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We extend the theory of proximity-effect sandwiches consisting of a thin normal (Ã) metal in per-
fect planar contact with a thick superconducting (S) metal to the case in which the X metal contains
magnetic as weB as nonmagnetic impurities. We consider dilute concentrations of antiferromagnetic
impurities, adapting the theory of Zittartz, Bringer, and Miiller-Hartmann for magnetic impurities
in superconductors to proximity systems. We discuss the influences of Kondo-effect impurities in
this proximity system. We compare our theory with the experimental results of Dumoulin, Ouyon,
and Nedellec, and suggest possible cases in which new phenomena, such as the presence of three

gaps in the density of states, might be observed.

I. INTRODUCTION

There has recently been much interest in proximity-
effect sandwiches containing Kondo-effect impurities.
Other theoretical efforts' concerning these systems have
assumed the validity of the McMillan tunneling model.
We consider here a thin X metal in perfect planar contact
with a thick clean S metal. Since the McMillan model as-
sumes a tunneling barrier between N and 5, it is not
strictly applicable to this situation. We base our treat-
ment here an two previous papers ' and shall use theories
by Maki and Zittartz, Bringer, and Muller-Hartmann to
modify these results for the case in which the N metal
contains dilute magnetic impurities.

This work represents the first treatment of magnetic
impurities in the X metal of an %-5 double-layer system
in which the N-S interface is transparent in the normal
state. This transparency (or near transparency) appears to
be far more common experimentally than the situation re-
quired by the McMillan tunneling model for an N Sdou--
ble layer. We find that the density of states for tunneling
into the N side displays states below, the S-metal energy
gap. These states arise from a "resonant depairing"
which occurs via scattering of quasiparticles from the
Kondo impurities. For sufficiently thick N metal, we also
find a novel regime in which the tunneling density of
states displays three gaps, created by the simultaneous ex-
istence of a proximity-effect-related bound state and the
Kondo-effect bound state.

Our approach is to approximate the self-energy X as a
sum of phonon and impurity terms: X(x)=Xi'"(x)
+X" (x)+X (x). We assume as in Refs. 3 and 4 (hereaf-
ter referred to as PE I and PE II, respectively) that X is a
local function, and further that it depends only on x, the
coordinates parallel to the interface having been Fourier
transformed away. DiagrammaticaBy, this approximation
is represented in Fig. 1. The nonmagnetic scattering self-
energy X™represents an average over aB the impurities.
The magnetic scattering self-energy X is not simply
represented diagrammatically, but again all its internal en-
ergies and pair potentials are to be fully dressed, renor-
malized by the proximity effect and nonmagnetic scatter-

ing as well.
Our ansatz for X is

[1 Z(x)]E— P(x)
P(x) [1 Z(x)]E—

so that Z(x) and P(x) are given by

Z(x) =Zi'"(x)+Z™()x+Z (x),

K'+ ~(E,E',x)=+ 5(E E'), —
2~(x)

which yielded

(1.3)

P" (E,x)= f (E,x),
2~(x)

Z" (E,x)= — N(E, x) .
2&(x)

(1.4)

FIG. l. Approximation to the self-energy.

P(x)=P~"(x)+P" (x)+P (x), ,

where Z is the renorrnalization function and P is the pair-
ing self-energy. The pair potential b, (x) is given by
P(x)/Z(x). Our expressions for P~"(x) and Zi'"(x) come
from PE I, where the case of perfectly clean metals was
considered [see Eqs. (6.5) and (6.6) of PE I]:

Pt'"(E,x)=f dE'f (E',x)K+(E,E',x),
(1.2)

EZi'"(E,x)=E JdE'N(E—',x)K (E,E',x),
where f(E,x) is the local pair density of states, N(E, x) is
the local normalized density of states and K+(E,E',x) are
the local electron-phonon interaction kernels. In PE II,
elastic scattering from defects or nonmagnetic impurities
was accounted for by adding to the interaction kernels
terms of the form [see Eq. (1.13) of PE II]:
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II. SULK SUPERCONDUCTGRS %PITH MAGNETIC
IMPURITIES

Since we have assumed X to be local, we will examine
models of magnetic impurities in bulk superconductors
which assumed local interactions between electrons and
impurities and we use them as guides in obtaining X (x).

A. The Maki theory

Maki assumed the self-consistent Born approximation
for scattering from both magnetic and nonmagnetic im-
purities, so that X diagrammatically resembles X" in
Fig. 1. His approximation yielded

+ N(E)
271 272

iA

27]
f(E)

272

As we shall see, P (E,x) and Z (E,x) are also given by
simple-looking expressions, though the diagrammatic rep-
resentation of X is not simple.

own. Here yp and y contain the parameters of the Kondo
effect. There exists a bound state of an energy Ep, and
yQ —EQ/b, gives its position relative to the energy gap.
The other parameters are hidden in y:

y =—2/[HN QJ'S(S+1)] . (2.3)

lr'S(S+1)
a +m S(S+1)Xo=

Here Np is the density of states per spin at the Fermi sur-
face, S is the impurity spin, and J is the strength of in-
teraction between the impurity and the conduction elec-
trons. In this simple model, Jwas assumed to be constant
up to some cutoff energy D, above which it vanished.
Antiferromagnetic coupling (J&0) leads to 0&yp & 1,
and is the case of interest here. Ferromagnetic coupling
gives yo&1, but according to Muller-Hartmann, 'o Ep
then separates very little from b„so this ease is less in-
teresting.

In terms of the fundamental quantities of the system,
yp is given by (see Eq. 2 of Ref. 6):

1/2

l'fl EA f (E)
27] 272

N (E)
71 72

a —=in[(P, D)e ]=ln(Tk/T, ) (J&0),
(2.4)

(2.1)

where rl and r2 are the lifetimes for scattering for non-
magnetic and magnetic impurities, and N(E) and f(E)
are given in bulk metals by

N(E)=E/(E' ~')'/2,

f(E) Q/(E2 +2)1/2

The most important feature of this self-energy is that ~2
appears in the diagonal and off-diagonal terms with oppo-
site signs relative to 7&. This leads to gapless supercon-
ductivity as 72 becomes small.

B. The theory of Zittartx, Bringer, and Miiller-Harimann

It is well known, however, that the Born approximation
is insufficient to explain the Kondo effects. Using a self-
consistent transition-matrix approximation, Zittartz,
Bringer, and Muller-Hartmann obtained a solution for
the Green function of a bulk superconductor with s-wave
scattering by magnetic impurities. The Hamiltonian of
their system is local and leads to a local (that is,
momentum-independent) transition matrix T. In Ref. 9,
it is shown that for energies near the Fermi energy, the T
matrix may be approximated by simple functions. In Ref.
6, hereafter referred to as ZBMH, the self-energy X is
identified with T, an approximation which is correct to
first order in the impurity concentration, and the bulk
density of states is elucidated.

The self-energy of ZBMH is given by

(E2 g2) l/2 E —yo~
gktl T ( 1 y )

(E —yph ) yo

(2.2)

where we have translated the ZBMH notation into our

where 2D is the width of the impurity band, Tk is the
Kondo temperature, and p, = ( kll T, )

The validity of perturbation theory relies on ln(P, D) be-
ing small. Then we have a=(JNp) ', and as J~O,
yp —+I and (1—yp)~[ —,'m S(S+1)JNp], so that
b(E)~1 and the results of Maki are recovered. The ex-
act correspondence between this work and that of ZBMH
is made by identifying

4ncNQJ S(S—+1)= Sc
72 Noy

(2.5)

where c is the impurity concentration.
Equation (2.4) may be inverted to give J in terms of yp

and so to eliminate J from Eq. (2.3) for y. This yields
2

3'o in(P, D)
y —2

1 —yp lr&S(S+1) (2.6)

Assuming 1)yp & 0 and in(P, D) small, we thus obtain

2y p E2 g2 1, diagonal
(2.7)

r2 =r2 1+yo E2 y252 yo off diagonal

(2.8a)

d 1 A 2Re 1 —Xo
2 (2.8b)

C. Comparison of Maki and ZBMH theories

The ZBMH theory differs markedly from that of Maki
in bulk materials. %'hereas Maki's results predict merely
a lowering of the energy gap in the density of states,
ZBMH predicts the appearance of a "bound state" in the
energy gap near Eo ——yoh. There are thus two energy
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gaps possible in the density of states. Only for J small
and impurity concentrations so large that the bound state
merges with the continuum (yo~l) are the results of
Maki recovered.

III. ADAPTATION OF ZBMH TO PROXIMITY
GEOMETRIES

X~(E,x)=

G (E)=E (b s —b ~ )IQshQ~,

b,E =2Z~(E)Q~/AUFcos8 .

i cos[MC+(x+d)]G(E)
iF(E)sin(~ d) —cos(ddsc d)

F(E)=(E b—sb~)IQsQ~,

(3.6)

(3.7)

(3.8)

(3.9)
We must modify Xbzk(E) to obtain the correct self-

energy for the proximity system. In bulk superconduc-
tors, we may identify

G„(E)~ N~„~„=EI[E 5(E—)]'
G)2(E) ~ fbulk =h(E)I[E 6(E)—]'

(3.1a)

(3.1b)

so that for the magnetic self-energy we have from Eq.
(2.2)

(E) iA 23'o 1

1+3'o N (E) yof (E—)
N(E) —yof (E)

yof (E) —N(E) (3.2)

However, self-consistency requires that we use not G&&

and G&z for bulk metals, but for the proximity geometry
instead. Furthermore, we are tunneling into the X-metal
side of the sandwich, so we need N~(E) and f~(E), given
by [see Eqs. (2.1)—(2.8) of PE II]

P„(E)= — y, (b (E)f(E,x) )„,
272

EZ„(E)= '
&b(E)N(E,x))

2~2

where

2
b(E)=

1+yo N (E,x) yof (E,x—)

(3.10a)

(3.10b)

(3.11)

and the angular brackets denote an average over the thick-
ness of the normal metal. Since the N metal is assumed
to be thin, P and Z should vary little from their average
values. Thus for the total P& and Z~ we have

A (E)=PQ(E)+ (f(E x))x
27 ]

As in PE II, 0 is the angle between the normal to the
N Sin-terface and the k vector of the incident electron.
In correspondence with PE II, we now have

~N Ef~(E,x) =~' X((E)+ X2(E,x)
QN

N~(E, x)= & X((E)+ Xp(E,x)
N

(3.3)

(3.4)

yo{b(E,x)f(E,x))g,iA

272

EZN(E) =EZRA"(E)+ {N(E,x) )~
27 ]

(3.12)

where Qx, s = (E —~x,s ) and

iF(E)cos(~ d)+sin(~ d)
iF(E)sin(ddC+d) —cos(~ d)

(3.5)

(b(E,x)N(E,x))~ .
272

(3.13)

Inserting Eqs. (3.3) and (3.4) into (3.11) through (3.13)
now yields

P~(E)=PQ(E) ——f f d(cos8)fi o dx 1

—d d 0 7J

yob«)
X)(E)+ X2(E»)'

2 N
(3.14)

and

Z~(E)=Zg"(E)= f f d(cos8) + ~N
X)(E)+ X2(E,x)

N N
(3.15)

2so
b(E,x)= 2 2 2 2 21+3 o —X~(E)(E'—yo~~) —2X~(E)X2(E»)E~Q(1 3 o)+X2(E»)(3 oE

(3.16)

Together, Eqs. (3.14)—(3.16) present a somewhat formidable set. We begin approximating them by replacing X2(E,x) in
Eq. (3.16) with

dx
Xq(E) =f f d (cos8)X2(E,x),

so that b (E,x) =b (E) and may be taken outside the integral signs in Eqs. (3.14) and (3.15). At the energies of interest,
the spatial variations of all relevant quantities are over a coherence distance, so this averaging has little effect. We then
use h~(E)ZN(E) =PN(E) to obtain an expression for bN(E):
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db E (I+so)~N 0 x

+ h f f d(cos8) hN +—+E y0 —— Xz(E,x)
1 0 dx db(E} d 1 db(E) d

HZ'"QNE l2 li lz ll
(3.17)

where R =2d/flu~ and lJ. ——rj.uz. We could in principle now solve Eqs. (3.15)—(3.17) self-consistently for ZN(E) and
6N(E). Howcvcl, tllc equations Rrc qllltc conlplcx, Rlld, Rs wc sllRll scc, IIlay hRvc dcgclicrRtc solutlolls. Onc 1111llt, 111

which we can solve (3.17) exactly for hN(E) is that in which ~ d has a large imaginary part. Then
sin(ddC d) =—i cos(~ d), and

Xi(E)= i, —
G(E) cos[~ (x+d)]

+(E)+1 sin(~ d)

X1(E)=f f d (cos8)XI(E,x)=-o dx 1 G(E)
—d d ' 0

We then have froin Eq. (3.15):

d db (E) 0 dx EN(hs —AN)cosddC (x+d)
RZN QN ——RZg"QN— d (cos8) i +-

I I li -d d (E'—SsaN+QsQN )sin(mNd)

(3.18)

(3.19)

(3.20)

=i —+—b (E)
l) lz

(3.21)

Since RZNQN ——~ d cos8, we see that d/11 large will usually be sufficient to guarantee 1m{~ d) large, excepting the
small fraction of quasiparticles for which cos8 is small.

Substituting (3.16) through (3.21) into (3.16) gives us an approximation for b (E):
' 2'

b(E)=
&+So

2yo Q~

i+go Q~

I'~NE'&~S ~N } (X0E' ~N )E'(~S ~N }'(E' V0i Nz}+- +
+ZNQN(E ~S~N+QSQN } 4(~ZNQN ) {E ~S~N+QSQN }

(3.22)

where QN (E y06N }'——, an—d we have assumed
~
RZN QN

~

to be large. From (3.22) we see that (3.21) potentially has
a zero regardless of how large d/ll may be. This zero occurs at an energy

d 2—+
&+so ~2E.=Xone (3.23)

d 23'o d—+
l, 1+y0 lz

There is no cause for abandoning our assumption that Im(~ d) is large, however. It will turn out that for E &0, b,N
always has a large imaginary part in the vicinity of E=y0RC(bN }, so that (3.23) cannot be satisfied. In any case, if we
were concerned with large d/II and small d/lz, the region over which (3.23) is approximatdy satisfied would be quite
smal1 and we could neglect it.

IV. SOLUTION FOR h~(E}

A. Basic equations
L

Using (3.22} for b (E), we obtain expressions for RZNQN and bN(E) from Eqs. {3.21) and (3.17):

d d ~3'o
RZN(E)QN =i

~, &+so ' (4.1)
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. d 27o~w&x i (bs —EN)QN
hN(E) =b,"N i-

lz Rzg"Q2N 2RZg" (E' ~S~N+ QsQN )

3
2 d 23'o d 2 q d 2 d—3'o~a +

l] 1+pp l2 l& 1+go l2

2

+ —3'o~x +d 2so d» d 2 d
l1 1+yo l2

J

'
ll 1+yo l2

. d Po~x&x i (i4 —~N)QN r(E' yo~—N
~ z + 2 2 2

12 RZ$ QN() 2RZg (E —6$5N+AsAN) r2E —yOAN
(4.2)

where

r~=—
1)

2po

1+3'0 l2

d 2 d—+
lr 1+3'o l2

(4.3)

small, Eq. (4.2) reduces to

hs i 4RZ—g Eb,g (r2/r, )
b,N(E) =-

1 fi 4RZ—$"E 8(d /l—q )y p j(rz/r ) )

and

2/0
r2= +

1( 1+yo 12

2 d—+
I, 1+yp 12

(4.4)

B. Analytic limits

There are few limits in which simple analytic solutions
to (4.2) are possible, but these are quite useful. The first
hmit is E=O. Then we have

(r2/r( )[i4RZpp E 8(d/(2 )—
y&~ ]—=~se (4.7)

C. General solution for hN(E)

Thus we again have the homogenization of the pair poten-
tial as RZ$"E vanishes as found in PE II. Furthermore,
the oscillatory behavior persists, though its frequency is
altered by a factor of r2/r( (which is greater than unity)

—8(d/l2)pO(~2 ~1'1)
and its amplitude decreased by e

0=(yohN) EN(4RZJ'v hs+1)

—hs 4RZE 6%+1—8
l2

(4.5)

b.N(E =0)= .

4RZg" b,3v" + 1 —8—
l2

for aN &0~s
4RZS b,s+1h

0 otherwise . (4.6)

A second useful analytic limit is E =b,s. In this case,
4N ——hs is always a solution. The other roots are difficult
to extract analytically, being solutions to a fifth-order po-
lynomial in 6&.

Finally, we consider the limit of very large energy. For
E»b.sN, negligible $3v, and 53v", RZg E, and d/12

We see that A~ ——0 is always a root at E=O. It is the
correct root to take when the other solution to (4.5) gives
b,N &0, for we exclude pair potentials with negative real
parts as unphysical. Thus we have

At first approach, Eq. (4.2) for b,N(E) is quite impos-
ing. However, it is algebraically straightforward (though
slightly tedious) to obtain a polynomial in b,N from it.
Extracting an extraneous root h~ ——hs, we obtain an 11th
degree polynomial in hN. For given values of the input
parameters R, Zg", AIv", bs, 1(, 12 yp and d, the polyno-
mial was solved numerically for i4),N at each energy of in-
terest using an International Mathematics and Scientific
Library (IMSL) routine. " Of the eleven roots generated
at each energy, all with negative real parts were rejected.
We then substituted the remaining roots into Eq. (4.2),
which only two or three of them satisfied well. Requiring
b,N(E) to be continuous (though not necessarily to have a
continuous derivative) then yielded at most three distinct
A~-versus-E curves to discriminate among. This discrim-
ination was made by requiring the integral of the density
of states derived from hN(E) to approximate unity, which
was always sufficient to determine a unique solution.

D. Tunneling density of states

From Eqs. (4.2) and (4.5) of PE I we have the tunneling
density of states at 0 K for specular tunneling:

E (E ~SEN)cosh( —i~ d)+QSQNsinh( —i~ d)+AN(hs —~N)
Nr(E) =Re

+N (E —ASIAN)sinh( iLUC d) —QSQNco—sh(

idled)—

Using Eq. (4.1) for RZNQN and considering only 8=0, we may approximate

(4.8)

NT(E) =Re +
Q~

~N«~s —~N)

QN(E +QSQN —i4bN)sinh —+ b(E)—2 ~ d d
l( l2

(4.9)
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where we use (3.22) for b(E).
For ds infinite, Eq. (4.9) is correct, but for ds large but finite XT(E) is better approximated by an expression due to

Gallagher [see Eq. (3) of Ref. 12]:

NT(E)=Re D 2 (E bs—bz)cosh( i—~ d)sin(~ d)+iQsQ&sinh( i—ddsc d)cos(~ d)
QsQ~

+ b,~(b.s —b,~)sin(~ d)

where

2 2E —Lsd~
D = 1—cosh( i M—d)c'os(~ d) i- sinh(i~ d)sin(~ d)

&s&x

Identifying ddC d as RsZsQs/cos8, considering only 8=0 and again using Eq. (4.1) for R&Z~Q& yields

+T(E)=Re ' D 2 (E ~sAN )cosh —+ b(E) s—in(RsZsQs )
sw' I i l2

+ iQsQiv»nh + b(E) «s(RsZsQs)+~@ (~s —~x)sin(RsZsQs)
l2

(4.10)

with

d d .E —~s~x . d dD =-1— cosh —+ b(E) —cos(R Z Q ) i — sinh —+ b(E) —sin(RsZsQs)
l] l2

s s s
ASIAN ll l2

2

(4.11)

For ds&&dz, the density of states given by (4.10)
differs significantly from that given by (4.9) only at ener-
gies far above hs.

V. THEORETICAL RESULTS
AT ZERO TEMPERATURE

2.0-
!.5-

Cl
I.O

0.5-
0.0

~ 0.5—

0.0
F

Q 5

C= f5ppm

C=62 ppm C 470 ppm

0.0 I I I

0.5—

0.0

Q -Q5-
—I.O I I I I I I I I I

0.0 0.8 l.6 2.4 0.0 0.8 l.6 2.4
ENERGY (mV)

FIG. 2. X-metal pair potential versus the magnetic impurity
concentration. Here we have assumed parameters approximate-

0
ly appropriate to 250 A of copper evaporated on an S metal
with hg ——1.2 mV.

A. Variation of hN{E) and N~(E) with concentration
for fixed yo

Figure 2 shows the variation of b,~(E) with the mag-
netic impurity concentration c for yo —0.23, hs —1.20,

I

Zg"=1.2, and R =0.0484. This value of R would, for
exainple, correspond to a 250-A copper film, in which
case the value of yo corresponds to a concentration of
about 200 d/lz parts per million. We include the b.~-
versus-E curve for the case considered in PE II, where
only nonmagnetic impurities- were present. %'e obtain
d/lz from c via Eq. (2.8), and in this and all subsequent
discussion we assume d /l i

——3, at which the effect of non-
magnetic impurity scattering seems to have saturated.

For small c, h~(E) develops a negative imaginary part
in the vicinity of E=yeas. Corresponding to this imagi-
nary part, h~(E) develops in its real part a linearly in-
creasing region, and b,~(E=0) is depressed below its
c =0 value. As c increases, the region of negative imagi-
nary h~ broadens until its lower edge reaches E =0, at
which point the real part of h~ also vanishes. Above the
concentration at which h~(E =0)=0, the real part
changes from a linear to a parabolic shape for E &hs.
For extremely high c, Re[5~(E)] is flattened about
E=hs, and Im[h&(E)] begins to vanish everywhere. As
c becomes large, b,~(E) vanishes everywhere, which we
expect for extremely large concentrations of magnetic im-
purities.

Physically, we have a scattering anomaly at
E=E~+yob, s. In a bulk normal metal, the amplitude for
scattering of electrons off the magnetic impurities has a
logarithmic divergence at the Fermi surface. In a super-
conductor, the divergence is pulled to +yah away from
the Fermi surface. Since the scattering can break Cooper
pairs, they develop a finite lifetime, which is reflected in
A~(E) as a nonzero imaginary part.

We ascribe the energy-dependent structure below hs in
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FIG. 5. Normalized density of states versus 1V metal thick-
ness for constant +0=0.23. (Note the three gaps in the density
of states at large thicknesses. )

C. Variation of Nr(E) with thickness for constant yo

In Fig. 5, we present the variation of NT with the N-
metal R ( R =2d /iriuF ). We have chosen b,s —1.2,
yo=0. 23, hQ =0.3, and Zg"=1.20. The value of c was
decreased slightly as R increased to keep the bound-state
area constant. The R values shown range from 0.01 to
0.38, which for copper would correspond to thicknesses
from about 50 to 1970 A.

We see that for small -R, the density of states is quite
BCS-type, but with the bound state appended. As R in-
creases, density flows from the continuum into the
proximity-effect band below hs, as discussed in PE II.
As the proximity-effect band widens, it feeds density into
the high-energy side of the bound state (which is why we
had to decrease c to keep the area constant). It also takes
density from the continuum, and the gap at E=b,s
broadens. It is amusing to note that for the largest values
of R illustrated there should be not two, but three gaps
observable in the density of states. For values of R larger
than those illustrated, the gap at 4q closes in again and
the density of states becomes just that of a normal metal.

5.0-
2.5—

2.0—

l.5—

l.p—

0.5—
M

0.0
O 2.5-

55 pprn

the proximity effect, DGN assumes that N S-sandwiches
behave as BCS superconductors. When the S metal is
thick, this is true only for extremely thin N metals. As
the N metal becomes thicker, the BCS approximation
loses validity.

In fitting our theory to the data, we had to adjust b,s,
yo, and the impurity concentration c. in adjusting h~,
our first impulse was to use a theoretical approximation
hs —hs (1 mRb—,s ) [see Eqs. (8.4)—(8.6) of PE I]. How-

ever, we found that even for the case of a pure copper N
metal, this equation overestimated the depression of As.
This is easy to understand if the N metal is full of non-
magnetic scattering centers. The above equation (6.1) was
derived for perfectly clean metals and assumed that
6~=0, but impurities or defects will scatter electrons
back into the S metal, so that they sample the large pair
potential there more often. This will lead to an induced
hiv and, consequently, less depression of b,s.

An analysis of DGN's data for a pure copper N metal
at 1 K still yields a relationship similar to the above equa-
tion. We find bs -—hs (1 0 57—mR. hs ) Tho. ugh it is

gratifying to see that the relationship for b,tt ——0 is close
to the empirically correct one, we shall only note it and
not use, it further. We shall estimate hs from experi-
ments to be that value which reproduces the position of
the peak in the density of states when the N metal has no
magnetic impurities. We shall neglect the variation of hs
with N-metal impurity concentration.

Having estimated Az, we shall take yo to be that value
which reproduces the position of the bound state at low
concentrations. We shall also neglect all variations of yo.
Finally, our equations depend on the impurity concentra-
tion c only through d/l2. We use Eq. (2.8) to estimate
d/l2 from the experimental c, assuming No and U~ have
their free-electron values for the host metal.

We plot our results in Fig. 6. This corresponds to Fig.
8 of DGN. The figures represent Eq. (4.14) with
~s=1 2~ y0=0 23» ~% =0~ Re=0 0484~ Rs=O 3322~

VI. COMPARISON WITH EXPERIMENT
2.0— l70 ppm 500 p pm

We intend here to test our theory against experimental
results, specifically those of Ref. 14, which will hereafter
be called DGN. The part of DG.N most relevant to our
theory is the study of thin Cu-Cr films in proximity to
thick (2000 A) Pb films. We expect evaporated films,
such as those of DGN, to contain many defects which
should behave as nonmagnetic scattering centers so that
Eqs. (4.1) and (4.2) for the pair potential and renormaliza-
tion function should be applicable even for small concen-
trations of the magnetic impurities. Lacking a theory of

l.5—

l.p—

0.0
0.0

I I l I I I l I

I.O 2.0 0.0 I.O
ENERGY ( mV )

2.0

FIG. 6. Tunneling density of states versus concentration for
250 A copper on 2000 A Pb assuming 5 for Pb is depressed to
1.2 mV. Compare to Fig. 8 of Ref. 14. ,
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Zz —1, and as before Zg =1.2. The agreement with
DGN is quite fair, much better than the BCS approxima-
tion. One quantitative deficit exists, however. Our densi-
ties of states exhibit a narrower peak near b,s at all impur-
ity concentrations than do those of DGN. This may be
traced to the fact that we neglected the energy dependence
of hz(E). The energy dependence of hs would enhance
that of h~ near E=hs, and so broaden the peak in ques-
tion. Taking hs(E) to depend on energy would require
simultaneously solving Eq. (4.2) of this reference for b,&
and (8.1) and (8.2) of PE I for 4z. In view of the difficul-
ties of solving even (4.2) alone, we have not yet done this.

VII. CONCLUSION

We believe our treatment of elastic scattering in an N S-
sandwich explains the experimental- results obtained when
the E metal contains Kondo-effect impurities. Relaxa-
tion of our assumption that much nonmagnetic scattering
is occurring in evaporated films should not be necessary,
as we expect energy dependence of b,z at the N Sinter--
face to remedy most of the remaining deficit between ex-

periments and theory. This energy dependence will be
enhanced by the proximity effect. The complete solution
for hs(E) and hz(E) is a subject for future study.

This paper also suggests other geometries that might
possibly be studied. One might dope the S metal with

Kondo impurities and leave the X metal pure. In this
case, we might expect for not too thin X metals an at-
tenuation of the bound-state amplitude in the density of
states. A more interesting possibility would be to consider
a case in which the X and S metals are doped with impur-
ities having different values of yo, yo, and yo, respective-
ly. For yg&yo and sufficiently low impurity concentra-
tions, we might expect to see two distinct bound states due
to the Kondo impurities. Thus, with the proximity effect
gap near E=b,z, there would be a total of four gaps in
the tunneling density of states. For yo &yo the qualita-
tive picture is not so clear and is also a subject for future
numerical study.

Thus far, we have assumed that Kondo-effect impuri-
ties behave in superconducting thin films just as they do
in bulk S metals. Though this assumption seems justified
by the agreement between the results of this paper and ex-
periments, a reworking of the Green-function theory for
thin films instead of bulk metals may be desirable. More
desirable would be the adaptation of the exact solution of
the Kondo problem' to the case in which the host metal
is a superconductor.
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