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We extend the theory of proximity-effect sandwiches consisting of a thin normal (N) metal in per-
fect planar contact with a thick superconducting (S) metal to the case in which the N metal contains
magnetic as well as nonmagnetic impurities. We consider dilute concentrations of antiferromagnetic
impurities, adapting the theory of Zittartz, Bringer, and Miiller-Hartmann for magnetic impurities
in superconductors to proximity systems. We discuss the influences of Kondo-effect impurities in
this proximity system. We compare our theory with the experimental results of Dumoulin, Guyon,
and Nedellec, and suggest possible cases in which new phenomena, such as the presence of three

gaps in the density of states, might be observed.

I. INTRODUCTION

There has recently been much interest in proximity-
effect sandwiches containing Kondo-effect impurities.
Other theoretical efforts">? concerning these systems have
assumed the validity of the McMillan tunneling model.
We consider here a thin N metal in perfect planar contact
with a thick clean S metal. Since the McMillan model as-
sumes a tunneling barrier between N and S, it is not
strictly applicable to this situation. We base our treat-
ment here on two previous papers>* and shall use theories
by Maki® and Zittartz, Bringer, and Miiller-Hartmann® to
modify these results for the case in which the N metal
contains dilute magnetic impurities.

This work represents the first treatment of magnetic
impurities in the IV metal of an N-S double-layer system
in which the N-S interface is transparent in the normal
state. This transparency (or near transparency) appears to
be far more common experimentally than the situation re-
quired by the McMillan tunneling model for an ¥-S dou-
ble layer. We find that the density of states for tunneling
into the N side displays states below. the S-metal energy
gap. These states arise from a “resonant depairing”
which occurs via scattering of quasiparticles from the
Kondo impurities. For sufficiently thick N metal, we also
find a novel regime in which the tunneling density of
states displays three gaps, created by the simultaneous ex-
istence of a proximity-effect-related bound state and the
Kondo-effect bound state.

Our approach is to approximate the self-energy = as a
sum of phonon and impurity terms: X(x)=3P¥(x)
+32™"(x)4Z™(x). We assume as in Refs. 3 and 4 (hereaf-
ter referred to as PE I and PE II, respectively) that = is a
local function, and further that it depends only on x, the
coordinates paraliel to the interface having been Fourier
transformed away. Diagrammatically, this approximation
is represented in Fig. 1. The nonmagnetic scattering self-
energy "™ represents an average over all the impurities.
The magnetic scattering self-energy =™ is not simply
represented diagrammatically, but again all its internal en-
ergies and pair potentials are to be fully dressed, renor-
malized by the proximity effect and nonmagnetic scatter-
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ing as well.
Our ansatz for X is
[1-Z(x)]E d(x)
=1 4x) [1-Z&)IE|’

so that Z(x) and ¢(x) are given by

Z(x)=ZM(x)+Z"(x)+Z™(x) ,
(1.1)

H(x) =P (x)+d"™(x)+d™(x) , .

where Z is the renormalization function and ¢ is the pair-
ing self-energy. The pair potential A(x) is given by
#(x)/Z (x). Our expressions for $*(x) and ZP*(x) come
from PE I, where the case of perfectly clean metals was
considered [see Egs. (6.5) and (6.6) of PE IJ:

$PME,x)= [ * dE'f (B’ x)K , (E,E'x),
. (1.2)
EZ™E,x)=E— [~ dE'N(E'x)K_(E,E'x),

where f (E,x) is the local pair density of states, N (E,x) is
the local normalized density of states and K4 (E,E’,x) are
the local electron-phonon interaction kernels. In PE II,
elastic scattering from defects or nonmagnetic impurities
was accounted for by adding to the interaction kernels
terms of the form [see Eq. (1.13) of PE II]:

K™ (E,E' x)=+ " _8§E_E", (1.3)
: 27(x)
which yielded
am _if
$"™(E,x)= 2r(x)f(E’x)’
- (1.4)
nm, 1
Z"(E,x)= 2”_(x)N(E,x).
X
z = é%h; + == 4 @{“
2z 2 b

FIG. 1. Approximation to the self-energy.
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As we shall see, ¢™(E,x) and Z™(E,x) are also given by
simple-looking expressions, though the diagrammatic rep-
resentation of =™ is not simple.

II. BULK SUPERCONDUCTORS WITH MAGNETIC
IMPURITIES

Since we have assumed = to be local, we will examine
models of magnetic impurities in bulk superconductors
which assumed local interactions between electrons and
impurities and we use them as guides in obtaining =™(x).

A. The Maki theory

Maki assumed the self-consistent Born approximation
for scattering from both magnetic and nonmagnetic im-
purities, so that 2™ diagrammatically resembles =" in
Fig. 1. His approximation yielded

% if i# i#
- 27'1 20 T2, 27'2 N(E) 27'1 o 27'2 f(E)
zimp____
ifi zh it | if ’
—_— E —_ —_
2 f( ) 2r 2, lN(E)

(2.1)

where 7, and 7, are the lifetimes for scattering for non-
magnetic and magnetic impurities, and N(E) and f(E)
are given in bulk metals by

N(E)=E/(E*—AY)'/2
FE)=A/(E*—A%)172

The most important feature of this self-energy is that 7,
appears in the diagonal and off-diagonal terms with oppo-
site signs relative to 7y. This leads to gapless supercon-
ductivity as 7, becomes small.

B. Thg theory of Zittartz, Bringer, and Miiller-Hartmann

It is well known, however, that the Born approximation
is insufficient to explain the Kondo effects. Using a self-
consistent transition-matrix approximation, Zittartz,
Bringer, and Miiller-Hartmann’~° obtained a solution for
the Green function of a bulk superconductor with s-wave
scattering by magnetic impurities. The Hamiltonian of
their system is local and leads to a local (that is,
momentum-independent) transition matrix 7. In Ref. 9,
it is shown that for energies near the Fermi energy, the T
matrix may be approximated by simple functions. In Ref.
6, hereafter referred to as ZBMH, the self-energy = is
identified with 7, an approximation which is correct to
first order in the impurity concentration, and the bulk
density of states is elucidated.

The self-energy of ZBMH is given by

e T i#% (1~ )(EZ__AZ)I/Z E _yOA
ST TSy (s E
(2.2)

where we have translated the ZBMH notation into our

own. Here y, and y contain the parameters of the Kondo
effect. There exists a bound state of an energy E,, and
Yo=Ey/A gives its position relative to the energy gap.
The other parameters are hidden in y:

y=2/[m*N¥?S(S +1)] . (2.3)

Here N is the density of states per spin at the Fermi sur-
face, S is the impurity spin, and J is the strength of in-
teraction between the impurity and the conduction elec-
trons. In this simple model, J was assumed to be constant
up to some cutoff energy D, above which it vanished.
Antiferromagnetic coupling (J <0) leads to O<yg,<]1,
and is the case of interest here. Ferromagnetic coupling
gives yo>1, but according to Miiller-Hartmann,'® E,
then separates very little from A, so this case is less in-
teresting.

In terms of the fundamental quantities of the system,
Yo is given by (see Eq. 2 of Ref. 6):

172
[, s+
o= T e msis |
l/JN 2.4)
a=In[(8,D \=In(T,/T,) (J<O0),

where 2D is the width of the impurity band, T} is the
Kondo temperature, and B, =(kpT,)" .

The validity of perturbation theory relies on In(B,D) be-
ing small. Then we have a=(JN,)~!, and as J—O0,
yo—1 and (1—yo)—[+7S(S +1)J2N2%], so that
b(E)—1 and the results of Maki are recovered. The ex-
act correspondence between this work and that of ZBMH
is made by identifying

# 2 8¢
— =4mwcNoJ“S 1)=
™ 0 (S+1) Nov

) (2.5)

where c is the impurity concentration.
Equation (2.4) may be inverted to give J in terms of y,
and so to eliminate J from Eq. (2.3) for y. This yields

|20 In(p.D) 2.6
Y T s D '

Assuming 1>y, >0 and In(/3,D) small, we thus obtain

b(E) 1 25 E2_A? [1 , diagonal

T2 Ty 14y E2—y2A? " |yo, off diagonal @7
and
1— 2
ﬁ‘g g 2y° ) (2.8a)
T, @wNy  y§
d 1_# 2Rc 1—yo
1, = R= 2.8b
12 2 T2 7TN0 y% ( )

C. Comparison of Maki and ZBMH theories

The ZBMH theory differs markedly from that of Maki
in bulk materials. Whereas Maki’s results predict merely
a lowering of the energy gap in the density of states,
ZBMH predicts the appearance of a “bound state” in the
energy gap near Eg=ypoA. There are thus two energy
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gaps possible in the density of states. Only for J small
and impurity concentrations so large that the bound state
merges with the continuum (yo—1) are the results of
Maki recovered.

III. ADAPTATION OF ZBMH TO PROXIMITY
GEOMETRIES

We must modify =, (E) to obtain the correct self-
energy for the proximity system. In bulk superconduc-
tors, we may identify

G(E) x Ny =E /[E?’—AYE)]'/%,
G(E) « foux=A(E)/[E*— AN E)]?,

(3.1a)
(3.1b)

" so that for the magnetic self-energy we have from Eq.
(2.2)

i 2o 1
i E)y=—
bui(B)= 2 14+y0 NXE)—yifAE)
N(E) —yof(E)
—yof(E)  N(E) (3.2)

However, self-consistency requires that we use not Gy;
and G, for bulk metals, but for the proximity geometry
instead. Furthermore, we are tunneling into the N-metal
side of the sandwich, so we need Ny(E) and fy(E), given
by [see Egs. (2.1)—(2.8) of PE II]
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XolBrx)= zF(;:fr[l?f;’(\;)_F?o]:A(f()Nd) ’ -6

F(E)=(E*—AsAy)/QsQy , (3.7

G(E)=E(As—Ay)/QsAQy , (3.8)
and

AKN=2Z\(E)Qy /#ivpcosh . (3.9)

As in PE II, 6 is the angle between the normal to the

N-S interface and the k vector of the incident electron.
In correspondence with PE II, we now have

SN(E)=— —E—yo(b(E)f(E )N (3.10a)

EZN(E)———(b(E)N(E XN (3.10b)
where

b(E)= 20 L (3.11)

14+yo NXE,x)—yifE,x)

and the angular brackets denote an average over the thick-
ness of the normal metal. Since the N metal is assumed
to be thin, ¢ and Z should vary little from their average
values. Thus for the total ¢y and Zy we have

¢N(E>—¢yv"(E>+ (f(E x)) N

Ay i
fy(Ex)=i ——Xl(E)+—~X2(Ex) (3.3) —ZL—yo<b<E,x)f(E,x)>N, (3.12)
QN T2
A EZy(E)=EZRME N(E
NyEx) =i |-Zx (B + =X X,(E,x) (3.4) N BB+ ( (Ex))w
Qy Qy .
where Qy s =(E?— A% )12, and +-ilT—2(b(E,x)N(E,x))N : (3.13)
()= [E(B)cos(AKd) +sin(AK™d) (3.5) Inserting Egs. (3.3) and (3.4) into (3.11) through (3.13)
iF(E)sin(AK ¥d) —cos(AK Vd) now yields
]
yob(E)
onEI=gRE) 2 [° [l (cose) | L2 ——XI(EH— Xz(Ex) (3.14)
) Qy
P 3 LB ][ E A_N
Zy(E)=ZFNE)= f d(co | [y B+ g XA E) (3.15)
and
2y3 0%
b(E,x)=—22 ol (3.16)

14+yo —XUENE2—y3A%)—2X(EXAE,x)EAN(1—p})+ X3 E,x)(y3E*—AY)

Together, Egs. (3.14)—(3.16) present a somewhat formidable set. We begin approximating them by replacing X,(E,x) in

Eq. (3.16) with

0 1
tE= [, 2 [ d(cos0n,(E0),

so that b (E,x)=>b(E) and may be taken outside the integral signs in Egs. (3.14) and (3.15). At the energies of interest,
the spatial variations of all relevant quantities are over a coherence distance, so this averaging has little effect. We then
use Ay(E)Zy(E)=¢y(E) to obtain an expression for Ay(E):
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db(E) (14y0)Ayx
I, RZfPQy

1 0 dx
Epre— d(cos@
+ RZPOLE f f (cos@)

0
An(E)= | ABNE)+ I, L.d f d (cos)X,(E)
db(B)  d

db(E d
A% ] ] E2l ()y
2 1

L '

Xo(E,x) , , (3.17)

where R =2d /#vy and lj='rjvp. We could in principle now solve Egs. (3.15)—(3.17) self-consistently for Zy(E) and
Ay(E). However, the equations are quite complex, and, as we shall see, may have degenerate solutions. One limit in
which we can solve (3.17) exactly for Ay(E) is that in which AK™d has a large imaginary part. Then
sin(AKVd) =i cos(AK™d), and

X(E)=—i, : (3.18)

G(E) cos[AKN(x +d)] ; (3.19)
F(E)+1  sin(AKMd) '

0 1
totE)= [ & [ d(coson(E )=

Xz(E,x)=

1 G(E)
2 RZyQn(F(E)+1) (3.20

We then have from Eq. (3.15):
Ayn(Ag—Ay)cosAKY(x +d)
(E?—AgAy +QsQy)sin(AK ¥d)

1
fo d(cosf) |—i+

RZyQn=RZRQy—

I I

db(E) | (° dx
—d

; —i—f—ib(E)] . (3.21)

Since RZyQy =AK"d cosf, we see that d /I, large will usually be sufficient to guarantee Im(AK ¥d) large, excepting the
small fraction of quasiparticles for which cosé is small.
Substituting (3.16) through (3.21) into (3.16) gives us an approximation for b (E):

23 Q%
b(E)= 1 - _ - s .
Yol pr_y2an) IAyE™(As—Ay) (oE2—AF)EXAs—Ay)
YO RZyOy(E?— Ashy+050y) | HRZyQyNE*— AgAy +Q5Qy )
a2 O | | (3.22)
T 14y QF, ‘ .

where Qy =(E?—p{A})'7% and we have assumed | RZyQy | to be large. From (3 22) we see that (3.21) potentially has
a zero regardless of how large d /I, may be. This zero occurs at an energy
4 L2 d 12
) 14y0 1
E,=yoAy 1—‘# . (3.23)
4., Y d
L 14y

There is no cause for abandoning our assumption that Im(AK¥d) is large, however. It will turn out that for E>0, A N
always has a large imaginary part in the vicinity of E =y,Re(Ay), so that (3.23) cannot be satisfied. In any case, if we
were concerned with large d/I; and small d/I,, the region over which (3.23) is approximately satisfied would be quite
small and we could neglect it.

IV. SOLUTION FOR Ay(E)

A. Basic equations

Using (3.22) for b (E), we obtain expressions for RZyQy and Ay(E) from Eqgs. (3.21) and (3.17):

d d w5 9
RZNy(E)Qy =i | —+— —_—
v N L L 14y 012\(0

4.1)
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W d d
. B T | [ Ty
A (E)~Aglh d 2y0ANQN I(As—AN)QN 1 +¥yo 2 1 +Yo L2
N
I RZFQ}, " 2RZFM(E’—AsAy+QsQy) _oald | w4 a2 d
Iy 14y I OTNL T 14y, I
_ AR i YoAnQy i(As—AyN)Qy rE*—yiAy 42)
", RZFQY,  2RZRNE*—AsAy+AsAy) rE*—yiAy )
—
where small, Eq. (4.2) reduces to
23 ‘ Ag—i4RZRMEARNr, /71)
= / (4.3) Ay(E)=—""—u 2
ll 1+y0 12 ll 1+y0 12 1—[l4RZKrE—S(d/lz)y()](rz/rl)
d .
an [ . ] » EAse(Q/rl)[14RZEth—8(d/12)y(2)] . 7)
r= / .
h 1 +Yo I 2 1+y Y l 2 Thus we agaln have the homogenization of the pair poten-

B. Analytic limits

There are few limits in which simple analytic solutions
" to (4.2) are possible, but these are quite useful. The first
limit is E=0. Then we have

0=(yoAn)?|AN(4RZFP A5 +1)

— Ag 4.5)

4RZRAR +1 —sli ]
2

We see that Ay =0 is always a root at E=0. It is the
correct root to take when the other solution to (4.5) gives
Ay <0, for we exclude pair potentials with negative real
parts as unphysical. Thus we have

4RZFPARF +1— A

for Ay >0
(4.6)

As

Ay(E =0)= 4RZPPAg +1

0 otherwise .

A second useful analytic limit is E =Ag. In this case,
AN =Ag is always a solution. The other roots are difficult
to extract analytically, being solutions to a fifth-order po-
lynomial in Ay.

Finally, we consider the limit of very lar%le energy. For
E>>Agy, negligible 8, and AR, RZE'E, and d/I,

tial as RZ K, 'E vanishes as found in PE II. Furthermore,
the oscillatory behavior persists, though its frequency is

altered by a factor of r,/r; (which is greater than unity)
—8(d/I
and its amplitude decreased by e @/ /ry)

C. General solution for Ay(E)

At first approach, Eq. (4.2) for Ay(E) is quite impos-
ing. However, it is algebraically straightforward (though
slightly tedious) to obtain a polynomial in Ay from it.
Extracting an extraneous root Ay =Ag, we obtain an 11th
degree polynom1a1 in Ay. For given values of the input
parameters R, Zf®, AR, Ag, 1, I, yo, and d, the polyno-
mial was solved numerically for Ay at each energy of in-
terest using an International Mathematics and Scientific
Library (IMSL) routine.!! Of the eleven roots generated
at each energy, all with negative real parts were rejected.
We then substituted the remaining roots into Eq. (4.2),
which only two or three of them satisfied well. Requiring
Ay (E) to be continuous (though not necessarily to have a
continuous derivative) then yielded at most three distinct
Ay-versus-E curves to discriminate among. This discrim-
ination was made by requiring the integral of the density
of states derived from Ay (E) to approximate unity, which
was always sufficient to determine a unique solution.

D. Tunneling density of states

From Eqgs. (4.2) and (4.5) of PE I we have the tunneling
density of states at 0 K for specular tunneling:

_E _(E? ASAN)cosh(—~tAKNd)+QSQ.Ns1nh(—zAKNd)+AN(AS Ay)
Nr(E)=Re N ¥ (4.8)
Qy (E*—AgAy)sinh(—iAKNd)— QgQycosh(—iA¥d)
Using Eq. (4.1) for RZyQy and considering only =0, we may approximate
' AyE(Ag—Ay)
Nr(E)=Re | S+ NT DS TN , (4.9)
N QN(E24+Q5Qy —AgAy)sinh ;1 l—b(E)]
2




where we use (3.22) for b (E).
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For dg infinite, Eq. (4.9) is correct, but for dg large but finite N7(E) is better approximated by an expression due to

Gallagher [see Eq. (3) of Ref. 12]:
E

Np(E)=Re

SSEN

+ Ay(Ag — Ay )sin(AKSd)

>

where

D2=1— |cosh(—iAK™d)cos(AKSd)—i

QsQy

D 0 (E2— AgAy)cosh( —i AKNd)sin(AK 5d) +i Qs Q ysinh( —i AK Vd)cos(AK °d)

2
E2—AgA
Z 57N Ginh(i AK Vd)sin(AK °d) l .

Identifying AKd as RgZQg/cos6, considering only 8=0 and again using Eq. (4.1) for RyZyQy yields

Np(E)=Re |D—E— [(E>_ AgAy)cosh | L+ L b (E) [sin(RgZs Q)
Q50% LT,
+ iQgQysinh Ii+7d—b(E) cos(RsZsQs)+Ay(Ag— Ay )sin(RsZsQs) (4.10)
. 1 2
with
E —AgA 2
D=2=1— |cosh | L+ 2L b(E) |cos(RgZs Q) — iS5 o | L 4 () sin(RsZsQy) 4.11)
A QsQy LT,

For dg>>dy, the density of states given by (4.10)
differs significantly from that given by (4.9) only at ener-
gies far above Ag.

V. THEORETICAL RESULTS
AT ZERO TEMPERATURE

A. Variation of Ay(E) and Nr(E) with concentration
for fixed yq

Figure 2 shows the variation of Ay(E) with the mag-
netic impurity concentration ¢ for y,—0.23, Ag=1.20,

2.0

2 1.5 C=0ppm C=15ppm

C=62ppm C=470ppm

%0 08 16 2400 08 15 24
ENERGY (mV)

FIG. 2. N-metal pair potential versus the magnetic impurity
concentration. Here we have assumed parameters approximate-
ly appropriate to 250 A of copper evaporated on an S metal
with Ag=1.2 mV.

ZRP=1.2, and R =0.0484. This value of R would, for
example, correspond to a 250-A copper film, in which
case the value of y, corresponds to a concentration of
about 200 d /I, parts per million. We include the Ay-
versus-E curve for the case considered in PE II, where
only nonmagnetic impurities- were present. We obtain
d /I, from c via Eq. (2.8), and in this and all subsequent
discussion we assume d /I, =3, at which the effect of non-
magnetic impurity scattering seems to have saturated.

For small ¢, Ay(E) develops a negative imaginary part
in the vicinity of E=yoAg. Corresponding to this imagi-
nary part, Ay(E) develops in its real part a linearly in-
creasing region, and Ay(E =0) is depressed below its
¢ =0 value. As c increases, the region of negative imagi-
nary Ay broadens until its lower edge reaches E =0, at
which point the real part of Ay also vanishes. Above the
concentration at which Ay(E =0)=0, the real part
changes from a linear to a parabolic shape for E <Ag.
For extremely high ¢, Re[AyN(E)] is flattened about
E =Ag, and Im[Ay(E)] begins to vanish everywhere. As
¢ becomes large, Ay(E) vanishes everywhere, which we
expect for extremely large concentrations of magnetic im-
purities.

Physically, we have a scattering anomaly at
E=Epty;As. In a bulk normal metal, the amplitude for
scattering of electrons off the magnetic impurities has a
logarithmic divergence at the Fermi surface. In a super-
conductor, the divergence is pulled to +y,A away from
the Fermi surface. Since the scattering can break Cooper
pairs, they develop a finite lifetime, which is reflected in
Ay(E) as a nonzero imaginary part.

We ascribe the energy-dependent structure below Ag in
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Fig. 5 to “resonant depairing,” a phenomenon peculiar to
Kondo impurities in a superconductor. This phenomenon

_ is merely the reverse of resonant pairing in a superconduc-
tor, whereby resonant phonon emission at some phonon
energy initially enhances ReAy above its BCS value, but
then causes a steady decrease in this quantity as the pair
lifetime due to phonon emission decreases, eventually
yielding a negative ReAy at energies far above the
resonant energy. In resonant depairing, ReAy begins at
the depressed value appropriate to standard nonresonant
spin-flip scattering, but as the resonant energy (yoAg) is
approached, ReAy is initially further depressed, then rises
gradually as the pair lifetime due to Kondo (resonant
spin-flip) scattering decreases. ReAy then saturates at the
value one would obtain if there were no spin-flip scatter-
ing (cf. Fig. 2). The increase in ReAy due to resonant
depairing by Kondo impurities is thus analogous to the
decrease in ReAy arising from resonant pairing via pho-
non scattering. For resonant depairing, one observes that
beyond the resonant energy, ReAy can be enhanced to a
value even greater than the S metal gap. This apparent
“over compensation” is necessary in order to force the
quasiparticle density of states (cf. Fig. 3) back to zero and
reestablish the superconductivity of an ordinary N-S
sandwich. The other unique feature of Kondo impurities
in the N metal of a thin N-S sandwich is the fact that the
resonant scattering energy, yoAg, is tied to the S-metal
energy gap, and is not uniquely fixed by the properties of
the impurities in the N metal.

The tunneling densities of states corresponding to the
pair potentials of Fig. 2 are plotted in Fig. 3. The main
features of N7 (E) here is the “bound state” which
develops around E =yyAg. This corresponds exactly to
the region of negative ImAy(E) discussed above. As the

impurity concentration increases, the bound state
8 -
7t L
Cc=0 C=i5ppm

6t —
5 L

w

o af L

(=]
3f L
2| H
(e L
O 1 1 L 1 L 1 -
7r -
6 cx62ppm | C=470ppm
5 - -

» 4t -

o

o 3t -
2 - L
|+ o
o l 1 L J L L 1 J
0.0 1.0 2.0 0.0 1.0 2.0

ENERGY (mV)

FIG. 3. Normalized tunneling densities of states obtained
from the pair potentials in Fig. 2.
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broadens and grows in height, taking density initially
from the gap edge primarily, but also from the high-
energy side of the main peak in Ny. The dip at E =Ag is
due to the proximity effect itself, and is present even for
the pure metals treated in PE I. This dip has been ob-
served by Wolf ez al.,'3 and was used to obtain a value
for the energy gap in the S metal. This dip broadens as
dy increases, but ordinarily would be unobservable above
temperatures of a few tens of millikelvins, unless a super-
conducting counter electrode is used (in this paper, we as-
sume a normal-metal counter electrode). Unlike the bulk
case, the bound state never actually merges with the con-
tinuum, but the gap between it and the continuum be-
comes quite narrow for large concentrations.

B. Variation of Nr(E) with y, for fixed concentration

In Fig. 4 we investigate the variation of the tunneling
density of states with y,. Again, we take R =0.0484,
ZF"=1.2, AR=0.3, and Ag=1.20. We have adjusted
d/l, according to Eq. (2.8) so as to keep the impurity
concentration constant. The concentration was arbitrarily
chosen so that d /1, =0.006 at y;=0.7. As a concrete ex-
ample, this would give ¢ =20 ppm for a copper N metal.
At yo=0.1 we see the bound state is flattened against the
line E =0. As y, increases, it moves to higher energy and
takes on a parabolic shape. For y, close to 0.1, it becomes
narrower and higher, eventually flattening itself against
the main peak in the density of states. For all y,, the area
of the bound-state peak is substantially unchanged,
though d /I, ranges from 0.570 to 0.001 as y, varies from
0.1 to 0.9. That is, the area of the bound state is approxi-
mately constant with y, for constant c.
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FIG. 4. Normalized density of states as a function of y, for
fixed concentration. This corresponds to 250 A of copper with
an impurity concentration ¢ ~20 ppm.



30 THEORY OF PROXIMITY-EFFECT SANDWICHES WITH . . .

Tr o r o
d,=50A d,=500A
S C=36ppm C=7ppm
5._ -
w4t L
o
o3t -
2- -
(s L ¥
o PSS 1 1 1 J 1 J
7_ -
6 . L
5} d,=1000 A d,=1970 A
o a4l C=43ppm L C=3.0ppm
o .
o 3r r
2_ -
l j _ W
0 1 1 1 1 J 1 1 i J
0.0 1.0 2.0 0.0 1.0 2.0
ENERGY (mV)

FIG. 5. Normalized density of states versus N metal thick-
ness for constant y,=0.23. (Note the three gaps in the density
of states at large thicknesses.)

C. Variation of Nr(E) with thickness for constant y,

In Fig. 5, we present the variation of Ny with the N-
metal R (R =2d/#vp). We have chosen Ag=1.2,

$0=0.23, AR*=0.3, and ZfF=1.20. The value of ¢ was

decreased slightly as R increased to keep the bound-state
area constant. The R values shown range from 0.01 to
0.38, which for copper, would correspond to thicknesses
from about 50 to 1970 A.

We see that for small R, the density of states is quite
BCS-type, but with the bound state appended. As R in-
creases, density flows from the continuum into the
proximity-effect band below Ag, as discussed in PE IL
As the proximity-effect band widens, it feeds density into
the high-energy side of the bound state (which is why we
had to decrease ¢ to keep the area constant). It also takes
density from the continuum, and the gap at E=Ag
broadens. It is amusing to note that for the largest values
of R illustrated there should be not two, but three gaps
observable in the density of states. For values of R larger
than those illustrated, the gap at Ag closes in again and
the density of states becomes just that of a normal metal.

VI. COMPARISON WITH EXPERIMENT

" We intend here to test our theory against experimental
results, specifically those of Ref. 14, which will hereafter
be called DGN. The part of DGN most relevant to our
theory is the study of thin Cu-Cr films in proximity to
thick (2000 A) Pb films. We expect evaporated films,
such as those of DGN, to contain many defects which
should behave as nonmagnetic scattering centers so that
Egs. (4.1) and (4.2) for the pair potential and renormaliza-
tion function should be applicable even for small concen-
trations of the magnetic impurities. Lacking a theory of
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the proximity effect, DGN assumes that N-S sandwiches
behave as BCS superconductors. When the S metal is
thick, this is true only for extremely thin N metals. As
the N metal becomes thicker, the BCS approximation
loses validity.

In fitting our theory to the data, we had to adjust Ag,
Yo, and the impurity concentration c¢. In adjusting Ag,
our first impulse was to use a theoretical approximation
As=Ags,(1—mRAg,) [see Egs. (8.4)—(8.6) of PE I]. How-
ever, we found that even for the case of a pure copper N
metal, this equation overestimated the depression of Ag.
This is easy to understand if the N metal is full of non-
magnetic scattering centers. The above equation (6.1) was
derived for perfectly clean metals and assumed that
Ay =0, but impurities or defects will scatter electrons
back into the S metal, so that they sample the large pair
potential there more often. This will lead to an induced

Ay and, consequently, less depression of Ag.

An analysis of DGN’s data for a pure copper N metal
at 1 K still yields a relationship similar to the above equa-
tion. We find Ag=Ag (1—0.577RAg ). Though it is

gratifying to see that the relationship for Ay =0 is close
to the empirically correct one, we shall only note it and
not use, it further. We shall estimate Ag from experi-
ments to be that value which reproduces the position of
the peak in the density of states when the N metal has no
magnetic impurities. We shall neglect the variation of Ag
with N-metal impurity concentration.

Having estimated Ag, we shall take y, to be that value
which reproduces the position of the bound state at low
concentrations. We shall also neglect all variations of y.
Finally, our equations depend on the impurity concentra-
tion ¢ only through d/I,. We use Eq. (2.8) to estimate
d /1, from the experimental ¢, assuming N, and vy have
their free-electron values for the host metal.

We plot our results in Fig. 6. This corresponds to Fig.
8 of DGN. The figures represent Eq. (4.14) with
Asg=1.2, y,=0.23, AR'=0, Ry=0.0484, Rgy=0.3322,

301 : -
2.5 - 55ppm
2.0
1.5
1.0

0.5

0.0
2.5r

2.0} 170ppm

DOS

1.5+
1.0

0.5 F

o‘o I 1 1 1 J 1 1 1 L J
0.0 1.0 2.0 0.0 1.0 2.0

ENERGY (mV)
FIG. 6. Tunneling density of states versus concentration for

250 A copper on 2000 A Pb assuming A for Pb is depressed to
1.2 mV. Compare to Fig. 8 of Ref. 14. .
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Zs=1, and as before Zf*=1.2. The agreement with
DGN is quite fair, much better than the BCS approxima-
tion. One quantitative deficit exists, however. Our densi-
ties of states exhibit a narrower peak near Ag at all impur-
ity concentrations than do those of DGN. This may be
traced to the fact that we neglected the energy dependence
of Ag(E). The energy dependence of Ag would enhance
that of Ay near E =Ag, and so broaden the peak in ques-
tion. Taking Ag(E) to depend on energy would require
simultaneously solving Eq. (4.2) of this reference for Ay
and (8.1) and (8.2) of PE I for Ag. In view of the difficul-
ties of solving even (4.2) alone, we have not yet done this.

VII. CONCLUSION

We believe our treatment of elastic scattering in an N-S
sandwich explains the experimental results obtained when
the N metal contains Kondo-effect impurities. Relaxa-
tion of our assumption that much nonmagnetic scattering
~is occurring in evaporated films should not be necessary,

as we expect energy dependence of Ag at the N-S inter-
face to remedy most of the remaining deficit between ex-
periments and theory. This energy dependence will be
enhanced by the proximity effect. The complete solution
for Ag(E) and Ay(E) is a subject for future study.

This paper also suggests other geometries that might
possibly be studied. One might dope the S metal with
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Kondo impurities and leave the N metal pure. In this
case, we might expect for not too thin N metals an at-
tenuation of the bound-state amplitude in the density of
states. A more interesting possibility would be to consider
a case in which the N and S metals are doped with impur-
ities having dlfferent values of yo, y&, and y§, respective-
ly. For y§>yY and sufficiently low impurity concentra-
tions, we might expect to see two distinct bound states due
to the Kondo impurities. Thus, with the proximity effect
gap near E=Ag, there would be a total of four gaps in
the tunnelmg density of states. For y§ <y the qualita-
tive picture is not so clear and is also a subject for future
numerical study.

Thus far, we have assumed that Kondo-effect impuri-
ties behave in superconducting thin films just as they do
in bulk S metals. Though this assumption seems justified
by the agreement between the results of this paper and ex-
periments, a reworking of the Green-function theory for
thin films instead of bulk metals may be desirable. More
desirable would be the adaptation of the exact solution of
the Kondo problem!® to the case in which the host metal
is a superconductor.
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