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A general critical-state theory, including the effects of both flux-line cutting and flux pinning, is

proposed for calculations of hysteresis in type-II superconductors in parallel applied magnetic fields
that vary in both magnitude and direction. In this theory, if the magnitude of the electrical-

current-density component perpendicular to the magnetic induction 8 exceeds the corresponding

critical value J,j, depinning occurs, and an electric field component E& perpendicular to B appears;

if the magnitude of the current-density component parallel to 8 exceeds the corresponding critical

value J,ll, flux-line cutting occurs, and an electric field component Ell parallel to B appears. Model
ca&.culations are performed to solve for the electrodynamic response of a slab subjected to a parallel,
constant magnetic field whose direction undergoes either continuous rotation or periodic oscillation.
The relation of the theory to the pioneering experiments of LeBlanc and co-workers is discussed.

I. INTRODUCTION

The behavior of a type-II superconductor subjected to a
parallel magnetic field that slowly rotates relative to the
specimen was investigated recently in a series of impor-
tant experiments by I,eBlanc and co-workers. ' To ex-
plain the results, fundamental new equations must be add-
ed to the existing theory for the static and dynamic mag-
netic behavior of type-II superconductors. In these exper-
iments a stationary, irreversible type-II superconducting
disk was subjected to an applied magnetic field Ho paral-
lel to the flat disk faces. Four initial magnetic states of
the disk were examined; these were termed' nonmagnetic,
diamagnetic, paramagnetic, and hybrid, depending upon
the magnetic history of the specimen. The nonmagnetic
initial state, for example, was produced by cooling the
specimen through its transition temperature in the pres-
ence of Ho, such that the initial magnetic flux density
Bo-=paHo was nearly uniform. Thus the disk initially
contained an array of vortices of nearly constant density
no Bo/Po, wh——ere Po ——h/2e=2. 07X10 ' Tm . The
disk was then slowly rotated about the axis perpendicular
to the flat surfaces, and the two components (parallel and
perpendicular to Ho) of the magnetic flux parallel to the
faces were monitored.

Several striking effects occurred in the experiments
First, during the initial stages of rotation, the magnitude
8 of the magnetic flux density in the disk decreased, as if
vortices somehow were expelled from the specimen
against the Lorentz force. Second, as rotation continued,
a diamagnetic profile of 8 versus distance x from the
disk's surface (i.e., 8 decreasing with x) developed in an
outer, active region near the disk's faces. Third, as rota-
tion progressed, the diamagnetic profile penetrated inward
toward the disk's midplane until B was brought to zero at
a distance xo from the surface. This effect occurred,
however, only when Aux pinning was sufficiently strong
that xo &X/2, where X is the disk thickness. Fourth, as

rotation proceeded further, the magnetic flux distribution
in an inner, trapped-flux region of thickness X—2xo
straddling the disk's midplane, containing vortices pinned
within the disk, rotated rigidly along with the disk, while
the magnetic flux distribution in the outer, active regions
within xo of either surface kept a fixed orientation rela-

tive to Ho and thus moved relative to the disk. The
planes on which 8 =0 at a distance xo from either sur-
face thus decoupled the vortices in the inner, trapped-flux
region, where there was no dissipation, from the outer, ac-
tive regions, where dissipation occurred.

From the empirical model introduced by the authors of
Refs. 1 —3, one can show that in the outer, active region
both the induced current density J and the electric field

have components Jlt and Ell parallel to the local mag-
netic induction B. The parallel component of E cannot
be understood using only the familiar expression '

E=BXv, which is believed to hold when J has on1y a
component J~ perpendicular to B. (Here, v is the vortex
velocity. ) This component of E, however, can be under-
stood in terms of flux-line cutting ' (intersection and
cross joining of adjacent nonparallel vortices). Recently,
it has been shown that for a sufficiently large current den-
sity J,

~~
parallel to the vortices or, equivalently, for a suf-

ficiently large vortex angle gradient k, ~~,
instabilities of

the vortex array ' can occur which lead to flux-line cut-
ting, thereby generating a component' '

Ell parallel to
B. The parallel components Jll and Ell together p oduce
a contribution' J~~Ell to the energy dissipation which
adds to the familiar flux-flow (flux-pinning) contribution

In this paper we treat the rotating-magnetic-field prob-
lem in type-II superconductors using the theory of Aux-
line-cutting losses presented in Ref. 18. We shall show
that the main results of Refs. 1 —3 find a natural explana-
tion in terms of flux-line cutting. In Sec. II we review the
key results of Ref. 18 and formulate a general critical-
state theory which describes the critical-flux-density pro-
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files at the threshold of depinning or flux-line cutting. In
the remainder of the paper we consider the behavior of a
type-II superconducting slab subjected to a rotating or os-

cillating parallel applied magnetic field H, . The behavior
is equivalent to that of a rotating or oscillating slab sub-
jected to a fixed parallel applied magnetic field. In Sec.
III we present the final quasi-steady-state solutions
achieved when H, rotates with a constant angular veloci-
ty, and in Sec. IV we present ac solutions when the angle
a, of H, oscillates with a limited amplitude ao. Finally,
in Sec. V we summarize our findings, point out similari-
ties to and differences from the empirical model of Refs.
1 —3, compare our results with those of Bean, ' and dis-
cuss desired extensions of the theory.

II. FORMULATION OF THE GENERAL
CRITICAL-STATE THEORY

Consider a high-a. irreversible type-II superconducting
infinite slab with surfaces at x =0 and x =X=2x~. An
external magnetic induc'. ion

8 (t) =IN oH, (t) =Boa, (t )

of fixed magnitude Bo but time-varying direction,

a, =y sina, +z cosa, ,

is applied, inducing fields in the superconductor, 8, J,
and E, which are parallel to the surfaces and which de-
pend only upon the coordinate x and the time t. For sim-
plicity we assume that, to good approximation, B=poH
over the most important field range, and that the length
scales for spatial variation of B, J, and E are much
longer than the weak-field penetration depth A, . We write
8=Ba, where 8 =

i
B

i
and

BB ~JB

dt Bx
+ = p—o JIIEII/8,

where

Jar =Ex =»x
is the 8-current density. Equation (8) shows that a region
of space in which flux-line cutting is occurring ( JIIEII & 0)
serves as a sink for 8; in other words, flux line -cutting
consumes 8.

For slow variation of a„such that eddy currents are
negligible, local vortex configurations generating the flux
density 8 are assumed to be governed by the following
general critical-state principles: Metastable stationary dis-
tributions of 8, in which Ez ——0, are always such that the
magnitude of Jz obeys

(10)

where J,z(8) &0 is the function describing the transverse
critical-current density at the threshold for the depinning
of a vortex array from a distribution of bulk pinning
centers in the specimen. This condition is equivalent to
the statement that the magnitude of the Lorentz force,
I'I„——Jq B, never exceeds the volume-pinning force
Fz(B)=J,z(B)B.—Similarly, metastable distributions of a,
ln which EII

——0, are always such that the magnitude of
J~~ obeys

I JII i
&J II(8)

where J,II(8) & 0 is the function describing the longitudi-
nal critical-current density at the threshold for the onset
of flux-line cutting in the vortex array. ' Using Eq. (4),
we can reexpress Eq. (11)as

(12)
a =y sina+z cosa . (2)

Ba
Bx

(4)

From Faraday's law, V' )& E= —BB/Bt, we obtain E
=EIIa+Ezp, where

aa aa=B +Ej

BB aa
Bx Bt Ell gx

(7)

As pointed out in Ref. 18, combining Eqs. (4) and (7)
yields

%'e assume that the boundary conditions at x =0 and
x =X and are 8 =Bo and a=a„i.e., we neglect the dis-
tinction between 8 and p~ in the superconductor and as-
sume no barriers against flux entry or exit at the surface.

From Ampere's law, J = V & H, we obtain
J =JIIa+Jzp, where

P=a Xx =y cosa —z sina, (3)

k, II(B)=go J,II(B)/8 . (13)

Throughout this paper we assume isothermal behavior
and ignore the temperature dependence of J,z, F~, J,II,
and k, I(.

Flux redistribution occurs when Jz exceeds J,z, in
which case Ez &0 and JzEz &0; when Jz & —J,q, we
have Ej &0, such that again JzEz &0. Flux distribution
also occurs when J~~ exceeds J,~~,

in which case E~~ & 0 and
J][E([& 0; when J[f & —J, ((

we have E)[ &0, such that
again J~~E~~ & 0. Regardless of their spatial dependences,
boih Ez and E~~ are continuous functions of x. Vfe
denote a zone in which (a) only flux transport occurs
(Eq&0 but EII ——0) as a T zone, (b) only flux cutting
occurs (EII&0 but E~ =0) as a C zone, (c) both flux cut-
ting and transport occur (EII&0 and E~&0) as a CT
zone, and (d) neither flux cutting nor transport occurs
(EII ——0 and Ez ——0) as an 0 zone. In addition, we use
subscripts + and —to indicate the signs of Eq or E~~.
For example, a T+ zone is one in which Ez &0 but
E~~

——0, and a C T+ zone is a zone in which E~~ &0 and
Eg &0.

Equations (1)—(13) are concise statements of the general
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critical-state theory (incorporating both flux pinning and
flux-line cutting) to be used in this paper. We now show
how these equations can be apphed to calculate the distri-

butions of B, J, and E as well as energy dissipation, for a
variety of cases. To bring out the physics with the least
mathematical complication, we take J,j and k,

~~

to be
constants independent of B. To obtain detailed agreement
with experiment, however, it wouM be necessary to take
into account the dependences of J,j and k,

~l
upon B. For

the calculations of Secs. III—V the profiles of 8 and a
obey

BB
Bx

=+8,/x,

at the threshold of depinning, and

(14)

A' —+k,
)i

(15)

& =kg()xo =Jcii(Bo)/Jci . (16)

Interpretation of the experiments of Refs. 1 —3 in terms
of Eqs. (14)—(16) suggests that, for the specimens studied,
X —10 for large 8, that X & 1 for most of the field range
investigated, and that P &1 only for very small Bp. For
the condition. s considered in this paper there is symmetry
about the midplane x =x~ =X/2 of the slab, such that

B(x,t) =B(X—x, t). We thus examine the distributions of
8, J, and E only in the region 0 (x (x

III. QUASI-STEADY-STATE SOLUTIONS

We consider first the solutions for B, J, and E
achieved in quasi steady state after a long time of slow ro-

tation, such that the surface field angle u, =pit obeys

u, » l. Although the macroscopic electric field E here is

time independent, the term quasi steady state is appropri-

ate because E is produced on a microscopic scale by gen-

erally very complicated motions of vortices or vortex seg-

ments: Zz is generated by translational vortex motion
and E~I by countermotion of adjacent vortex segments. '

According to Eq. (8), flux-line cutting during the initial
stages of rotation consumes 8 within the slab, such that,
regardless of the slab's initial magnetic state,
8(x)=Bp(1—x/xo) and Ji -J,i wherever dissipation
occurs in steady state. The dissipative region extends to
the slab's midplane (x =x =X/2) if xp&x, but only
as far as x =xp ——Bp/pp J,~ if xp (x . %'ithin the dissi-
pative region, Ba/Bt =co.

The details of the quasi-steady-state solutions depend
upon the particular values of X=k&~~xp =J ~~(Bp)/J i and

p=k, ~(x . %'hen X and p lie in region A of Fig. 1, i.e.,
when p ~g, dissipation is limited to an outer, active, CT
zone, 0(x (xp, in which both flux-line cutting and trans-

port occur. The magnetic flux distribution remains sta-
tionary in an inner, trapped-Aux, 0 zone, xp (x &x, in
which neither flux-line cutting nor transport occurs; the

at the threshold of flux cutting, where xp ——Bp/pp J ] is
the distance from the surface at which 8 would be re-
duced from Bp to zero along a diamagnetic profile. It
also is convenient to introduce the ratio of J,

~~
at Bo to

J,j,

0'
X( 27T

FIG. 1. Dissipation during constant rotation (a) is confined
to within xo of either surface in region A, (b) occurs throughout
the slab of thickness X =2x~ in regions 8 and C, and (c) is un-
stable in region C (cross-hatched). Here, p =k,

~
Ix and

Xo.

values of B and o. in this zone depend upon the initial
magnetic state. In regions 8 and C of Fig. 1, where

p&X, dissipation occurs throughout the entire region
0&x &x . Regions B and C are separated by the curve
p, =pi(X), where

p i =X—cot(p i /2 —7T/2 ) Ir (p i (217 . (17)

The curve of p, versus X has infinite slope at
Xi ——I+3m/2=5. 71, where pi(Xi) =3'/2. In region 8 of
Fig. 1, both flux-line cutting and transport occur continu-
ously throughout the region 0(x &x, a CT zone. In the
cross-hatched region C of Fig. 1, time-dependent instabili-
ties, similar to flux jumps, are predicted to occur. The re-
sulting electromagnetic behavior can be described in terms
of moving T and CT zones, but is too complex to discuss
in detail in this paper.

A. Region A

For values of 7 and p in region A of Fig. 1,

u(x, t) =cot —k, iix

and

E~~(x) = —(coBo/k, ~~X) {1 —cos[k, ~~(xp —x)]I,
Ei(x)=(coBp/k~~~){(1 —x/xp) —X sin[k~~~(xo —x)]I

(18)

(19)

Throughout the C T+ zone, 0&x &xp, E~I (0 and
Zz &0, even for large values of the arguments of the sine
and cosine. This must be true in order to have both

J~)(x)= —(Bpk~~ ~/up)( 1 —x /xp )

The solutions of Eqs. (6) and (7), subject to E~~(xp)
=Ei(xo)=0, are
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JIIEII &0 and JgE~ &0, since Jll &0 and Jg &0. Figure
2(a) shows a plot of Ei (solid line) and E~~ (dashed line),
in units of roBo/k, ~~,

versus x for X=8.
Becaus'e "r)B/r)t =0, Poynting's theorem states that the

rate of energy dissipation per unit surface area is equal to

the x component of the Poynting vector at x =0,

S„(0)=Ei(0)Bp/pp ——[toBp3/po J,~~(Bp)](1—X 'sinX) .

(20)

B. Region B

For values of X and p in region 8 of Fig. 1, a(x, r)=cot k, ~~x
—and J~~(x)= —(Bpk, (~/pp)(1 —x/xo). The solutions of

Eqs. (6) and (7), subject to E~~(x )=Ei(x )=0, are

Ell(x = (dp/k, [~)(( 1 —x /xo)sin[k, j~(x —x)]+X 'I 1 —cos[kc[~(x~ —x)] I ),
E1 (x)=(coBplk~ii)I(1 x/xo) (1 x~ixo)cos[k~ii(x~ —x)]—X sin

(21)

(22)

Throughout the C T+ zone, 0&x &x, Ell &0 and
Ez & 0. Figure 2(b) shows a plot of Ei (solid line) and E~~
(dashed line), in units of coBplk, ~~,

versus x for X=8 and
for three values of p: 2, 3.6[pi(8)], and 6. Note that,
when p=2, E~~(0 and Ez &0 for all x, but when

I.8

I.6—

l.2—
E~

Eii Q8-

p=p~(8)=3. 6, which is at the boundary of the unstable
region C of Fig. 1, E~~(0)=0 at the surface. When p=6
[in region C: pi(x) &p &X], Eq. (21) yields positive
values of E~~ (dotted line) and negative values of J~~E~~
near the surface. This is unphysical, since J~~E~~, the
flux-line-cutting contribution to the dissipation, must
obey J~~E~~.& 0. This behavior therefore indicates that the
assumptions leading to Eqs. (21) and (22), while valid in
region 8 of Fig. 1, are inualid for p and X in region C.
Numerical solutions confirm this and, in addition, show
that complicated instabilities can occur in region C.

For p and X in region 8 the rate of energy dissipation
per unit surface area, obtained by Poynting's theorem, is

p4— S (0)= [roBpipp J ~((Bp )]

0
Ell

X f 1 —cosp —X '(sinp —p cosp)] . (23)

Q4i

2.0
(b)

E I.O
I.

I

2
I I I I

4 5 6
kc„X

7 8 The expressions for S„(0)in regions A and 8 [Eqs. (20)
and (23)] coincide along the boundary p=X in Fig. 1,
where both S„(0)and its first derivative with respect to p
(or X) are continuous functions of X and p. For thin
(p«1) slabs, S„(0)&xp,and for thick (p&X) slabs,
S„(0)is independent of p [Eq. (20)]. For X &~, S„(0)is a
monotonically increasing function of p, but for X & m., Eq.
(23) predicts that S„(0)has a maximum at p =n, where

Sx "(0)=[coBo/po Jcii(Bo)](2—n/X) . (24)

-I.0
0 I 2 3 4 5 6

cubi"

FIG. 2. (a) E~ (solid line) and E~~ (dashed line) [Eqs. (19) and
(18)], in units of coBO/k, ~~, versus x for X and p, in region A of
Fig. 1. Here, 7=k, llxo

——8 and p=k, llx~ &g. (b) Ej (solid line)
and E~~ (dashed line) [Eqs. (22) and (21)], in units of coBp/k, (~,

versus x for g and p in regions B and C of Fig. 1. Curves are
shown for g=k, llxo ——8 and for three values of p=k, llx: (i) 2
(region B), (ii) p](8)=3.6 (boundary between regions B and C),
and (iii) 6 (region C). The dotted portion of EII versus x for
p=8 is unphysical, indicating that Eqs. (21) and (22) do not ap-
ply in region C.

The behavior of S„(0)versus p for various values of X
is shown in Fig. 3. Portions of the curves corresponding
to values of X and p in region 8 of Fig. 1 are indicated by
solid curves, and those portions in region A, by dashed
lines. When X&5.71, the solid curves end at p=pi(X)
[Eq. (17)],where the region of instability C begins.

In all cases the rate of energy dissipation per unit
volume J E is the sum of the flux-pinning contribution
JiEi and the flux-line-cutting contribution J~~E~~, both of
which are non-negative. The integral of J E from x =0
to the smaller of xp and x is equal to S„(0).Referring
to Eq. (8), we identify po J~~E((/8= —k, ~(E~~ in each case
as the rate at which flux-line cutting locally consumes B
and t)jz„/Bx=BE&IBx as the rate at which flux transport
replenishes B. These two rates are equal in quasi steady
state, such that BB/Bt =0.
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2.0

I.6

l.4

l. 2
0)

I.O

0.8

0.6

04

0.2

ao, we see that single-dissipative-zone behavior occur ei-
ther in regions A and B to the left of the line X =Xt, or in
region B under the curve p =pt(X) or ap ——pt(X).

In the single-dissipative-zone case, dissipation occurs
only within a distance x, =ap/k,

~~
of the surface when

x, &xi=min(xp, x ), or within a distance xd of the sur-
face when x, &xd, i.e., the dissipation occurs within a dis-
tance x,d ——min(x„xd) of the surface. The electrodynam-
ic behavior becomes cyclic only after a, undergoes a cer-
tain number of oscillations, the precise number depending
upon the specimen's magnetic history. During these pre-
liminary oscillations, flux-line cutting consumes B and ul-
timately produces the time-independent profile B(x)
=Bp(1—x/xp) in the dissipative zone 0&x &x,d. Pro-
files of a(x, t) versus x are sketched in Fig. 4 for x, &xd.
For x~ &x, the time-varying portions of a(x, t) versus x
are the same, except that they are truncated at x =xd.
The two extremal profiles, a,„(x)and a;„(x),corre-
spond to the cases when a, =uo and —ao, respectively,

0
0

I

4
I

6
amax(x) =ap —kc~(x ~

a;„(x)=—ap+k, ~~x .

(25)

(26)

FIG. 3. S„(0)in units of coBO/po J,~I(80) versus p=k, ~~x

for several values of X=k,~~xo. Solid curves [Eq. {23)] corre-
spond to region 8 of Fig. 1; dashed lines [Eq. (2Q)], region A;
for P & 5.71, solid curves end at p =p ~(P ), the boundary be-
tween regions B and C.

IV. ac SOLUTIONS

We consider next the solutions for 8, J, and E
achieved under ac conditions for which a, (t) oscillates
with amplitude ap. We assume that the frequency is suf-
ficiently low that the induced eddy currents make a negli-
gible contribution to the dissipation. The resulting ac
losses are then entirely hysteretic and independent of the
particular waveform of a, (t) versus r; e.g., sinusoidal, tri-
angular, and trapezoidal waveforms all yield the same loss
per cycle.

As a, sweeps through its cycle, the details of the time
evolution of a(x, t), E~~(x, t), and Ez(x, t) depend upon
three parameters: ao, 7=k, ~~xo, and p=k, Itx~. The
behavior is most complex when all three are much larger
than unity. For example, when o;0&~1 and x & S.71 or
p&pt(X), the behavior of a(x, t), E~~(x, t), and Eq(x, t) is
given over most of the cycle by the steady-state results of
Sec. III, and the energy dissipation per unit surface area
per cycle can be obtained from time integrals of Eqs. (20)
and (23). For ap »1, X & 5.71, and p &pt(X) (see Fig. 1),
instabilities are expected to occur. Space does not permit
a description of the ac losses for all possible combinations
of values of ap, X, and p. Instead, we confine our atten-
tion to the case for which at least one of these three pa-
rameters is sufficiently small so that there is dissipation
only in a single zone where. both flux-line cutting and flux
transport occur. The particular conditions for such
single-dissipative-zone behavior are X &Xt ——1+3m /2
=5.71, or, when X)Xt, min(ap, p)&pt(X) [Eq. (17)],
where min(ap, p, ) denotes the smaller of ap and p. Refer-
ring to Fig. 1 with the ordinate representing either p or

The profile a, (x, t) corresponds to the case when a, is in-
creasing. ' In the region 0&x &x, (t), where

x t (t)= [ap+a ( )r] /2
k&~~

a(x, t) is altered from a;„(x)to
a, (x, t) =a, (t) k, ~~x . —

At x =x, (t),

(28)

Qp

a

X)

as

DECREASING

OPE

~c II

c X

as
INCREASING LOPE

"c II

-ao-
I

X)

FIG. 4. Sketch of the external field angle profiles a,„and
a;„,and the a, -increasing and a, -decreasing profiles at and a„
versus x, calculated from the equation Ba/Bx =+k, I~.
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a,(x„t)=a„(t)=[a,(t) —ap]/2 .

It is convenient to define

(29) For the a, -increasing case, B,(x, t), J,(x, t), and E,(x, t)
are determined as follows. First, B,(x, t)=B(x)a,(x, t),
where B(x)=Bp(1—x/xp) and

(30)

so that y =0 at the beginning and y =ap at the end of the
a, -increasing half-cycle. The profile a&(x, t) shown in
Fig. 4 corresponds to the case when u, is decreasing. ' ' '
When xd &x„Eqs.(26)—(30) still apply, but then we need
only the values of a, (x, t) and a, (x, t) for 0 &x &xd.

a, (x, t) =y sina, (x, t)+z cosa, (x, t) . (31)
At time t, dissipation occurs only in the region
0&x &x,d(t), where x,d(t)=min[x„(t),xd]. In this re-
glong Jg[[( p ) — g[~ ( ppp JyJ (xpt) —JgJ —BQ/ppxpy
and the solutions of Eqs. (6) and (7), subject to
Eu (x „~,t )=E,

~ ~

~(x,q, t) =0, are

E,(((x,t) =—(agBp/k, (()((l—x,g/xp)sin[k, )((x„d—x)]+X 'I 1 —cos[k, ()(x„d—x)]I ), (32)

E,g(x, t)=(a,Bplk, ~~)I(1 —x/xp) —(1—x,g/xp)cos[k, ~((x,d —x)]—X 'sin[k, )~(x,d —x)]I, (33)

where a, =da, /dt W. hen X&X&——1+3m/2=5. 71, or, when X&X&, min(ap, p)&p&(X), we have E,~~( xt)&0 and
E, z(x, t) &0 throughout the region 0&x &x,z(t).

The rate of energy dissipation per unit surface area is

S»(0,t) =E,g (0,t)Bp/pp

=(a,Bp/ppk, ~~)[1—(1—xqd/xp)cos(k~~~x&d) —X»n(k~~~x~d)] .

The time integral of S»(O, t) over the a, -increasing half-cycle yields W,'„the energy dissipated per unit surface area dur-
ing this half-cycle. For integration it is helpful to change variables from t to y, such that k, ~~x,d

——y when y &ad, where
a~=k, ~~xi=min(X, p), and k, ~~x,~=a~ when a~ &y&ap. A similar calculation for the a, -decreasing half-cycle yields
the corresponding dissipation W,'„which, by symmetry, is exactly equal to W,', . The sum of 8",, and W,', is thus the
total energy dissipated per unit surface area per cycle,

W, = [48'/pp J,~~(Bp)] Iap —sinap —4X 'sin(ap/2)[sin(ap/2) —(ap/2)cos(ap/2)] I (35a)

when Ao Q {Xd~ and

W,
' =[48p/pp J,~~(Bp)]Iag —slnad —4X 'sin(ad/2)[sin(a~/2) —(a~/2)cos(ad/2)]

+ (ap —.ad )[1—cosad —X '(sinad —ad cosad )]I (35b)

(36)

where ho& ——Bosinao -—Boffo can be regarded as the trans-
verse component (perpendicular to Bp ——Bpz) of an ap-
plied ac magnetic induction.

V. SUMMARY AND CONCLUSIONS

In this paper we formulated (Sec. II) a general critical-
state theory for the hysteretic electrodynamic behavior of
a type-G superconducting slab subjected to a parallel mag-
netic field that changes in both magnitude and direction.
Two fundamental material-dependent quantities play key
roles in this theory: J,q, the transverse critical-current
density at the threshold of depinning, and J,

~~

——Bk,~~/pp,
the longitudinal critical-current density at the threshold of

when ap&aq. Equation (35a) describes the dissipation
when the angle amplitude ao is too small to drive the dis-
sipative flux-line-cutting region of thickness x, =ap/k
as deep as either xo or the slab's midplane x . Equation
(35b) applies for larger amplitudes when the thickness of
the dissipative region is the smaller of xp and x

When ap«1 and ap&min(X, p), Eq. (35a) yields, to
good approximation,

2~ oj. Jci boL
3

8 1—
3pp J ii(Bp) 2J~ii(Bp) Bp

I

flux-line cutting. We applied the theory, assuming con-

stant J,j and k,
~~

for simplicity, to calculate B, J, and E
and the corresponding energy dissipation in a slab subject-
ed to a parallel, constant magnetic field whose direction
undergoes either continuous rotation (Sec. III) or periodic
oscillation (Sec. IV).

The theory described in this paper has several similari-
ties to the simple model that was proposed to explain the
pioneering experiments of Refs. 1 —3. These include (a)
the assumption that the steepest metastable gradients of 8
are governed by

~

dB/dx
~
=pp J,z, regardless of whether

the direction of 8 changes or not, (b) the assumption that

the steepest metastable gradients of the angle of B are
governed by ari additional equation,

~

da/dx
~
=k, ~~,

and
(c) the assertion that rotation ultimately leads to diamag-
netic profiles of B near the surface, such that B decreases
with distance from the surface according to

~

dB/dx
~
=pp J y. The present theory, moreover, goes

beyond that of Refs. 1 —3 by identifying flux-line cutting
as the physical mechanism that produces the diamagnetic
8 profiles near the surface. Faraday's law, when reex-
pressed as Eq. (8), shows that' 8 is not conserved when
flux-line cutting occurs, but instead is irreversibly con-
sumed. Such B consumption occurs even. though fluxoid
conservation is rigorously obeyed during each and every
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flux-line-cutting event. The authors of Refs. 1 —3, who
discovered that rotation reduces B inside a disk initially in
a nonmagnetic or paramagnetic state, described' this
surprising effect as a "flux expulsion" phenomenon, by
which "flux can leave this disk although the magnetic
pressure is directed inward at the surfaces. " With the aid
of the present theory, we see that "flux expulsion" is a
misleading description of rotation-induced 8 consump-
tion, because, rather than being transported out of the
specimen as a result of rotation, vortices near the surface
actually undergo net transport into the specimen, thereby
replenishing 8 in those regions where flux-line cutting
consumes it. We discussed this effect briefly at the end of
Sec. III; we plan to provide a more complete description
in a subsequent publication including an analysis of the
approach to steady state.

Although our theory yields results essentially identical
to those of Refs. 1 —3 in the quasi steady state and under
ac conditions after the diamagnetic profile at the surface
has been established, it requires a significantly different
description of the time evolution of the profiles of 8 and
a, starting from nonmagnetic and paramagnetic initial
states. In the context of our theory, the evolving profiles
of 8 and a proposed in Refs 1 —.3, in fact, do not obey
Faraday's law [Eqs. (6) and (7)] with continuous Ez and

E~~. In a subsequent publication we plan to show how our
theory yields the appropriate 8 and a profiles, which are,
in general, considerably more complex than those of Refs.
1 —3.

To compare our results with those of Bean, ' we first
consider the solutions of Eqs. (1)—(13) using the model
J,z ——const and J,

~~

——const=XJ, q. We assume that
a, = —cot and xo &x . The results for 0&x &xo

o/po Jcx are

8 =8p( I —x/x p ),
a= rg)t —X ln(1 ——x/xp),

8", =2m8p/ppJ, ii(1+4/X ) . (42)

With these assumptions for the B dependence of J,& and
J,~~,

the angle between J and B is tan '(1/X), and the an-

gle between E and B is tan '(X/2).
Bean' made two restrictive assumptions: (a) E always

points along J, and (b) the magnitude of J is J„the de-
pinning critical-current density. Assumption (a) leads to
the condition 1/X=X/2 or X=V2, and assumption (b)
leads further to the conditions J,

~ ~

——J,V 2/v 3 and
J,j =J, /v 3. Substitution of these into Eq. (42) leads to
Bean's result' (reexpressed in MKS units):

8 =2n8p/p, p J,~6 . (43)

In our more general theory, assumptions (a) and (b) are re-
placed by two other assumptions: (a) J,z is equal to the
usual depinning critical-current density J, measured by
conventional means, and (b) J,

~~
is a new, fundamental,

sample-dependent, longitudinal critical-current density at
the threshold of flux-line cutting which must be measured
or calculated independently of J,z.

As in the case of the usual critical-state model (includ-
ing only pinning), simple analytic solutions for the field
profiles are obtainable only with simple 8 dependences of
J,

~~
and J,z. In this paper we have kept these dependences

as simple as possible to calculate and illustrate the electro-
dynamic behavior for a variety of cases. To make detailed
comparisons with experiments, such as those in Refs.
1 —3, the present theory must be extended to account for
the 8 dependence of both J,

~~
and J,~, as well as for gen-

eral time variation of the applied magnetic field B,. To
this end we have developed a computer program which

numerically solves Eqs. (4)—(7) not only for the arbitrary
8 dependence of J,

~~
and J,z, but also for arbitrary trajec-

tories of B,(0,t) and B,(X,t). We plan to present our re-
sults in a subsequent publication.

Ei ——co8 /pp J,i((1+4/X ),
&~) ——2co8 /pp J,((X(1+4/X ) .

The Poynting vector at the surface is

S„(0)=co8p/pp J,ii(1+4/X ),
and the loss per revolution per unit surface area is

(39)

(40)

(41)
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