)

instead of the correct two-fluid hydrodynamic expression

This explicitly shows the contribution to n~ from both
first and second sound, properly weighted. At finite tem-
peratures, such that c;p «k&T, this reduces to the ex-
pected result n~=kgTmno/nqp . Several previous au-
thors have used
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given by (24), and consequently they found

n~= ci[N (cip)+ —,
' ]+

nsp
(29)

mation will lead to (12). Turning to the question of
whether X+ (0,0)&0 in this approximation, we recall
that this self-energy can be split into irreducible and redu-
cible parts:

kB Tmnp npmc
n =

P + + ~ ~ ~

nsp ns2p
(30)

However, the zero-point energy contribution in (30) which
goes as 1/p is canceled out when one keeps the second
term in (22).' It should not be confused with the correc-
tion term in (23} involving the reciprocal of X+ (p, O).

To conclude this section, we recall that the momentum
distribution nz is the Fourier transform of Ai(R)
—= (P (r)P(r ')) with respect to R=r —r '. It is easily
checked ' that at large R, these results imply (with A' put
back in)

kii Tmno
Ai(R)= + . for R »

4m-ns&'R B
(31)

npmc
Ai(R)= + ~ for A,, «R«, (32)

4~2ns B

instead of (27). Both (24) and (29) give the same high-
temperature limit. The zero-point energy is canceled out
by the second term on the rhs of (22). Similarly, at
T =0 K (where pq

——p, p~ ——0), both expressions lead to
the correct Gavoret-Nozieres result in (4). However, at in-
termediate temperatures, there are differences and (27)
seems preferable. Of course, one must remember that (24)
and hence (27) are only valid in the hydrodynamic domain
c;p~&& 1 (where r is some appropriate quasiparticle life-
time) and outside the critical region.

Martin~ has written down a result based on (29) which
is equivalent to only keeping the first term on the rhs of
(22),

V( p )A+( p, co)A (p, co)
X+ p, co =X+ p, co +

1 —I'(p)X „„(p,co)

(33)

Here A„(p,co) is a proper, irreducible anomalous density
vertex function and X„„(p,co) is the proper, irreducible
density response function (we follow the notation of Ref.
7}.

We first discuss the reducible self-energy in (33). In the
one-loop approximation, X„„is given by Eq. (4.1) of Ref.
7. One sees that X „„(p, co =0) diverges at p =0 and thus
care must be taken in its evaluation for small p. The
dominant contribution to the k integral involved comes
from the phonon region k «p. In the p ~0 limit, we can
assume that co-,co -«kiiT and we find after somek' p+k
calculation

limX„„(p, co=0)
p~p

dk kjiT 2(mc )

(2~) CO~CO ~ CO E ~ CO
3 2

k p+k p+k k p+k

(34)

This integral can be easily evaluated:

where A,,=i'/2mc.
At the present time, the only experimental way of

measuring nz is to extract it from high-momentum inelas-
tic neutron-scattering data (see Ref; 8). Unfortunately,
there is no simple way to distinguish the peak in nz from
the condensate peak.

IV. ONE-LOOP APPROXIMATION
FOR 6++(p, co=0)

lim X„„(p, co =0)= —kii T dk 1 1

p~p (2m)3 2 & e
k k+p

m k~T
4

+ (35)

In Sec. II assuming the validity of (11), we proved that
6++(p, co=0) was given by (12) in the p~O limit. In
Sec. III we found that two-fluid hydrodynamics gave no
information about the second term on the rhs of (12). We
now discuss a specific microscopic calculation which
reproduces the first term on the rhs of (12) correctly and
which further implies that X+ (p=O, co=0) is finite.
This means the second term in (12) is nondivergent in the
limit p~0.

Recently, Talbot and Griffin have given an extensive
discussion of the one-loop approximation to proper, ir-
reducible quantities in Bose-condensed systems. In partic-
ular, they were able to show this approximation was con-
sistent with the exact zero-frequency result given in (9).
This fact immediately tells us that the one-loop approxi-

Taking into account that Az(p, co=0) is a constant in the

p ~0 limit, we see that the second term on the rhs of (33)
is of order p and thus vanishes in the p —+0 limit. Note
that if we use Az (p, co=0)=na, then the reducible
self-energy contribution to X+ (p, co=0) in (33) is pre-
cisely the same as that given by the shielded potential ap-
proxiination'"' (SPA). In the SPA, this is the only con-
tribution to X+ (p, co=0) and thus it will lead to a term
of order p

' in the high-temperature value of nz. Such a
term was indeed found in Ref. 17 and also in the
equivalent perturbative calculations of Morita and
Hara. ' '

However, in the one-loop approximation, we also have
an irreducible contribution X+ (p, co=0) given by Eq.
(3.2) of Ref. 7. Evaluating this, we obtain
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lim &+ (p, co=0)= J &
V(k)m

(2m. )s k

+no V (k)(u- —U-)
(2~)~ k k

r

ax'(~ )
k (u- —U )

2
c)co k k

1+2& (cok)+ 4Q ~v~
2coA. k k

which is a well-defined integral not equal to 0. We con-

clude that in the one-loop approximation, X+ (0,0) is
finite. In view of (12), this means the only divergent con-
tribution to 6++(p, co=0) is that given in (2). This re-
sult is in disagreement with the conclusion of Nepom-
nyashchii and Nepomnyashchii, who argued that
X+ (0,0)=0 was necessary in order to remove divergen-
cies which arose in the diagrammatic analysis of correla-
tion functions. " However, Talbot and Griffin' have re-
cently shown that these divergencies do not arise when
one includes the necessary symmetry-breaking perturba-
tion.

(36)

where nt „=—u v„[2% (co„)+1]. The terms in (36)

may be combined to give
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